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Abstract

Therapeutic ultrasound (US) can be noninvasively focused to activate drugs, ablate tumors and deliver drugs beyond the
blood brain barrier. However, well-controlled guidance of US therapy requires fusion with a navigational modality, such as
magnetic resonance imaging (MRI) or X-ray computed tomography (CT). Here, we developed and validated tissue
characterization using a fusion between US and CT. The performance of the CT/US fusion was quantified by the calibration
error, target registration error and fiducial registration error. Met-1 tumors in the fat pads of 12 female FVB mice provided a
model of developing breast cancer with which to evaluate CT-based tissue segmentation. Hounsfield units (HU) within the
tumor and surrounding fat pad were quantified, validated with histology and segmented for parametric analysis (fat: 2300
to 0 HU, protein-rich: 1 to 300 HU, and bone: HU.300). Our open source CT/US fusion system differentiated soft tissue,
bone and fat with a spatial accuracy of ,1 mm. Region of interest (ROI) analysis of the tumor and surrounding fat pad using
a 1 mm2 ROI resulted in mean HU of 68644 within the tumor and 297652 within the fat pad adjacent to the tumor
(p,0.005). The tumor area measured by CT and histology was correlated (r2 = 0.92), while the area designated as fat
decreased with increasing tumor size (r2 = 0.51). Analysis of CT and histology images of the tumor and surrounding fat pad
revealed an average percentage of fat of 65.3% vs. 75.2%, 36.5% vs. 48.4%, and 31.6% vs. 38.5% for tumors ,75 mm3, 75–
150 mm3 and .150 mm3, respectively. Further, CT mapped bone-soft tissue interfaces near the acoustic beam during real-
time imaging. Combined CT/US is a feasible method for guiding interventions by tracking the acoustic focus within a pre-
acquired CT image volume and characterizing tissues proximal to and surrounding the acoustic focus.
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Introduction

CT has long been applied for the characterization of tissues,

such as fat and bone, in diagnostic imaging [1]. More recently, the

use of CT in the interventional and intra-operative setting is

expanding, due to advantages in speed and convenience as

compared to MRI. C-arm cone-beam CT scanners with flat-panel

detectors are increasingly used in interventional radiology suites

for mapping and navigational applications [2]. Fusions between

CT and US have been developed for the purposes of guiding

biopsy and radio-frequency ablation [3,4]. However, CT has not

yet been applied to guide ultrasound therapy planning and US-

based thermometry for mild hyperthermia or ultrasonic ablation.

Mild hyperthermia is an emerging technique for image-guided

interventions since tumor oxygenation, vascular permeability and

blood flow can be enhanced, potentially increasing the efficacy of

radiotherapy and chemotherapeutic drugs [5,6,7,8,9] and activat-

ing temperature-sensitive drugs [10,11,12,13]. Ultrasound is an

ideal method for noninvasively generating hyperthermia due to

the low cost, flexibility and potential to image and detect

temperature changes in real time [14]. While MR-guided focused

ultrasound can similarly monitor treatment and temperature [15],

US guidance of interventions remains widespread.

In the guidance of mild hyperthermia, tissue characterization is

important since the reflection of sound waves by bone can create

unanticipated regions of thermal damage. Also, during thermal

therapy, changes in the speed of sound produce an apparent shift in

the position of tissue within and distal to the acoustic focus over

successive image acquisitions, providing a basis for ultrasonic

thermometry [13]. While sound speed increases with increasing

temperature in non-fatty soft tissues over a temperature range of 30-

50uC, sound speed decreases as temperature increases over this

range in fatty tissue [16]. Therefore, ultrasound thermometry

requires accurate estimation of fat content. The local temperature

change is then estimated from the product of the apparent echo time

shift and the tissue-dependent coefficient for thermal expansion. By

estimating the percentage of fat and other tissue components and

incorporating the relevant thermal expansion coefficients within

each small region prior to thermal therapy, temperature changes

can be mapped from shifts in ultrasound echoes [14].

Open source software environments are emerging as an

important component of multi-modality imaging; for example,
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3D Slicer facilitates image segmentation and OpenIGTLink is an

open-source protocol for rapid transfer of generic data between

software and devices used in image-guided procedures [17]

[18,19]. We set out to leverage these platforms to develop an

open source fused CT/US system by interfacing a clinical US

scanner and generic clinical CT scanner, and to demonstrate the

utility of such a fused system by characterizing tissues relevant to

ultrasound therapy (soft tissue, bone, and fat) in a mouse breast

cancer tumor model [17,19,20].

