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Abstract: Non-genotoxic hepatocarcinogens (NGHCs) can only be confirmed by 2-year rodent studies.
Toxicogenomics (TGx) approaches using gene expression profiles from short-term animal studies
could enable early assessment of NGHCs. However, high variance in the modulation of the genes had
been noted among exposure styles and datasets. Expanding from our previous strategy in identifying
consensus biomarkers in multiple experiments, we aimed to identify time-invariant biomarkers
for NGHCs in short-term exposure styles and validate their applicability to long-term exposure
styles. In this study, nine time-invariant biomarkers, namely A2m, Akr7a3, Aqp7, Ca3, Cdc2a, Cdkn3,
Cyp2c11, Ntf3, and Sds, were identified from four large-scale microarray datasets. Machine learning
techniques were subsequently employed to assess the prediction performance of the biomarkers.
The biomarker set along with the Random Forest models gave the highest median area under the
receiver operating characteristic curve (AUC) of 0.824 and a low interquartile range (IQR) variance
of 0.036 based on a leave-one-out cross-validation. The application of the models to the external
validation datasets achieved high AUC values of greater than or equal to 0.857. Enrichment analysis
of the biomarkers inferred the involvement of chronic inflammatory diseases such as liver cirrhosis,
fibrosis, and hepatocellular carcinoma in NGHCs. The time-invariant biomarkers provided a robust
alternative for NGHC prediction.

Keywords: time-invariant biomarkers; non-genotoxic hepatocarcinogens; toxicogenomics;
machine learning

1. Introduction

Chemical exposure, including those from environmental, diet, and other sources, was estimated to
account for about 45–50% of cancer formation [1]. The liver is the most vulnerable organ to chemicals
capable of inducing cancers, and many chemicals are known to induce cancer in the liver [2,3].
Based on the pathogenic mechanism, these hepatocarcinogens can be categorized as either genotoxic
or non-genotoxic hepatocarcinogens (NGHCs) [4,5]. In contrast to genotoxic hepatocarcinogens,
which can be easily identified by in vitro bioassays [6], the assessment of NGHCs relies on long-term
rodent bioassays [7]. Although the “gold standard” method provides the quantitative information on
dose–response behavior for determining the carcinogenic potential of a chemical, it is hampered by
high costs and inefficiency [7]. The development of novel well-validated short-term screening methods
is therefore desirable for identifying potential NGHCs for further experimental validation.
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Given the diverse mechanisms of action and organ-specificity of NGHCs, toxicogenomic (TGx)
models are promising alternative approaches for assessing NGHCs and deciphering the underlying
mechanism of the response [8]. Hepatic gene expression signatures derived from 5-day animal
models were shown to be better biomarkers for hepatic tumor formation for NGHCs than traditional
in vivo pathological and genomic biomarkers, such as liver histological changes, serum alanine
aminotransferase activity, cytochrome P450 genes, and Tsc-22 or alpha2-macroglobulin messenger
RNA [9]. A TGx-based model with 5-day animal data was also shown to have better predictive
accuracy than quantitative structure–activity relationship (QSAR) models. To date, DrugMatrix [10],
Gene Expression Omnibus accession no. 8858 (GSE8858) [11], and Toxicogenomics Project-Genomics
Assisted Toxicity Evaluation System (TG-GATEs) [12] are three major large-scale datasets providing
gene expression data under various NGHC exposure styles, including single or repeated low, medium,
and high (maximum tolerated) doses treated for 1 day, 3 days, 5 days, 7 days, 14 days, and 28 days for
TGx model development. A few TGx models were developed using biomarkers identified from single
or multiple short-term NGHC microarray datasets [10,13–19]

Although the models performed well for NGHC assessment in their corresponding exposure styles,
they derived very different biomarkers [10,13,16]. The results imply that the predictive performance
of the reported biomarkers derived from one exposure style may not be useful for another exposure
style. The expression of some biomarkers may vary dramatically over a short period of time, even be
reversed. A biomarker whose expression varies in different timepoints may not be reliable for NGHCs
prediction and mechanism interpretation. Utilizing only time-invariant biomarkers should derive a
more reliable and applicable NGHC prediction model.

