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Abstract

Many neurodegenerative diseases are known to occur and progress because of oxidative stress, the presence of reactive
oxygen species (ROS) in excess of the cellular defensive capabilities. Age related macular degeneration (AMD), diabetic
retinopathy (DR) and inherited retinal degeneration share oxidative stress as a common node upstream of the blinding
effects of these diseases. Knockout of the Vldlr gene results in a mouse that develops intraretinal and subretinal neovascular
lesions within the first month of age and is an excellent model for a form of AMD called retinal angiomatous proliferation
(RAP). Cerium oxide nanoparticles (nanoceria) catalytically scavenge ROS by mimicking the activities of superoxide
dismutase and catalase. A single intravitreal injection of nanoceria into the Vldlr-/- eye was shown to inhibit: the rise in ROS
in the Vldlr-/- retina, increases in vascular endothelial growth factor (VEGF) in the photoreceptor layer, and the formation of
intraretinal and subretinal neovascular lesions. Of more therapeutic interest, injection of nanoceria into older mice
(postnatal day 28) resulted in the regression of existing vascular lesions indicating that the pathologic neovessels require
the continual production of excessive ROS. Our data demonstrate the unique ability of nanoceria to prevent downstream
effects of oxidative stress in vivo and support their therapeutic potential for treatment of neurodegenerative diseases such
as AMD and DR.
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Introduction

Mammalian cells produce cellular energy in mitochondria by

using oxygen to metabolize molecular substrates. The vast

majority(,98%) of the products of this oxidative metabolism are

beneficial while about 2% are highly toxic compounds such as

singlet oxygen, the hydroxide ion, hydrogen peroxide, etc.[1].

These ROS [2,3] can react with and damage almost any type of

molecule within the cell including proteins, DNA, RNA and lipids

[4]. In addition to mitochondria, nicotinamide adenine dinucle-

otide phosphate (NADPH) oxidase, and nitric oxide synthase

contribute to the production of intracellular ROS, and reactive

nitrous oxide species, respectively [5]. To maintain redox balance,

mammalian cells posses endogenous antioxidant defenses that

include catalytic proteins such as superoxide dismutase, catalase

[6], heme-oxygenase [7], and thioredoxin [8] as well as small

molecules such as glutathione, NADPH, etc [9]. Oxidative stress

occurs when the level of ROS exceeds the ability of the cells’

antioxidant defenses to scavenge or destroy them [10–13]. Being

constantly bombarded with photons of light, and possessing the

highest rate of oxygen metabolism, the retina is therefore at higher

risk of oxidative damage due to redox imbalance.

Many neurodegenerative diseases result in the programmed death

of neurons. These include illnesses which are known to be inherited

such as Huntington Disease [14] and retinitis pigmentosa [15,16] as

well as many others that may be environmentally induced or are of

questionable origin, such as Parkinson Disease [17], Alzheimer

Disease [18] and AMD [19]. Interestingly, all of these diseases are

thought to share a chronic or acute rise in ROS as a common node

between the primary cause and neuronal degeneration. Strong

evidence that oxidative damage is a major contributor to the disease

progression of AMD, DR, and glaucoma is accumulating [20–22].
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In addition to retinal degeneration, chronic inflammation and

vascular defects are also observed in some of these blinding diseases.

Currently, the relationship between oxidative stress, or oxidative

damage, to the manifestation of these disease phenotypes is still

unclear. Recent studies show that rise in ROS activates the signal

transducers and activators of transcription 3 (STAT3) pathway and

upregulates retinal vascular endothelial growth factor (VEGF), an

angiogenic protein, to cause abnormal blood vessel growth [23]. We

hypothesize that the chronic rise of ROS is an ‘‘Achilles’ Heel’’ for

AMD and other degenerative diseases and that by targeting excess

ROS for destruction, the downstream damage and disease

symptoms can be prevented and/or decreased. To test this

hypothesis, we choose the Vldlr-/- mouse, a model for a form of

AMD known as retinal angiomatous proliferation (RAP), to

investigate the relationship between oxidative damage and retinal

neovascularization (RNV). This mouse carries a loss-of-function

mutation in the very low density lipoprotein receptor gene (Vldlr) [24]. We

[25] and others [26–28] have shown that the retina of the Vldlr-/-

mouse has phenotypic characteristics similar to those of RAP

patients. Previous studies show that new blood vessels sprout from

the inner retina of these mice as early as postnatal day (P) 16 [29].