Study Design
Image registration between CT and US was first quantified.

Next, we characterized HU-based segmentation of fat and soft

tissue by comparing fat content and tumor size (n = 12) in histology

and comparable CT and US slices. We tested the feasibility of

using CT to identify tissue within the acoustic beam by

retrospectively fusing images from US and CT clinical scanners

(n = 4). These data were supplemented by tissue characterization

performed on living animals using a small animal CT scanner.

Results

OpenIGTLink has been applied to interface a Siemens Sequoia

US scanner with a cone-beam breast CT via electromagnetic (EM)

positioning. The resulting open source software acquires US images

in real-time, computes the 2D image slice location and transmits the

image and location via OpenIGTLink within 0.1 seconds (http://

code.google.com/p/ct-us-openigtlink/). By using the IGSTK driver

to interface with hardware and standard NTSC video capture, the

fused CT/US plug-in can easily be extended to function with

optically-tracked systems and other CT and US scanners. Our

combined platform includes a physical interface for small animal

research, in which the animal is either imaged with both modalities

within the same study or moved between imaging platforms.

Millimeter-scale Accuracy Possible with Fused CT/US
By bridging EM tracking hardware and image acquisition with

3D slicer, US images were acquired for real-time combined CT/

US with mm-scale accuracy. The target registration error was

indicated by the quality of the transformations between the

coordinate systems described in Figure 1a. The mean error in

calibration between the US plane (P space) and transducer sensor

(R space) was 0.9 6 0.5 mm. With 93 observations of a single

point acquired from different angles, the maximum and minimum

residual errors were 2.6 and 0.2 mm, respectively (Figure 1c, d).

Registration between the CT image space, C, and the tracked

space, T, was also achieved with mm-scale accuracy. The mean

residual error in the transformation of twelve mutual fiducial

points between C and T was 1.0 ± 0.2 mm.

The propagation of these errors was indicated by the target

registration error between the US image and comparable CT slice

after co-registration of the images. Slices through the cylinders in

the phantom were easily visualized in both modalities and accurate

co-registration was evident by the consistent shape and alignment

between the targets (Figure 1b). Circular targets in the dual

modality phantom appeared as a grid of circles during combined

CT/US imaging. A mean target registration error of 1.0 6

0.3 mm was measured across 50 corresponding targets on CT and

US in fused 2D images.

Syngeneic Met-1 tumor provides model system for
imaging-based tissue characterization

The transplanted tumor cells formed a mass that expands within

the mammary fat pad (Figure 2a). In the absence of inflammation

and tumor expansion, the fat pad thickness ranged from 1 to

3 mm and extended laterally over more than 10 mm, separated

from the dermal layers by the fascia (see Figure 2b). As the tumor

grew within the fat pad, scattered fat cells and connective tissue

were evident, while the fat cells surrounding the tumor were

compressed, aspherical and disorganized (Figure 2d). Granular

lymphocytes and vasodilation within the fat pad provided evidence

of inflammation during tumor growth (Figure 2c).

Tissue characterization based on echogenicity could not
differentiate tumor and fat

In this study, the grayscale B-mode image amplitude was 111.0

6 9.6, 76.8 6 5.7, 107.8 6 8.5, and 63.3 6 7.9 for fat, muscle,

bone and tumor, respectively. Fat and bone were differentiated

from the less echogenic muscle and tumor tissue (p,0.05, multiple

comparison ANOVA); however, fat and bone or muscle and

tumor could not be differentiated from one another using US.

CT successfully characterizes fat and tumor
Segmentation of CT images according to the HU in Table 1

indicated the location of the murine fat pads. Isosurfaces generated

from segmented CT images identified bone, fat and protein-rich

regions (Figure 3a–c). A fat pad on the left hind limb and a

unilateral Met-1 tumor that disrupts the fat pad on the right hind

limb were visible in segmented images. The fatty regions detected

by CT were distributed throughout the abdomen and along the

back (Figure 3d). In transverse CT images, fat pads appeared as a

contiguous layer with HU in the range expected for adipose tissue

(Figures 3e–h).