This study aimed to analyze the pattern of biomarkers and identify the time-invariant biomarkers
for NGHCs prediction. Time-invariant biomarkers will be derived from short-term exposure styles
and their prediction performance validated based on long-term exposure styles. A total of nine
genes were identified as time-invariant biomarkers, including the upregulation of Akr7a3, Aqp7,
Cdc2a, and Cdkn3, and downregulation of A2m, Ca3, Cyp2c11, Ntf3, and Sds. The comparison with
published biomarkers showed that the time-invariant biomarkers achieved a reliable performance
in various short-term exposure styles. The prediction results based on an independent test dataset
further confirmed the usefulness of the time-invariant biomarkers. An enrichment analysis of the
time-invariant biomarkers was conducted to provide a better inference of the underlying diseases
associated with non-genotoxic hepatocarcinogenesis.

2. Materials and Methods

The systematic flow of the time-invariant biomarkers identification and model development
analysis is shown in Figure 1

2.1. Chemical List and Microarray Datasets

The chemical list utilized in this study has been used in our previous work for consensus biomarkers
for predicting NGHCs [16]. In brief, NGHCs and non-hepatocarcinogens (s) consistently classified
by several published studies were compiled to get the largest list, and 274 chemicals (50 NGHCs and
224 NHCs) were identified.

Gene expression data from DrugMatrix, GSE8858, and TG-GATEs were analyzed. Based on
the platforms utilized, DrugMatrix consists of DrugMatrix with the Affymetrix platform (DMA) and
DrugMatrix with the Codelink platform (DMC). GSE8858 utilized the Codelink platform, and the
TG-GATEs utilized the Affymetrix platform. The number of chemicals relevant to non-genotoxic
hepatocarcinogenesis is 88 for DMA and 174 for DMC, respectively. GSE8858 is a subset of a large liver
xenobiotic and pharmacological response database produced by Iconix Biosciences [20], which contains
the gene expression profiles of 178 chemicals. A total of 105 chemicals from the TG-GATEs were
identified as non-genotoxic hepatocarcinogens according to cytotoxic oxidative stress, one important
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mechanism for NGHCs. The numbers of NGHCs:NHCs in the DMA, DMC, GSE8858, and TG-GATEs
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Figure 1. System flow. Abbreviations: DMA, Drug Matrix with Affymetrix platform; DMC, DrugMatrix
with Codelink platform; DEGs, differential expression genes. * Consensus biomarkers (3 days) were
identified as the time-invariant biomarkers; GSE8858, Gene Expression Omnibus accession no. 8858;
TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System; JNJ dataset, Johnson
and Johnson dataset; NGHC, non-genotoxic hepatocarcinogens; NHC, non-hepatocarcinogens.

The experimental protocols of all four datasets were similar in animal strain (Sprague–Dawley),
sex (male), age (6–8 weeks old), and environmental conditions. Each dose–exposure style experiment
(in vivo bioassay) was conducted in biological triplicates. The maximum tolerated dose (MTD) was
defined as a 50% reduction in weight gain over the control after a 5-day repeated dose in DrugMatrix
and GSE8858. In contrast, the highest dose was set as the dose that induces the minimum toxic effect
over the course of a 4-week toxicity study in TG-GATEs.

GSE8858 consists of data from a 1-day single-dose as well as 3- and 5-day repeat once-daily dose
experiments at the MTD. DrugMatrix consists of data from 6 h and 1-day single dose and 3- and 5-day
repeated once-daily dose experiments at the MTD, 50% of the MTD (mid), and 25% of the MTD (low).
TG-GATEs consists of data from 3-, 6-, 9- and 24-h single doses, and repeated once-daily doses of the
3-, 7-, 14- and 28-day experiments at high, middle, and low doses (dose ratio 10:3:1).

To maximize the number of data for subsequent analysis from the referenced databases, we defined
the MTD treatments in DrugMatrix and GSE8858 and the highest dose treatment in TG-GATEs as
high-dose, and the 5-day and the 7-day exposure styles were grouped as 1-week. The exposure styles
of the 1-day, 3-day, and 1-week levels were grouped as short-term exposure, while the 14-day and
28-day levels were grouped as long-term exposure.
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The metadata were downloaded from the websites of DrugMatrix (ftp://anonftp.niehs.nih.gov/

drugmatrix/), GSE8858 (ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE8nnn/GSE8858/) and TG-GATEs
(ftp://ftp.dbcls.jp/archive/open-tggates/) and imported into the RStudio software environment (RStudio,
Boston, MA, USA). All the gene expression profiles were normalized and log2-transformed for
subsequent analysis.

