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Abstract: Damage tolerant design relies on accurately predicting the growth rate and path of fatigue
cracks under constant and variable amplitude loading. ANSYS Mechanical R19.2 was used to
perform a numerical analysis of fatigue crack growth assuming a linear elastic and isotropic material
subjected to constant amplitude loading. A novel feature termed Separating Morphing and Adaptive
Remeshing Technology (SMART) was used in conjunction with the Unstructured Mesh Method
(UMM) to accomplish this goal. For the modified compact tension specimen with a varied pre-crack
location, the crack propagation path, stress intensity factors, and fatigue life cycles were predicted for
various stress ratio values. The influence of stress ratio on fatigue life cycles and equivalent stress
intensity factor was investigated for stress ratios ranging from 0 to 0.8. It was found that fatigue life
and von Mises stress distribution are substantially influenced by the stress ratio. The von Mises stress
decreased as the stress ratio increased, and the number of fatigue life cycles increased rapidly with
the increasing stress ratio. Depending on the pre-crack position, the hole is the primary attraction
for the propagation of fatigue cracks, and the crack may either curve its direction and grow towards
it, or it might bypass the hole and propagate elsewhere. Experimental and numerical crack growth
studies reported in the literature have validated the findings of this simulation in terms of crack
propagation paths.

Keywords: fatigue analysis; equivalent stress intensity factor; linear elastic fracture mechanics;
ANSYS; constant amplitude loading

1. Introduction

One of the most common catastrophic failures in mechanical structures is fatigue.
Over the last few decades, researchers have strived to comprehend the mechanism of
fatigue loading in materials that were exposed to dynamic loading, starting with the stress
and strain life methodologies proposed by many researchers [1–6], which were curve-fitting-
based approaches that used nominal and local stress–strain values. Another approach is
the energy-based approach proposed by [7], which has since been used as the starting
point for several experimental studies. However, such techniques are mostly limited to
calculating the permissible number of load cycles before material failure instead of present-
ing characteristics of fatigue crack nucleation and propagation mechanisms. To properly
study fatigue failure, several parameters, such as stress level, loading frequency, stress
ratio (R = min/max), and material type, must be considered. In several studies, it has
been demonstrated that the level of stress applied has a major impact on the fatigue failure
of materials [8–11]. The linear elastic fracture mechanics (LEFM) theory was developed
to identify the issue of fatigue crack growth [12–14]. The LEFM methods are commonly
adopted for use on long cracks within small-scale yielding. The LEFM techniques are
commonly used on long fractures with small-scale yielding behaviors near the crack tip,
i.e., the Paris regime near the crack tip, i.e., the Paris regime [12,15]. Meanwhile, the Bound-
ary Element Method [16,17], Meshless Method [18], Finite Difference Method [19], Finite
Element Method (FEM), and Extended Finite Element Method (XFEM) [20–22] are the most
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used methodologies for modeling crack propagation. The most common computational
approach for simulating damage and failure under both static and dynamic loadings is the
FEM, which obtained stress, strain, displacement, and stress intensity factor (SIF) solutions
for a wide range of engineering problems. The FEM, commonly known as adaptive remesh-
ing procedures, has proved to be highly effective and reliable. The adaptive remeshing
procedures consist of four main steps: (1) existence of a demonstrative 3D finite element
framework; (2) prediction of the equivalent SIFs along the crack front; (3) prediction of
crack front progressions using appropriate fatigue crack growth law; and (4) specification
of a new 3D finite element model considering the new crack front. These procedures are
continued until a predetermined crack length or ultimate fracture is reached. Using the
3D FEM to compute the stress intensity factor at a set of points on the crack front, the
fatigue crack growth analysis can be accomplished precisely. Nowadays, there is a va-
riety of software to deal with the problem of fatigue crack growth, e.g., FRANC3D [23],
ABAQUS [24], ANSYS [25–30], ZENCRACK [31], COMSOL [32], BEASY [33], and NAS-
TRAN [34]. Three approaches have been commonly used to describe material fatigue
analysis: the method of fracture mechanics proposed by Paris and Erdogan [35], the
method of strain–life introduced by Coffin [36], and the method of stress–life introduced
by Wöhler [37]. In this work, the first technique was used to estimate fatigue life, in which
the crack tip was entirely described by the stress intensity factors. Various experimental
procedures have been reported; however, the procedures are generally time-consuming
and costly to implement. A numerical analysis approach such as the ANSYS Mechanical
R19.2 is an effective process to save both time and money in the laboratory by reducing
the amount of work, time, and expenses. Alternatively, there was also an analytical-based
technique that was efficient in simulating fatigue growth [38,39]. The main motivation
for this study was to make a significant contribution to the use of ANSYS as an effective
tool for simulating crack growth under mixed-mode loading situations and monitoring the
influence of the holes and crack location on the crack growth trajectory.