H&E-stained histology slides and comparable CT slices had

similar morphology. Representative histology images (Figure 4a–c)

and comparable CT slices (Figure 4d–f) showed a core tumor

embedded in a surrounding fat pad with a thickness of 1 to 3 mm.

The computed area of the protein-rich region in the CT slice of

the tumor was similar to the histological slice (Figure 4g,

slope = 1.2, r2 = 0.92), and the mean CT number was -

97652 HU for a ,1 mm2 circular ROI in the fat pad

surrounding the tumor, compared to 68644 HU for an ROI of

the same area within the tumor (Figure 4h) (p,0.05). In all

tumors, the CT number within the tumor was greater than in the

surrounding fat pad (Figure 4i).

CT Provides a Basis for Automated Tissue Segmentation
The area of fat in histology slices decreased with increasing

tumor size (Figure 5a slope = -0.33, r2 = 0.51). Tumors with

volumes less than 75 mm3 had a negative-shifted radiodensity on

average, compared to tumors larger than 75 mm3, which had a

higher probability of positively-shifted histograms (Figure 5b). The

average percentage of fat measured from histology (%fat = Afat/

(Afat+Atumor)) for tumors ,75 mm3, 75–150 mm3 and .150 mm3

was 75.2 611.8%, 48.4% 63.3%, and 38.5 6 8.2%, respectively,

while CT quantitation yielded 65.3 6 24.6%, 36.5 69.3%, and

31.6 6 7.2%. Based on CT and histology, tumors with volumes

less than 75 mm3 had a higher percentage of surrounding fat than

larger tumors (p,0.05 for both measurement methods, t-test).

Average histograms for the smallest tumors showed a greater

count in the HU range below zero compared to larger tumors

(Figure 5c–e).

Fused CT/US imaging and tissue characterization is
feasible in vivo

A real-time tissue-type overlay from CT was acquired in vivo,

with a representative image from these studies shown in Figure 6a–

An Open Environment CT-US Fusion
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d. The hypoechoic tumor embedded in the fat pad was imaged

with US (Figure 6b, outlined in blue dotted lines), whereas the

segmented CT images (Figure 6c) show a protein-rich region in the

tumor core (red area) and the fatty regions surrounding the tumor

(yellow area). The target registration error along the skin of the

mouse (red ellipse) in the overlaid CT/US images (Figure 6d) was

approximately 0.62 6 0.13 mm.

Discussion

We have synthesized a CT/US fusion capability that can

combine images from generic clinical and pre-clinical ultrasound

and CT scanners to provide real-time ultrasound imaging,

informed by CT tissue characterization. Using 3D Slicer and

OpenIGTLink, real-time US images can be overlaid on

preacquired CT images, facilitating guidance of ultrasound

imaging and therapy that is informed by tissue types. The

combined CT/US system presented here has clinically relevant

accuracy, and CT/US images of a living mouse demonstrate the

feasibility of the fusion of images acquired from clinical scanners.

Most importantly, we found that even with tumors on the order

of 1 cm and with minimal intervening tissue, CT could accurately

characterize fat and bone surrounding the tumor, while ultrasound

imaging facilitated recognition of the tumor boundaries. The

amplitude of ultrasound echoes is altered by the intervening tissue

and the thickness of tissues, such as the cortical bone in small

animals. Artifacts, such as speckle and shadowing, also change the

image amplitude depending on the location within the body and

the acoustic path from the transducer to the tissue. Further,

ultrasound cannot assess the distribution of tissue components at

the sub-resolution (sub-beam dimensions) level, whereas CT can

identify such components based on the distribution of Hounsfield

units within a region.

With the acquisition parameters used here, voxel Hounsfield

estimates from the dedicated breast scanner have a standard

deviation of approximately 30 HU which allows for differentiation

Figure 1. Calibration and accuracy of electromagnetically-tracked CT/US. (a) Relevant hardware for combined CT/US with the coordinate
systems used to join the tracked US transducer and CT image space. The US plane, P space, is calibrated with respect to a position sensor, R space,
attached to the US transducer. The sensor’s location is known relative to an electromagnetic transmitter, T space, whose orientation relative to the CT
image space, C, is determined by fiducial registration. (b) The combined imaging system is used to view B-mode US, the corresponding CT slice, the
corresponding segmented CT slice, or any combination of these slices in real-time. (c) The magnitude of the error in calibration across 93
observations of a single point imaged from multiple angles with a mean of ,0.94 60.5 mm. (d) Calibration data from (c) plotted in 3D to provide the
spatial distribution of the error and indicate that the error is isotropic.
doi:10.1371/journal.pone.0027372.g001
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between fatty tissue (HU,2120) and protein-rich tissue (HU.0)

[21]. The use of cone-beam CT scanners raises concerns about

spatially variant accuracy. Here, corrections for spatially variant

noise were applied during reconstruction and our object is located

near the axis of rotation where the highest accuracy is achieved

[22]. Thus, in our study, CT identified regions of fat with sub-

millimeter dimensions.