2.2. Identification of the Time-Invariant Biomarker Sets

Three common exposure styles of the referenced datasets, namely the 1-day, 3-day, and 1-week
high-dose exposures, were considered for the identification of the time-invariant biomarkers.
First, each consensus biomarker set was identified as the overlapped differential expressed genes
(DEGs) based on a t-test (p < 0.05), and a 1.5-fold change [16], which were derived from each common
exposure style of these datasets. Subsequently, each consensus biomarker set was cross-checked with
the other two exposure styles. The set of consistently up- or downregulated biomarkers in all three
exposure styles was identified as the time-invariant biomarkers.

2.3. Model Development

Machine learning classifiers have been widely applied to model the complex relationships between
biomarkers and toxicity. In this study, we employed seven well-known classifiers, including decision
tree (J48) [21], bagging tree [22], boosting tree [23], k-nearest neighbor (kNN) [24], Naive Bayes
(NB) [25], support vector machine (SVM) [26], and Random Forest (RF) [27], to evaluate the reliabilities
of the consensus biomarkers. Published biomarker sets, including five genes from Eichner et al. 2014
(E5) [13], 19 genes from Fielden et al. 2011 (F19) [10], and nine genes from Uehara et al. 2011 (U9) [12],
were utilized for comparison. E5 and U9 were obtained from the highest dose of the 14-day and
28-day exposure styles in TG-GATEs, respectively, while F19 was identified from the MTD of the 5-day
exposure style in DrugMatrix.

The decision tree-based ensemble learning algorithm RF was found to perform best in our datasets.
RF improves the prediction performances of decision trees and reduces variance to avoid overfitting
based on a set of decision trees built on bootstrap samples from the training dataset and a fixed
number of randomly selected features for tree splitting. The prediction of a given sample is based on a
majority vote by the fully grown decision trees. The implementation of the RF algorithm was based on
WEKA v3.8 (WEKA, Hamilton, New Zealand). The number of features for constructing a fully grown
decision tree was set to the default value of the square root of the number of features and genes of each
biomarker set. The optimal number of trees ranging from 10 to 100 was determined based on the AUC
performance from the leave-one-out cross-validation (LOOCV). All the machine learning algorithms
and LOOCV procedures were implemented using the package of WEKA. The variance interquartile
range (IQR), as well as the coefficients of variances from the datasets (C.V.d) and exposures (C.V.e)
were calculated to assist biomarker evaluation. IQR measured the overall variance based on the AUCs
from the models with individual biomarker sets, while C.V.d and C.V.e indicated the source of the
variances from the difference in the datasets and exposures, respectively. An IQR, C.V.d, or C.V.e value
greater than 5% indicated that the performance of the models was not stable.

2.4. External Validation

The Johnson and Johnson dataset (JNJ) dataset [28], consisting of data from the single-dose 1-day
experiments at the MTD for 9 NGHCs and 54 NHCs, was utilized for external validation of the
developed models. For each chemical, the expression values measured based on the Codelink platform
are available for analysis. The raw data were downloaded from the public database of Chemical Effects
in Biological Systems [29] and were normalized and log2-transformed. Since JNJ utilized the Codelink
platform, only models trained with the DMC and GSE8858 datasets, which also utilized the Codelink
platform, were evaluated.

ftp://anonftp.niehs.nih.gov/drugmatrix/
ftp://anonftp.niehs.nih.gov/drugmatrix/
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE8nnn/GSE8858/
ftp://ftp.dbcls.jp/archive/open-tggates/
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2.5. Enrichment Analysis