2. SMART Crack Growth Procedure

SMART is an efficient fracture mechanics simulation approach based on an adaptive
meshing strategy in the surrounding area of the crack propagation path. At a certain
loading level, the crack begins to grow as soon as a critical value is reached. The crack
propagates either to a certain limit specified by the user or to the point where generating
a new mesh is impossible, which generally corresponds to the total split of the body into
sections. The Unstructured Mesh Method (UMM) was employed in ANSYS to reduce the
consumption time in the pre-processing using the tetrahedral mesh generated automati-
cally for the crack front instead of using the ideal hex mesh configuration, reducing the
computational time from a few days to a few minutes. The UMM approach is described in
detail in [40]. Tetrahedron meshes were used for the crack fronts in the SMART analysis,
which were automatically updated as the crack front changed due to the crack growth.
The crack propagation path is defined by an angle θ, which is estimated by the ratio of
modes of SIF at the crack tip [41–43]. A mixed-mode loading condition is considered by
ANSYS, and the maximum circumferential stress is used as a crack growth criterion in the
present study. Based on this criterion, the following formula is used for the crack growth
path in ANSYS [25,44]:

θ = cos−1
3(Kmax

I I )2 + (Kmax
I )

√
(Kmax

I )2 + 8(Kmax
I I )2

(Kmax
I )2 + 9(Kmax

I I )2 (1)

where:
Kmax

I = maximum values of the first mode of SIF under cyclic loading, and
Kmax

I I = maximum values of the second mode of SIF under cyclic loading.
The SIFs were calculated via interaction-integral evaluation at the solution phase of

the analysis, and then the values were stored in the results file. The crack propagation
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simulation in this ANSYS simulation is confined to region II of the typical crack propagation
under fatigue loading, which may be expressed as:

da
dN

= C(∆Keq)
m (2)

where a = crack length, n = the number of fatigue life cycles, C = Paris constant, m = Paris ex-
ponent, and ∆Keq= the equivalent range of stress intensity factor, which may be represented
as [44,45]:

∆Keq =
1
2

cos
(

θ

2

)
[∆KI(1 + cos θ)− 3∆KI I sin θ] (3)

where:
∆KI = Kmax

I − Kmin
I = (1− R)Kmax

I
∆KI I = Kmax

I I − Kmin
I I = (1− R)Kmax

I I
(4)

as R represents the load ratio.
According to Equation (2), with a crack growth increment ∆a, the fatigue life cycles

can be expressed as:
∆a∫
0

da
C(∆Keq)

m =

∆N∫
0

dN = ∆N (5)

Figure 1 illustrates a simplified flow chart for the ANSYS SMART procedures for
fatigue crack propagation.
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3. Results of Numerical Simulations
Modified Compact Tension with Different Pre-Crack Location

The modified compact tension specimen was studied in three distinct configurations
in this study. The modified specimens vary from standard specimens in that they have
three extra holes, as shown in Figure 2, which violate the standard specimens’ symmetry
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and result in curvilinear fatigue crack pathways. The actual crack initiation locations
are compared to the nominal position of the notch tip in the geometries, as shown in
Table 1. The considered material was a nickel-based superalloy with the following material
properties shown in Table 1. The amount of the applied load was p = 3.6 kN with a
stress ratio of R = 0 and cyclic frequency of 20 Hz. Changing the vertical location of the
original notch (H) up or down its normal midline position, as illustrated in Table 2, leads to
altering the path and ultimate destination of the crack growth. As shown in Figure 2, the
vertical notch location (H) is defined relative to the geometry’s top edge. The initial mesh
generated by ANSYS, which had a 1 mm element size and generated 292,160 nodes and
192,860 elements, is shown in Figure 3, which employed the sphere of influence at the crack
tip area. There are three different scenarios for the crack growth trajectory based on the
nominal notch positions.
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Table 1. Mechanical properties of the nickel-based superalloy material.