The high correlation between CT and histology for tumor area

measurements suggests that CT can accurately define the tumor

boundaries for therapeutic planning. Since reflection of ultrasound

by bone can result in a local doubling of the thermal dose,

accurate mapping of bony structures adjacent to or immediately

distal to tumors is important and was successfully accomplished

(Figure 6c). By fusing CT and US, bone in the acoustic beam can

be identified in CT, and an acoustic path that avoids bone can be

chosen.

Fat Characterization Can Improve US-Based
Thermometry and Beam Focusing

US estimates of temperature were determined by the product of

a tissue-dependent constant and an apparent time shift detected

by ultrasound. The tissue-dependent parameter ktissue describes

the thermal expansion and sound speed of the tissue and has

been reported to differ in magnitude and sign between fat and

other tissues over the temperature range examined here.

Therefore, without spatially-registered characterization of fat

content, ultrasonic mapping of changes in temperature can be

incorrect in magnitude and sign. The fused CT/US system

developed here can characterize tissue in the acoustic beam and

improve US thermometry by providing a map of thermal

expansion parameters within the region of interest.

Further, due to the low sound speed of fat (,1450 m/sec)

compared to the assumed imaging sound speed of 1540 m/sec, the

presence of fat in the acoustic path can de-focus the beam and

displace the ultrasound focus away from the expected position

[23]. The beam width of a 7.5 MHz transducer can double when

subjected to an 8% error in sound speed compared to assumed

sound speed [23]. For a therapeutic beam with a depth of focus on

the order of 1–2 mm, unpredictable expansion and displacement

of the acoustic focus would be significant. Moreover, while sound

speed decreases in fat with increasing temperature, sound speed

increases with temperature in most other tissues [16,24].

Therefore, previous ultrasonic thermometry studies have created

temperature maps by assuming a homogenous tissue and constant

sound speed [14,25].

Finally, the acoustic attenuation coefficient of fatty tissue is

approximately 1 dB/(cm?MHz) lower than tumor and muscle;

thus, temperature will increase more slowly in fat than in other

tissues for a given thermal dose [26,27]. Therefore, a priori

predictions of the thermal dose that are required to produce a

given temperature increase require an accurate estimate of local

fat content. [13].

Accuracy of combined CT/US is ,1 mm
Registration accuracy on the millimeter scale is required to

guide therapeutic US, but practical problems, such as tracking

accuracy, sensor-transducer calibration, and mechanical contact of

the transducer with the target decrease registration accuracy. The

6DOF EM sensors have a quoted accuracy of 1.1 mm and 0.6

degrees (95% confidence interval) [28]; however, the EM-detected

static accuracy is below 1 mm within a subvolume of the tracked

space that is sufficiently large for superficial tumors [29]. The

single-point method of calibration used here is the most accurate

method discussed in literature [30], and the problem of target

Table 1. HU Ranges for identified tissues.

HU Range Tissue Color

2300 to 0 Fat Yellow

1 to 300 Protein-Rich Pink

301 to 3000 Bone White

The colors in the table are used throughout the paper to indicate tissue type.
doi:10.1371/journal.pone.0027372.t001

Figure 2. H&E stained histology of Met-1 tumors. H&E stained histology of MET-1 tumors. (a) H&E stained section of a single tumor (T) with
multiple cysts (C) growing beneath the dermis (D) in the mammary fat pad (F). (b) The epidermis (E), dermis (D), fat pad fascia (FP) and fat (F) remote
to the tumor has minimal inflammation. (c) In contrast, the fat pad (F) adjacent to the tumor (T) is inflamed with compressed adipocytes, dilated,
engorged vessels (V) and scattered granulocytes (g). (d) The malignant nature of the tumor is illustrated by the cords of neoplastic cells infiltrating
the adjacent fat (f) and connective tissue (ct).
doi:10.1371/journal.pone.0027372.g002
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deformation during US imaging was avoided by mechanically

decoupling the animal from the US transducer. The resultant

system achieved mm-scale accuracy that was confirmed by B-

mode US images.