Intra-, and subretinal vascular lesions are well established by 5 weeks

of age and a rise in retinal VEGF correlates with the neovascular-

ization phenotype [25,27,29]. Retinal focal scarring due to

engulfment of vascular lesions by retinal pigment epithelial (RPE)

cells further remodels the retinal architecture. By 4 months of age,

cone and rod dysfunctions are apparent [27,30]. In this study, we

focus on the characterization of the early events of retinal defects

(P10-P35), specifically the temporal development of RNV and retinal

VEGF expression, the effects of a potent antioxidant on prevention

of RNV formation, and regression of existing RNV.

Cerium oxides, because of their redox capacity, are excellent

oxygen buffers and when synthesized as nanoparticles (3–5 nm

diameter) exhibit increased oxygen vacancies and can regenerate their

activity to catalytically scavenge ROS [31]. Thoroughly characterized

3–5 nm (individual crystallites) nanoceria were used in the present

experiments. An extensive characterization ensures the abundance of

catalytically active Ce3+ oxidation state and stable aqueous dispersion.

(Detailed characterization is reported in Text S1, and Fig. S1.)

We previously demonstrated [32] that injection of nanoceria

into the vitreous, prevents increases in retinal ROS, light damage

and blindness in albino rats. In this study, using assays that detect

ROS and ROS-mediated damage, our data demonstrate that the

aberrant developmental increases in ROS and ROS-mediated

damage, which occur in the Vldlr-/- retina, are inhibited by a

single intravitreal injection of nanoceria. The data also demon-

strate that the nanoceria prevent the rise in retinal VEGF, the

development of vascular lesions in the photoreceptor cell layer of

the retina (neovascular blebs) and the appearance of subretinal

neovascular tufts. We further show that the nanoceria cause the

regression of all angiogenic characteristics of the Vldlr-/- retina

even when they are injected after the mutant retinal phenotypes

are already established. These data support our general hypothesis

and suggest that the nanoceria will be useful as a therapeutic

treatment for retinal angiomatous proliferation and other blinding

diseases associated with oxidative stress.

Results

Pathologic blood vessels in the Vldlr-/- retina grow from
the inner retina through the avascular ONL and into the
subretinal space

Retinal angiomatous proliferation in humans has been de-

scribed as having new blood vessels growing from existing ones in

the neural retina through the outer nuclear layer (ONL) towards

the choroid where they eventually fuse with the choroidal blood

supply [33]. The direction of neovascular growth in the Vldlr-/-

retina was originally shown to be from the inner retina into the

subretinal space [28,29] but this was disputed in a recent paper

where the authors concluded that the new vessels actually

originate in the choroid [26]. We, therefore, undertook a

developmental study on new blood vessel growth using a vascular

filling assay and confocal imaging, which enabled us to distinguish

between these alternative conclusions. The vascular network was

labeled with fluorescein-Dextran (green), and the cone outer

segments were labeled with peanut agglutinin (red). The whole

retina was then mounted with the photoreceptors facing up and

the ganglion cell layer down. Optical sections were taken every

0.2 mm from the top down. This enabled defined stacks of sections

to be visualized as well as the 3-dimensional stack through the

entire retina to be rotated 90u. Representative images from such

studies are shown in Fig. 1. The cone sheaths form a continuous

surface (Fig. 1, A1–E1) in the P28 wild type (WT) C57 retina and

in the Vldlr-/- retinas at P10, P13 and P17. However, at P28 this

continuity was disrupted by pathologic blood vessels. Looking

down at the stacked images at the level of the ONL (Fig. 1, A2–
E2), we did not observe vessels in the P28 WT nor in the P10