Properties Metric Units Value

Elasticity modulus, E 211 GPa

Poisson’s ratio, υ 0.3

Yield strength, σy 422 MPa

Ultimate strength, σu 838 MPa

Fracture toughness, KIC 130 MPa
√

m

Paris’ law coefficient, C 1.02 × 10–11

Paris’ law exponent, m 2.5
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Table 2. Pre-crack position for the modified compact tension.

Specimen Number Crack Tip Position (mm)

(H) (x) (y)

1 22.4 −32 25.6

2 25.6 −32 22.4

3 23.2 −32 24.8
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Specimen 1

The initial crack in this specimen was located at 22.4 mm from the specimen’s top
edge. Comparisons of the simulated crack propagation trajectory using ANSYS to the
reference experimental [46] and numerical [47] paths are shown in Figure 4a–c, respectively.
Crack propagation trajectories in the numerical findings provided by [47] were predicted
in three steps: the first step is to use the hyper-complex FEM trial energy response function
(ZFEM-TERF) technique for crack trajectory estimation; at each step of crack growth,
the model is updated with curvilinear crack path segments that are generated by the
trial energy response function (TERF) approach. A finite element model was generated
using the FRANC3D program in the second step before being solved using the Abaqus
software in the final step. In comparison to the numerical crack growth paths presented in
Figure 4c applying the ZFEM-TERF approach and FRANC3D [31], Figure 4a–b indicate
that the estimated crack propagation trajectory in this study is very consistent with the
experimental trajectory [46].
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Specimen 2

The initial crack in the second specimen was located at 25.6 mm from the specimen’s
top edge. The predicted crack propagation trajectory using ANSYS has matched the experi-
mental trajectory reported by [46] more closely than the predicted trajectories estimated
by [47], which had tighter curvature trajectories, as illustrated in Figure 5.

Materials 2022, 15, x FOR PEER REVIEW 6 of 14 
 

 

specimens. The von Mises stresses and the maximum principal stress were higher in spec-
imen one, where the top hole was located closer to the crack based on the original crack 
location. As the crack also sinks on the smallest hole near the right edge of the specimen, 
specimen two had the lowest values of the von Mises stresses and the maximum principal 
stress, whereas specimen three had the intermediate values of both stresses, as the crack 
also sinks on the second lower hole near the right edge of the specimen. 

 
Figure 4. Specimen 1, crack propagation path (a) ANSYS results, (b) experimental results [46], and 
(c) numerical results [47]. 

 
Figure 5. Specimen 2, crack propagation path (a) ANSYS results, (b) experimental results [46], and 
(c) numerical results [47]. 

Figure 5. Specimen 2, crack propagation path (a) ANSYS results, (b) experimental results [46], and (c)
numerical results [47].

Specimen 3

The initial crack in the second specimen was located at 23.2 mm from the specimen’s
top edge. As can be seen in Figure 6, the estimated crack propagation trajectory tightly
matches the experimental crack growth trajectory reported by [46] compared to the pre-
dicted paths from the numerical results using ZFEM-TERF and FRANC3D conducted
by [47], which deviated from the experimental path [46].
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Considering that, the von Mises stress as well as the maximum principal stress are
essential parameters for crack propagation assessment, which indicate the regions of
maximum and minimum stresses on the geometry. Figures 7 and 8 show the von Mises
stress distribution stress contour as well as the maximum principal stress for each of the
three specimens. The von Mises stresses and the maximum principal stress were higher in
specimen one, where the top hole was located closer to the crack based on the original crack
location. As the crack also sinks on the smallest hole near the right edge of the specimen,
specimen two had the lowest values of the von Mises stresses and the maximum principal
stress, whereas specimen three had the intermediate values of both stresses, as the crack
also sinks on the second lower hole near the right edge of the specimen.