To better understand the roles of the time-invariant biomarkers, enrichment analysis of the Gene
Ontology (GO), pathway, and disease terms were conducted based on the Comparative Toxicogenomics
Database (CTD) [30]. In the version of August 2018, CTD includes over 2.3 million manually
curated chemical–gene, chemical–phenotype, chemical–disease, gene–disease, and chemical–exposure
interactions for 15,681 chemicals, 46,689 genes, 4340 phenotypes, and 7212 diseases. For further analysis
and hypothesis development, CTD includes over 38 million toxicogenomic relationships, such as
internal integration of these direct interactions generating over 24 million gene–disease sets that are
statistically ranked and external integration with annotations from GO, Kyoto Encyclopedia of Genes
and Genomes (KEGG), Reactome, and BioGRID. In the latest edition, the CTD has maintained and
created MEDIC by merging the disease terms from the flat list of the Online Mendelian Inheritance
in Man (OMIM) resource into the Medical Subject Headings (MESH) disease hierarchy. A corrected
p-value less than 0.05 was considered as the criteria to identify the significantly enriched GO, pathway,
and disease terms.

3. Results and Discussion

3.1. Time-Invariant Biomarkers and Machine Learning Classifiers

By analyzing the consensus biomarkers derived from the 1-day, 3-day, and 1-week experiments,
we found that modulation of the biomarkers of the 1-day and 1-week levels were relatively less
consistent than the 3-day level. The consensus biomarker set (all genes are consistently up- or
downregulated) derived from the 3-day exposure style was found to be time-invariant in the short-term
exposure (Table 1). In contrast, the modulation of E5, F19, and U9 varied in different exposure styles.
While upregulated genes are the preferred biomarkers due to easy implementation of the diagnosis
method, downregulated genes can be also useful as shown in the previous studies [31,32]

To evaluate the classification performance of the time-invariant biomarkers, we implemented
seven machine learning algorithms and compared their LOOCV performance for choosing the best
classifier. The RF-based models achieved the highest median AUC of 0.817 and the second-lowest
variance IQR of 0.041 (Table 2). The Naive Bayes (NB) models yielded a median AUC of 0.800 with a
variance IQR of 0.055. Although bagging tree (BaT) yielded the lowest variance IQR of 0.035 and its
median AUC was 0.809, its C.V.d and C.V.e were both higher than 5%. Therefore, RF-based models
were chosen for the following analysis.

To better understand whether or not the time-invariant biomarkers obtained from the short-term
exposure datasets are robust, we further evaluated the prediction performance of the biomarkers on all
exposure styles equal or longer than 1 day. The performance is shown in Table 3. The time-invariant
biomarker set (consensus 3-day biomarkers) achieved the highest median AUC of 0.824 and a low IQR
of 0.036 (Table 3). Consensus 1-week biomarkers achieved a median AUC of 0.810 for all exposure
styles; however, its IQR (0.111), C.V.d (7.41%), and C.V.e (7.25%) were all higher than 5%. F19 achieved
a median AUC of 0.809 for all exposure styles; however, its IQR (0.085) and C.V.d (6.47%) were both
much higher than the time-invariant biomarker set. Please note that the time-invariant biomarker set
further improved the median AUC value by 9% compared to our previously published consensus
biomarkers obtained from the 1-day exposure style (median AUC of 0.733) [16]. The results indicated
that the time-invariant biomarkers can also be applied to the long-term exposure style and still provide
good prediction.
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Table 1. Biomarkers and corresponding modulations for three short-term exposure styles.

Biomarker Set Gene Symbol Affymetrix ID Codelink ID
Modulation

Time-Invariant Reference
1D 3D 1W

Consensus Biomarkers (1-day)

A2m 1367794_at NM_012488 − − − Yes

Huang and Tung (2017) [16]Ca3 1386977_at NM_019292 − − − Yes
Cxcl1 1387316_at NM_030845 − − − Yes

Cyp8b1 1368435_at NM_031241 − − +/− No

Consensus Biomarkers (3-day) *

A2m 1367794_at NM_012488 − − − Yes

This study

Akr7a3 1368121_at NM_013215 + + + Yes
Aqp7 1368317_at NM_019157 + + + Yes
Ca3 1386977_at NM_019292 − − − Yes

Cdc2a 1367776_at NM_019296 + + + Yes
Cdkn3 1372685_at BE113362 + + + Yes

Cyp2c11 1387328_at NM_019184 − − − Yes
Ntf3 1387267_at NM_031073 − − − Yes
Sds 1369864_a_at NM_053962 − − − Yes