Met-1 validated as model for breast tumor tissue
characterization

The Met-1 tumor cells used in these studies provided a model

for developing breast cancer. After transplantation into the fat

Figure 4. CT segmentation corresponds with histology. (a–c) Histology and (d–f) corresponding segmented CT slices for tumors of diameters
45 mm3, 113 mm3, and 254 mm3, respectively. (g) The tumor area in histology is correlated with the cross-sectional area of protein-rich tissue
detected by CT (r2 = 0.92, slope = 1.2). (h) The average HU of 1 mm2 ROIs in the fat pad is less than within the tumor when averaged across all tumors
(p,0.05). (i) The CT number is higher within the tumor compared to the surrounding fat pad for all tumors.
doi:10.1371/journal.pone.0027372.g004

Figure 3. Hounsfield unit-based segmentation differentiates tissue types. (a–d) Isosurfaces of a mouse with a single hindlimb tumor, (a),
bone, (b), fat, (c) soft tissue, (d), combined bone, fat and soft tissue isosurfaces. (e–h) Transverse plane CT images and segmented image from location
of black dotted line in (d), where yellow indicates fat, red indicates soft tissue and white indicates bone.
doi:10.1371/journal.pone.0027372.g003
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Figure 5. HU accurately predicts the tumor fat content. (a) Fat, as measured from histological slices, decreases with increasing tumor area
(r2 = 0.51, slope = 20.3). (b) Box plot of average CT histograms show the fat shifted HU values in small tumors. (c–e) Average histograms of tumors in
three tumor size groups show the presence of a tail in the range of HU associated with fat. Based on CT images and histology, fat content decreases
with increasing tumor volume.
doi:10.1371/journal.pone.0027372.g005

Figure 6. Combined CT/US characterizes tissue. (a) CT slice of a hindlimb tumor corresponding to the US slice in (b). The segmented CT slice is
shown in (c) and overlaid on the US image in (d). The combined segmented CT/US image identifies fat proximal to and surrounding the tumor during
ultrasonic imaging, with registration accuracy on the order of 1 mm. Nearby bone is obvious in the CT image (c) but not immediately visualized by US
(b).
doi:10.1371/journal.pone.0027372.g006
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pads, a growing tumor displaced the surrounding fat and

infiltrated the tissue, increasing the mean HU values as compared

to fat pads without a tumor. The protein-rich tumor embedded in

the fat pad is a heterogeneous tissue with decreasing fat content as

the tumor grows and provided a model to test the capabilities of

CT tissue characterization.

Study Limitations
For the first time, tissue characterization has been performed

using fused, clinically-relevant CT and US images; however, there

are some limitations that should be acknowledged. Temporal

resolution of the image update is currently limited by the 30 Hz

maximum frame rate output from our commercial US system.

While the physical limitations of US allow for higher frame rates, a

30 Hz update rate is likely to be adequate for interventional

applications. An alternative approach is to acquire raw radio

frequency signals from a research-based ultrasonic system which

operates at a higher frame rate [31]. Further, while phantom

studies used a real-time overlay of CT and US, our in vivo study

used a retrospective overlay due to logistics of the vivarium and

US and CT scanners. However, in vivo tissue characterization is

feasible (see Figure S1).

In addition, optimization of the HU values used in segmentation

has not been pursued. While the HU limits we applied for

segmentation have a physical basis and are similar to those found

elsewhere in literature, methods to leverage a priori information

and 3D morphological and region growth operations have been

reported [32], and would likely increase the accuracy of

segmentation. Finally, while the clinical CT scanners used here

have a resolution of approximately 0.3 mm, which was sufficient

to detect fat pads with thicknesses of 1–3 mm, the Siemens Inveon

scanner, with a resolution of ,0.1 mm, further improved fat pad

tissue characterization and has been applied to characterize

tumors based on in vivo imaging (see Figure S1).

The overall goal of this research was to create an imaging

method that can accurately identify tissues in the acoustic beam

path. Quantification of the sensitivity, specificity, and accuracy of

such a system are important questions that are not fully addressed

here. Future work will focus on quantifying the specificity,

sensitivity, and accuracy of tissue characterization using fused

CT/US.