Vldlr-/-. Pathologic vessels first appeared as dots in the Vldlr-/- P13

ONL (Fig 1, C2) and progressively increased in number through

P17 (Fig 1, D2) and then coalesced by P28 (Fig 1, E2). By

rotating the entire stack of optical sections 90u (Fig 1, A3–E3), we

created a cross-sectional view where the cones are on the top and

the inner retina at the bottom. In the Vldlr-/- retina, pathologic

vessels were seen to grow from the inner retina (Fig 1, C3) into the

ONL in increasing numbers (Fig 1, D3), until they coalesced and

pushed through the cone outer segments (Fig 1, E3) to localize at

the subretinal space in contact with the RPE. These data

definitively demonstrate that pathologic new vessels in the Vldlr-/-

mouse grow from the inner retina towards the avascular zone in

the ONL and the RPE and not in the reverse direction. We further

demonstrate that new vessel growth commences as early as P13

before eye opening.

Indicators of oxidative stress are up in Vldlr-/- retinas and
go down with nanoceria treatment

To test our hypothesis, we verified that oxidative stress was

detected in the newly matured (P28) retina of the Vldlr-/- mouse.

Initially, we used the 29,79-dichloro-dihydro-fluorescein-diacetate

(DCF) assay to detect the level of cellular ROS in cryostat sections

of retinas from normal and Vldlr-/- mice which had been injected

intravitreally with either saline or nanoceria on P7. We observed a

low level of DCF signal in the WT retina (Fig. 2A) but very

substantial amounts in the Vldlr-/- retina (Fig. 2B). However,

injection of the nanoceria greatly reduced the level of ROS in the

Vldlr-/- retina (Fig. 2C). We next examined the level of the

activating subunit of NADPH oxidase (P-47) in retinal sections

(Fig. 2D-F). Upregulation of this subunit correlates with an

increase in ROS level [34,35]. We observed a low level of labeling

throughout the WT retina (Fig. 2D). The Vldlr-/- retina showed

intense staining in all retinal layers (Fig. 2E) whereas the intensity

of staining in the retina of the nanoceria-injected Vldlr-/- mouse

was reduced almost to the control level (Fig. 2F). As levels of

nitrous oxide species rise within the cell, the nitrosylation of

tyrosine residues in proteins increases. We determined that the

level of nitrosylation in the Vldlr-/- retina had increased using anti-

nitrotyrosine. We observed a low level of labeling in the WT retina

(Fig. 2G), but a very intense labeling in the Vldlr-/- retina

(Fig. 2H). Similar to the previous observation, the level decreased

Nanoceria Prevent Retinal Neovascularization
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to the control level in the nanoceria-injected (Fig. 2I) Vldlr-/-

mouse. Oxidative damage to DNA results in the production of

8-hydroxydeoxyguanosine (8-OHdG) and can be detected by

immunocytochemistry. WT retina (Fig. 2J) showed detectable

levels of 8-OHdG and the Vldlr-/- retina (Fig. 2K) had much

higher levels. Treatment with the nanoceria reduced the amount

of 8-OHdG in the Vldlr-/- retina (Fig. 2L) to levels similar to the

WT control. The dihydroethidine assay (Fig S2) for detection of

superoxide anions did not show a difference between the WT

controls and the Vldlr-/- mice (both were uninjected). Each of the

other four independent assays showed an increase in oxidative

stress in the Vldlr-/- retina compared to the WT control and

demonstrated a decrease in oxidative stress in the retinas of

Vldlr-/- mice injected with nanoceria. Collectively, these data

support our hypothesis that oxidative damage increases in the

mouse retina as a result of the knockout of the Vldlr gene and that

the presence of nanoceria inhibits those increases.