Consensus Biomarkers (1-week)

Akr7a3 1368121_at NM_013215 + + + Yes

This study

Aqp7 1368317_at NM_019157 + + + Yes
Atf3 1369268_at NM_012912 + +/− + No

beta-sarcoglycan 1374796_at AI413058 + + + Yes
Ca3 1386977_at NM_019292 − − − Yes

Cpt1b 1367742_at NM_013200 + + + Yes
Cyp2c11 1387328_at NM_019184 − − − Yes
Cyp17a1 1387123_at NM_012753 − +/− + No

Ntf3 1387267_at NM_031073 − − − Yes
RGD1562428_predicted 1376296_at BF387347 + + + Yes

Snx10 1383585_at AI043753 + + + Yes

E5

Abcb4 1369161_at NA − − − Yes

Eichner et al. (2014) [13]
Akr7a3 1368121_at NM_013215 + + + Yes
Ccng1 1367764_at NM_012923 + + +/− No

Cdkn1a 1387391_at NM_080782 + +/− +/− No
Phlda3 1375224_at AW520812 +/− +/− + No
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Table 1. Cont.

Biomarker Set Gene Symbol Affymetrix ID Codelink ID
Modulation

Time-Invariant Reference
1D 3D 1W

F19

Akr7a3 1368121_at NM_013215 + + + Yes

Fielden et al.(2011) [10]

Aldh1a1 1387022_at CK222590 + + + Yes
Anxa2 1367584_at AA956299 +/− + + No
Btg2 1386994_at NM_017259 − +/− +/− No

Cdkn1a 1387391_at NM_080782 + +/− +/− No
Cited4 1390008_-at NM_053699 +/− +/− +/− No
ESTs NA BM388029 − + + No

Gpr146 1373158_at NA − − − Yes
Ica1 1367787_at NM_030844 + + + Yes

LitaF 1370928_at U53184 +/− +/− +/− No
Mat1a 1371031_at X60822 − − − Yes
Mgmt 1368311_at NM_012861 +/− + + No
Mt1a 1371237_at CR458797 − − − Yes
Ppia 1398850_at BI303474 +/− +/− +/− No

Prodh2 1389645_at AI058310 − − − Yes
Psmb9 1370186_at NM_012708 +/− +/− +/− No
Tap1 1388149_at X57523 +/- +/- +/- No
Trnt1 1383144_at AI412002 +/- +/- + No
Usp2 1387703_at NM_053774 +/− − +/− No

U9

Abcb1a 1370583_s_at NA + + + Yes

Uehara et al. (2011) [12]

Acot9 1379262_at NA + + + Yes
Cd276_1 1395737_at BF398424 +/− +/− + No
Cd276_2 1374198_at NA +/− + + No
Cdh13_1 1375719_s_at NM_138889 +/− +/− +/− No
Cdh13_2 1373102_at NA +/− +/− +/− No

Ica1 1367787_at NM_030844 + + + Yes
Tes 1383401_at NM_173132 + +/− +/− No

Tmem184c 1379419_at NA + + + Yes

ID: identity; 1D: 1-day; 3D: 3-day; 1W: 1-week; +: Upregulation of the gene by the non-genotoxic hepatocarcinogens (NGHCs) compared with the non-hepatocarcinogens (NHCs);
−: Downregulation of the gene by NGHCs compared with NHCs; +/−: Inconsistent modulations of the biomarkers in the referenced datasets, NA: Not available, * Time-invariant biomarkers.
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Table 2. Performance of time-invariant biomarkers using different machine learning algorithms.

Algorithm Performance (Median AUC from LOOCV)
Variance

IQR C.V.d C.V.e

Bagging Tree (BaT) 0.809 0.035 5.33% 6.17%
Boosting Tree (BoT) 0.757 0.102 9.37% 9.21%
Decision Tree (J48) 0.598 0.197 22.98% 24.35%

k-Nearest Neighbor (kNN) 0.720 0.071 5.81% 7.09%
Naive Bayes (NB) 0.800 0.055 3.50% 4.00%

Random Forest (RF) 0.817 0.041 4.36% 4.74%
Support Vector Machine (SVM) 0.582 0.084 8.56% 3.07%

Abbreviations: LOOCV, leave-one-out cross-validation; IQR, interquartile range; C.V.d, coefficient of variation from
datasets; C.V.e, coefficient of variation from exposures; AUC, area under the receiver operating characteristic curve.