Summary and practical applications
In summary, we developed an open environment fused

CT/US system with 1 mm resolution and applied this system

to characterize bone, fat and tumor in a mouse model of

developing cancer. Practical applications for this technology

include acoustic therapy planning and enhancing US-based

thermometry in heterogeneous tissue. In the future, the

combined CT/US system will be integrated with ultrasound

thermometry as described in [33], facilitating real-time control of

hyperthermia as required for image-guided drug delivery and

image-guided hyperthermia.

Methods

Animal Model and Imaging Procedures
The University of California at Davis Institutional Animal Care

and Use Committee approved our study (protocol # 15864).

Syngeneic Met-1 tumors grown within the mammary fat pad

provided the model used here for tissue characterization and

validation. Female FVB mice underwent bilateral transplantation

of Met-1 tumor cells into the fourth fat pad. After tumor growth to

a diameter of approximately 0.5 cm, seven mice with 12 tumors

(two tumors did not develop) were imaged with CT after

euthanasia using a dedicated breast CT [21]. All tumors were

excised for H&E stained histology along the midline sagittal

direction of the tumor.

Four female mice with Met-1 tumors within the mammary fat

pad were imaged to test in vivo feasibility of fused CT/US. In these

studies, the mice were imaged with tracked US prior to euthanasia

and subsequently underwent CT imaging. The tracked US images

were localized in the CT volume retrospectively using the tracking

information and fiducial locations acquired during the US scan.

The feasibility of CT segmentation using in vivo images was

demonstrated using a small animal Siemens Inveon CT (Erlangen,

Germany) with a pixel dimension of 48.9 mm. Two mice with

three tumors were imaged before euthanasia (Inveon: Bin 2, low

magnification, Current/Voltage: 80 kVp/425 uA, 750 ms/pro-

jection, 180 projections). CT images and tissue-segmented images

along with comparable histology are shown in Figure S1.

Localization of Histological Slice in CT Images
Tumors were localized in the CT image stack by generating

circular ROIs in multiple transverse images in the region of the

hind limb using custom MATLAB software (MATLAB, Natwick,

MA). The resultant ROI was sliced in the midline sagittal plane

coincident with the histology slice, and the CT slice was cropped

so only the tumor region was visible for comparison with histology,

yielding a 2D CT image containing only the tumor and

surrounding fat pad.

CT Segmentation, Percentage Calculation, and ROI
Selection

CT images were characterized as fat, protein-rich, or bone

according to the values shown in Table 1 using 3D Slicer. The

ranges were chosen based on observation of HU histograms of

axial slices of tumors and are similar to those used by Borkan et al

[34]. The area fat percentage within a 2D CT slice comparable to

the histology slice was determined by computing the 2D area of fat

after segmentation using HU in Table 1 normalized by the area of

the tumor and surrounding fat (all measurements reported in

Table 2). To measure the difference in radiodensity between the

tumor and surrounding fat pad, we computed the mean HU of a

circular ROI with an area of ,1 mm2 from the 2D CT slice

within the tumor and another ROI in the surrounding fat pad.

Probability density functions of small (,75 mm3), medium (75–

150 mm3), and large (.150 mm3) tumor groups were created

from a HU histogram (128 bins) containing all pixels from the

midline sagittal images of tumors from each group (MATLAB,

Mathworks, Natick, MA). The resultant histogram was converted

to a probability density function by dividing by the total area in the

histogram.

ROI Selection and Volume Estimation from Histology
Histological images were used to validate the percentage of fat

in the region surrounding the tumors and tumor volume. Two

researchers blinded to tumor size selected ROIs containing either

fat or tumor cells on histological images. Linear regression

indicated similarity between the two measurement sets (fat area:

r2 = 0.61, tumor area: r2 = 0.96). The mean of these two sets of

measurements was used to minimize selection bias. The area of the

fatty region was divided by the area of the combined tumor and fat

regions. Tumor volume was estimated from histology by assuming

an ellipsoidal shape and overlaying two radii of the tumor in the

2D slice (r1, r2), while the third radius (r3) was estimated by

calculating the mean of the first two radii. Tumor volume was

An Open Environment CT-US Fusion
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estimated by taking the volume of the ellipsoid with radii r1, r2,

and r3 (measurements reported in Table 2).