The results of the opening mode of SIF (KI) for the three samples are shown in Figure 9.
The maximum values of KI are 1205 MPa mm0.5, 4136 MPa mm0.5, and 5800 MPa mm0.5

for a crack length of 12.97, 18.33 mm, and 21.161 mm for specimens one, two, and three,
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respectively. Similarly, Figure 10 also displays the estimated values for the second mode of
stress intensity factor (KII). As the crack follows a curving trajectory toward the top hole,
the KII values for the first specimen increase to a maximum of 96.133 MPa mm0.5 at the
boundary of the hole. However, in specimens two and three, the values of KII decreased
with negative values as the crack propagated on a curved path in the opposite direction
of specimen one, with minimum values of −243 MPa mm0.5 and −230 MPa mm0.5 for
specimens two and three, respectively. In the mixed-mode situations, the direction of
the tangential component of the applied load is attributed to the negative mode II stress
intensity factor. The signs of SIFs depend on the orientation of the crack with the loading.
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To determine fatigue life under constant amplitude loading circumstances with a stress
ratio of R = 0, a step-by-step simulation of crack propagation was performed according to
the associated SIFs. Figure 11 displays the predicted fatigue life cycles for each specimen;
as seen in this figure, the fatigue life cycles were gradually increased from specimens one
to three, since the stress intensity factors were also increased to the same extent for all of
the specimens.

The third specimen was simulated at various stress ratios ranging from R = 0.1 to 0.8
to correlate the stress ratio effects on the equivalent stress intensity factor as well as fatigue
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crack growth rates. Almost at a given applied cyclic equivalent stress intensity, an increase
in load ratio leads to an increase in fatigue crack growth rate. Equivalently, the observed
equivalent stress intensity factor for fatigue crack growth decreases as the load ratio is
increased, as shown in Figure 12. In other words, at high-stress ratios, less accumulated
fatigue energy is necessary to support crack growth than at lower stress ratios. In contrast,
the number of load cycles with respect to the crack growth extension increases as the stress
ratio increases, as shown in Figures 13 and 14 for the stress ratios ranging from 0.1 to 0.8.
This effect is proportional to the maximum concentration of von Mises stress and hence to
the driving force of mode I cracking. According to the results shown in Figures 13 and 14,
the percentages of increase in the equivalent stress intensity factors for different stress
ratios ranging from 0.1 to 0.8 are not equal to the percentages of increase in the fatigue
life cycles. Damage distributions differed depending on the stress ratios. Damage was
equally distributed along with the specimens with larger stress ratios, but it was severe and
concentrated at lower stress ratios (0.1–0.4), resulting in higher self-generated temperatures
and specimen failure at shorter lifetimes. The von Mises stress distribution for specimen
three under different stress ratios R = 0.1–0.8 is shown in Figure 15. It is found that von
Mises stress decreases as the stress ratio increases, which was also related to the increase in
the fatigue life cycles.
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4. Conclusions

This study investigated the fatigue crack growth in isotropic linear elastic materials
under constant amplitude loading where some defects such as holes are intentionally
introduced in the material and different load ratios are applied. For this purpose, the finite
element software ANSYS was used. The topic of study is certainly very important and can
result in a deeper understanding of crack propagation and material design. The fatigue
crack propagation of a modified compact tension specimen with various pre-crack locations
was simulated using the ANSYS SMART methodology. Based on the Paris law, the crack
growth simulation in SMART used tetrahedral meshes for the crack fronts that were
updated automatically when the crack front was modified as a consequence of crack
propagation. Based on the position of the hole and the starting position of the crack tip,
the growth of the crack was either attracted to the hole and changed its trajectory to reach
the hole “sink in the hole behavior” or deviated away from the hole and grew when the
hole was missing “missed hole behavior”. The influence of a wide range of load ratios
(R = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) on fatigue crack growth, fatigue life, and equivalent
range of SIF was investigated. According to the predicted results, it was found that as
the stress ratio increased and the fatigue life cycles rapidly increased, whereas von Mises
stress decreased.
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