Table 3. Performance of the time-invariant, consensus, and published biomarkers using Random Forest.

Signature Dataset (Exposure Style)
Performance (Median AUC

from LOOCV) Variance (All Exposure)

Short-Term 3 All Exposure 4 IQR C.V.d C.V.e

Consensus biomarkers
(1-day) Multiple datasets 1 (1 day) 0.739 0.733 0.049 * 4.89% 4.02%

Time-invariant
biomarkers

/Consensus biomarkers
(3-day)

Multiple datasets 1 (3 days) 0.817 0.824 0.036 * 4.34% 4.72%

Consensus biomarker
(1-week) Multiple datasets 1 (5 or 7 days 2) 0.780 0.810 0.111 7.41% 7.25%

E5 TG-GATEs (14 days) 0.656 0.656 0.097 9.04% 9.47%
F19 DrugMatrix (5 days) 0.796 0.809 0.085 6.47% 3.88%
U9 TG-GATEs (28 days) 0.703 0.713 0.057 8.25% 7.09%

Note: 1 DrugMatrix, GSE8858, and TG-GATEs; 2 five days exposure in DrugMatrix and GSE8858, and seven days
exposure in TG-GATEs; 3 1-day, 3- day, and 1-week high-dose exposures; 4 common short-term merged 14 days and
28 days high-dose exposures in TG-GATEs.* Significant difference (p < 0.05). A model with IQR, C.V.d, and C.V.e
values less than 0.05 is considered as with a stable performance.

3.2. External Validation

An independent dataset, the JNJ dataset, was applied for external validation of the time-invariant
biomarkers. Table 4 presents the prediction performance of the different biomarker sets on the JNJ
dataset. The models were trained with 1-day datasets of DMC or GSE8858, which are also based on
the Codelink platform. For all the other published biomarkers, only the genes that can be identified
in the Codelink platform were utilized. The time-invariant biomarkers achieved good performances
with the highest AUC values of 0.862 and 0.857 for models based on DMC and GSE8858, respectively.
The performance of the time-invariant biomarkers was better than other compared biomarker sets,
even though the JNJ dataset was from 1-day experiments. Therefore, the time-invariant biomarkers are
expected to be useful for identifying NGHCs regardless of exposure styles.

Table 4. Performance of the time-invariant, consensus, and published biomarkers during
external validation.

Signature Performance (AUC from the Training Datasets)

DMC GSE8858

Consensus biomarkers (1-day) 0.753 0.852
Time-invariant biomarkers

/Consensus biomarkers (3-day) 0.862 0.857

Consensus biomarker (1-week) 0.820 0.815
E5 0.632 0.562
F19 0.732 0.791
U9 0.338 0.465

Abbreviations: AUC, area under the receiver operating characteristic curve; DMC, DrugMatrix with Codelink
platform; GSE8858, Gene Expression Omnibus accession no. 8858.
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3.3. Analysis of the Time-Invariant Biomarkers

The identified nine time-invariant biomarkers are A2m, Akr7a3, Aqp7, Ca3, Cdc2a, Cdkn3,
Cyp2c11, Ntf3, and Sds. A2m encodes a protease inhibitor and cytokine transporter that can inhibit
a broad spectrum of proteases and inflammatory cytokines. Ca3 encodes a member of carbonic
anhydrase. A2m and Ca3 had been identified as consensus NGHC biomarkers in our previous
study [16] and their reduction have been associated with hepatocarcinogenicity of NGHCs [33,34].

Akr7a3 encodes an aldo–keto reductase that plays roles in the detoxification of aldehydes and
ketones. It has been identified as an NGHC biomarker by published studies [10,13,17,35–37], in which it
was upregulated by oxidative stress, a known tumor-promoting mechanism for NGHCs. The reductase
level was also observed to be upregulated in rat hepatoma [38]. Aqp7 encodes a member of the
aquaporin channel family, which facilitates the transport of glycerol from adipocytes to the liver.
The encoded protein also allows the movement of water and urea across cell membranes. Aqp7 is
a significant modulator of whole-body energy metabolism in a wide range of tissues, including in
adipocytes and liver cells, in rats and humans [39]. The gene had been reported to be significantly
elevated in malignant and borderline liver tumors compared to in benign tumors differentiated using
rat liver slices [40], but the role of Aqp7 upregulation in liver tumor formation is still unknown.