Statistical Methods
The area of tumors in the histological slice (as described in the

methods) was compared to the tumor area computed from CT

slices by linear regression with r2.0.5 considered significant. One-

way ANOVA was used to test the ability for US to differentiate

tissue types based on US image amplitude in tumor, fat pads, bone

and muscle of 4 mice. Assuming a standard deviation of 10%, a

change of 30% image amplitude can be detected between 4 tissues

with a power of 80% and n = 4. Linear regression was performed

to characterize general trends between tumor size and the area

designated as fat by histology (r2.0.5 considered significant).

Tumors were divided into small (n = 4, ,75 mm3), medium (n = 4,

75–150 mm3), and large (n = 4, .150 mm3) size groups. With this

sample size and assuming a standard deviation of 15%, the

Student’s t-test can detect differences of 35% in the regional

percentage of fat with a power of 80%. We evaluated residuals of

all measurements for normality and did not detect a substantial

deviation from a normal distribution.

Fused CT/US Imaging Hardware
An EM tracking system (NDI Aurora, Ontario, Canada) was

used to detect the spatial location and orientation of sensors affixed

to the US probe (as shown in Figure 1a). Within the complete cube

volume (500 cm3), the tracking system’s static position and

orientation accuracy are 1.1 mm and 0.6 degrees, respectively,

with a 95% confidence interval [28]. The 6 Degree of freedom

(6DOF) sensors have improved static accuracy (less than 1 mm)

when located within a 300 mm radial distance from the

transmitter’s origin [29]. Imaging and calibration were performed

within this high performance subvolume. The video output of a

clinical Sequoia ultrasound scanner (Siemens, Issaquah, WA,

15L8 transducer, 14 MHz) transmitted US images to a video

capture card at 10 fps. The US scan plane was localized in the

tracked volume and then mapped via fiducial registration to the

CT volume. All images in the results section were acquired with a

clinical dedicated breast CT [21] with a pixel dimension of

0.3 mm (breast CT scanner: X-ray Tube Current/Voltage:

7 mA/80 kVp, 530 projections).

Tracked Imaging Software
The software component of our fused CT/US system is a plug-

in created for 3D Slicer that imports the transducer position and

corresponding US image and performs transformations for

registration between CT and US, as described in the subsequent

sections (plug-in source code, test data, and tutorial are available

online: http://code.google.com/p/ct-us-openigtlink/) [35]. 3D

Slicer provides the visualization interface for the combined image

data. This software platform is open source, available on multiple

operating systems, and has a modular architecture that allows for

custom plug-ins to be created [35,36,37,38]. The OpenIGTLink

protocol is used to transfer US images and sensor position data to

Slicer 3D [17]. Aurora tracking information is read using a device

driver included in the Image Guided Surgery Toolkit (IGSTK),

while images are captured with the Unicap library [18,19].

Image Registration
Following notation used in Prager et al., we use MTN to indicate

a coordinate transform from an arbitrary coordinate system, N,

into another system M and Nx to represent a location in a

coordinate system N (see coordinate systems in Figure 1a and

Glossary of symbols, Table S1) [30]. Points in the scan plane

(coordinate system P) must be transformed into the volume C,

which is a 3D matrix of volume elements acquired by the CT

scanner. The transformation of a pixel within the ultrasound

image plane, Px, to the corresponding location within the CT

volume, Cx, can be described by:

Cx~(CTT
T TR

RTP)Px ð1Þ

Each transformation consists of a translation and three Euler angle

rotations. All transformations assume fixed axes and column

vectors with rotations acting on objects and a rotation order of z-
y-x. A general affine transformation between two coordinate

systems can be achieved by:

T~

cosbcosa cosbsina {sinb dx

sincsinbcosa sincsinbsinazcosccosa sinccosb dy

coscsinbcosazsincsina coscsinbsinazcosccosa sinccosb dz

0 0 0 1

0
BBB@

1
CCCAð2Þ

Table 2. Area measurements of tumor region and surrounding fat pad from CT and Histology.

CT Histology

Tumor Volume (mm3) Tumor Area (mm2) Fat Area (mm2) Percent Fat Tumor Area (mm2) Fat Area (mm2) Percent Fat

9.5 2.4 41.0 94.4 7.4 48.4 86.7

13.5 16.9 33.3 66.4 10.5 53.0 83.5

,75 mm3 45.4 14.9 29.0 66.1 16.4 35.5 68.4

74.9 33.3 17.4 34.3 26.3 43.3 62.2

113.4 45.8 43.0 48.4 31.7 29.6 48.3

114.1 38.7 20.1 34.2 30.1 32.0 51.5

75–150 mm3 120.2 46.7 28.0 37.5 37.8 29.6 43.9

147.6 39.3 13.7 25.9 37.8 37.8 50.0

193.2 52.7 35.3 40.1 40.1 32.6 44.8

225.1 72.8 23.8 24.6 52.0 30.4 36.9

.150 mm3 253.9 62.0 33.1 34.8 49.3 40.2 44.9

309.4 72.4 26.7 26.9 69.7 26.5 27.5

doi:10.1371/journal.pone.0027372.t002
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with three rotations (a,b,c) with respect to z, y, x and translations

(dx,dy,dz) corresponding to x, y, and z respectively.

Calibration Procedures
Accurate calculation of the orientation and translation between

the transducer sensor and US image plane has been discussed

previously, and many methods are outlined in [39]. Briefly, we

used a single-point target method, where US acquired images of a

fixed point from multiple angles while the tracking system returned

position and orientation information for the attached sensor. In

our calibration method, a cross-wire phantom was created with

two pieces of 100-micron thread. The cross between the thread

was assumed to be located at the origin of an arbitrary coordinate

system, A, such that each image generated the following equation:

0

0

0

1

0
BBB@

1
CCCA~(ATT

T TR
RTP)Px ð3Þ

where ATT represents the transformation from the EM transmitter

into an arbitrary space centered at the line’s midpoint. The point

relative to the ultrasound image (Px) was calculated from manual

measurements where the threads cross in the image (Figure S2a,b).

The EM tracking system reported the associated sensor position

and orientation (TTR). The resultant system of equations was

solved for RTP using the Levenberg-Marquardt algorithm [40]. In

solving Eq. 3, TTR is also optimized, but these values are discarded

since TTR is measured from the tracking device during normal

operation. An ensemble of observations was transformed accord-

ing to Eq. 3 using measured values for TTR, and the average

magnitude of the resultant vector indicated the residual error in

the tracked ultrasound calibration.

Registration Between Tracked Space and CT Image Space
The tracked volume and CT imaging stack were registered by

selecting pairs of locations in the CT stack and the corresponding

location in the tracked volume. Measurements in the tracked

volume were made with a second EM sensor that was not attached

to the ultrasound transducer. Given these paired measurements,

the affine transformation between the CT stack and the tracked

volume (TTC) was determined using Horn’s method, as imple-

mented in 3D Slicer [41]. Fiducial registration error is the average

magnitude of the absolute difference between points transformed

from the CT stack to the tracked volume. Target registration error

in the cylindrical phantom was quantified by measuring the

distance between circular ROIs centered on circular targets in

fused images, and registration error in tumor images was

quantified by measuring the mean difference in the skin boundary

detected by CT versus US (ImageJ, NIH).

Temporal Calibration
The 3D position, orientation, and image must be stored with the

correct time-stamp to achieve accurate registration and recon-

struction. In order to verify the accuracy of the timestamps, images

of the base of a water bath were acquired along with the sensor

location during the scans. The ultrasound technician moved the

transducer in an oscillatory motion during the acquisition. The

distance from the center of the transducer to the base of the water

bath was measured from the US images by applying a threshold to

generate binary images and counting the number of pixels from

the center row of the image to the point on the line along the

image row. The time lag between the sensor location and the

distance to the bottom of the water bath measured from the US

image was determined by taking the cross-correlation of both of

the signals.

Supporting Information

Figure S1 Each row (a-c) shows histology, the compa-
rable CT slice, and tissue segmented CT slice of three
syngeneic mouse tumors imaged in vivo with the
Siemens Inveon small animal scanner. Images underwent

a median filter with radius of 5 pixels prior to segmentation to

reduce star artifacts from the CT scan.

(TIF)

Figure S2 (a) The crosswire phantom is imaged at
multiple angles by the transducer with attached 6DOF
sensor. (b) The spatial location of the sensor and
coordinates of the cross in the resultant image provide
xp and TTR for Eq. 3.

(TIF)

Table S1 Glossary of symbols.
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