Cyp2c11 encodes cytochrome P450 2C11 in rats, which is a functional counterpart of human
Cyp2c9. The most abundant male-specific isoform of CYP in rats mediates the hydroxylation of
some endogenous steroids, such as testosterone. Ntf3 encodes a neurotrophin protein that is closely
associated with both nerve growth factor and brain-derived neurotrophic factor. Downregulation
of Cyp2c11 and Ntf3 has been reported to play crucial roles in inflammation [41] and the AhR
signaling pathway [42], respectively. These two modulations have been also observed activating
following acute and subchronic exposures to NGHCs in previous studies [42]. Sds encodes the L-serine
dehydratase, which is involved in the pathway gluconeogenesis; it is also a stress-associated gene that
is downregulated after 24 h of treatment of hepatocarcinogens in vivo [43] and remains downregulated
during the development of rat liver cancer [44].

Cdc2a, also known as Cdk1 (cyclin-dependent kinase 1), encodes a cell division control protein [45].
During liver regeneration, the essential cell cycle indicates the gene is sufficient to drive the proliferation
of all cell types up to mid-gestation [45]. Cdc2a protein was reported frequently augmented in
hepatocarcinoma (HCC) tissue, and such dysfunctional cell cycle regulation, which contributes to
the generation of cancer stem cells, may promote tumorigenesis [46]. The signature is also one of
the up-regulated DEGs promoting cirrhosis to HCC in published bioinformatics analysis [47] and
is associated with the oxidative stress by exposure to diethylnitrosamine [15]. Diethylnitrosamine
(DEN) is an environmental carcinogen as an initiator for hepatocarcinogenesis. After DEN short-term
administration, lipid peroxidation can be detected, as well as overexpression of glutathione-S-transferase
Pi (GSE-p); this is considered a marker of initiation in chemical-induced hepatocarcinogenesis.
Cdkn3 encodes cyclin-dependent kinase inhibitor 3, which is involved in regulating the cell cycle.
The protein acts as a cyclin-dependent kinase inhibitor that selectively binds to Cdk2 kinase to inhibit
G1/S transition, as well as form a complex with Mdm2 and p53 to facilitate cell cycle progression [48].
Overexpression of Cdkn3 in HCC was correlated with poor tumor differentiation and advanced tumor
stage. Cdkn3 had been reported as part of a vascular invasion signature [49]. In a previous study
utilizing bioinformatics-based screening, the upregulation of Cdkn3 was also identified as a marker of
transformation from cirrhosis into HCC and correlated with the occurrence, invasion, and recurrence
of HCC [50]. Akr7a3 [51], Cdc2a [50,52], and Cdkn3 [50] have also been found as biomarkers for early
diagnosis, staging, and prognosis in human liver cancer clinically.

To provide insights into the underlying mechanism, enrichment analysis was conducted to infer
the GO, pathway, and disease terms associated with the identified biomarkers. Results show that seven
disease terms were identified as significantly associated diseases with adjusted p-values < 0.05. For the
GO and pathway terms, the analysis identified no significant GO or pathway terms. Table 5 lists only
the inferred significant disease terms of which the corrected p-values were less than 0.05. Liver cirrhosis,
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the end-stage of every chronic liver disease including fibrosis, is a major risk factor for primary liver
cancer [53]. Chronic inflammation status associated with liver cirrhosis can induce oxidative stress
and alter the functions of the oxidant-generating enzymes and oncogenic proteins of the cells and
thereby promote liver cancers formation [54]. Chronic inflammation can also facilitate angiogenesis
and the growth, invasion, and metastasis of tumor cells to promote cancer development [55]. Fibrosis,
the accumulation of collagens in the hepatic extracellular matrix (ECM), could retard the turnover of
ECM and results in the activation of growth factor signaling cascades and cell proliferation in the liver,
which promote cancer development. More than 80% of HCC, the most common type of liver cancer,
develops in fibrotic or cirrhotic livers, suggesting the importance of the two conditions in promoting
liver cancer development [56]. Recently, many bioinformatics approaches have identified several key
genes and pathways for transforming cirrhosis to HCC, and Akr7a3, Cdc2a, and Cdkn3 were identified
by these studies [42,50,51].

Table 5. Enriched Gene Ontology (GO) and disease terms of the time-invariant biomarkers.

Disease ID. Disease Name Involved Genes Corrected p-Value *

MESH:D008106 Liver Cirrhosis (Experimental) A2m, Aqp7, Ca3, Cdc2a,
Cdkn3, Sds 2.97 × 10−7

MESH:D008103 Liver Cirrhosis A2m, Aqp7, Ca3, Cdc2a,
Cdkn3, Sds 6.52 × 10−7

MESH:D005355 Fibrosis A2m, Aqp7, Ca3, Cdc2a,
Cdkn3, Sds 9.82 × 10−7

MESH:D008107 Liver Diseases A2m, Akr7a3, Aqp7, Ca3,
Cdc2aCdkn3, Sds 1.40 × 10−6

MESH:D004066 Digestive System Diseases A2m, Akr7a3, Aqp7, Ca3,
Cdc2aCdkn3, Sds 1.61 × 10−5

MESH:D006528 Carcinoma, Hepatocellular A2m Cdc2a, Cdkn3 0.015
MESH:D008113 Liver Neoplasms A2m Cdc2a, Cdkn3 0.037

*, The corrected significance of the enrichment was adjusted for multiple testing using the Bonferroni method.

There are some limitations to the study. First, despite the differences in the definitions of the
high doses, the data were grouped together in this study. The 5-days and 7-days exposure styles
were also grouped as 1-week. Furthermore, the modulation of the genes may be affected by different
study designs. Especially, dose level is critical when evaluating chemicals, and a high-dose level
may increase specificity compared with a lower-dose level. A previous study also concluded that
the optimal exposure style for assessing NGHCs is a 3-day daily high dose [57]. However, given
that we are looking for time-invariant biomarkers and the prediction model performed well in the
external database, the effect of the differences in the experimental study design should not be an issue.
Secondly, animal studies are still needed for the application of the biomarkers for NGHC assessment.
The biomarkers were derived from animal experiments. Despite largely shortening the length of
the study, animal studies are still needed for the NGHC assessment. As for the concern of species
differences between mice and rats, published studies have shown that the biomarkers derived from
mice were applicable to rats for classifying genotoxic hepatocarcinogens, NGHCs, and NHCs [58,59].
Future works may be the investigation of species differences in the time-invariant biomarkers identified
from this study. Thirdly, caution should be taken when applying the biomarkers or the model for
interpretation of human data. Rodents and humans have inherent species differences so that the
mechanisms of actions identified from NGHC exposure may not be applied in humans [60].

4. Conclusions

In summary, we have identified nine time-invariant biomarkers based on time-course gene
expression data and further developed robust prediction models for NGHCs based on the time-invariant
biomarkers. The analysis of the nine genes, namely A2m, Akr7a3, Aqp7, Ca3, Cdc2a, Cdkn3, Cyp2c11,
Ntf3, and Sds, revealed the association between NGHCs and chronic inflammatory liver conditions,
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including liver cirrhosis and fibrosis. The time-invariant biomarkers derived from the short-term
exposure styles were found to be more stable than the other biomarkers. The time-invariant biomarkers
and the developed models could be reliable screening methods to prioritize chemicals of potential
non-genotoxic hepatocarcinogenesis prior to the traditional 2-year rodent bioassays. The time-invariant
biomarkers and their linkage to chronic inflammatory diseases provide a better understanding of the
mechanisms of action for chemical-induced carcinogenicity in rodents and their relevance in human
risk. From a public health standpoint, the time-invariant biomarkers are expected to improve the
accuracy of the NGHC predictions from short-term animal studies, shorten the time and expense
associated with the evaluation, and thereby accelerate the safety assessment for potential environmental
pollutants and drug candidates. Metabolomics [61,62] may also be potential methods for identifying
biomarkers for NGHCs. The integration of biomarkers from genes and metabolites might further
improve the accuracy for NGHC identification.
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