Nanoceria inhibit the aberrant developmental increase of
retinal VEGF

Previous studies show that elevated retinal vegf mRNA can be

detected at P14 [27]. We show here that upregulation of retinal

VEGF protein level can be detected as early as P14 in the Vldlr-/-

mice (Fig. 3A,B). By Western blot analysis, we demonstrated that

VEGF was at least 3 fold higher in the Vldlr-/- retina compared to

the WT at P28 (Fig. 3B). Injection of a single dose of nanoceria at

P7 resulted in a progressive decrease in VEGF levels in the Vldlr-/-

retina. By P28, the amount was about 5 fold less than that in the

saline injected eyes (Fig 3C,D). These data are consistent with the

interpretation that the scavenging of ROS and the inhibition of

oxidative damage by the nanoceria, inhibit the upregulation of

VEGF in the Vldlr-/- retina.

In parallel experiments, we examined the localization of VEGF in

retinal sections. The WT retinas (Fig. 4A) showed very little

labeling of VEGF. At higher magnification (Fig. 4B), VEGF was

seen to be primarily localized to the region of the outer segments of

photoreceptor cells. However, the pattern of labeling in the Vldlr-/-

retina showed intense discontinuous fluorescence across the retina

(Fig. 4C,D) which was restricted to the photoreceptor cell layer.

The labeling was immediately adjacent to vascular lesions and

progressively diminished as the distance from the lesion increased.

At higher magnification (4D), the area of intense labeling showed

that all of the cellular compartments of the photoreceptors adjacent

to the lesions were labeled. The corresponding age-matched Vldlr-/-

mice, which had received an intravitreal injection (172 ng) of

nanoceria on P7, showed many fewer regions of labeling and within

those, the intensity was significantly decreased (Fig. 4E,F). These

data demonstrate that photoreceptor cells at or near lesion sites in

the Vldlr-/- retinas have high concentrations of VEGF and that a

single injection of the nanoceria at P7 inhibits the developmental

increase in retinal VEGF for at least three weeks. These data

support our hypothesis that the rise in retinal VEGF in the Vldlr-/-

retina is due to excess ROS and can be prevented by the scavenging

activities of nanoceria.

Figure 1. Origin of retinal vascular lesions in the Vldlr-/- eye. Confocal microscopy was used to generate ‘‘optical sections’’ through whole
mounts of retinas following the vascular filling assay to label all retinal blood vessels (green). The cone sheaths were labeled red with peanut
agglutinin to visualize the outer retina. Stacks of the optical sections were assembled to show either the photoreceptor cell outer and inner segment
region (POS and PIS; A1 through E1) or the outer nuclear layer (ONL; A2 through E2). The entire stack of sections through the retina was assembled
for 3D reconstruction which was then rotated 90u for a cross-sectional view of the retinas at different developmental ages (A3 through E3). See text
for further description.
doi:10.1371/journal.pone.0016733.g001
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Nanoceria inhibit development of intraretinal
neovascular blebs and subretinal neovascular tufts

The rodent and human retinas have two blood supplies, the

retinal and the choroidal vasculature. The Vldlr-/- retina develops

retinal neovascularization initially, followed by choroidal neovas-

cularization at a later age (current study and [29]). The retinal

vasculature of the Vldlr-/- mouse exhibits a developmental

increase in ‘‘neo’’ vessels which are absent from control retinas

(Fig. 1) suggesting the possibility that these vessels arise as a result

of the increase in retinal VEGF and that the nanoceria can inhibit

their development. To test this, we performed the vascular filling

assay to determine if a single intravitreal injection of the nanoceria

on P7 could inhibit the formation of these pathologic blood vessels

when visualized on P28. Representative whole mount retinal

vasculature images are shown in Fig. 5A–C. With this assay, the

larger vessels found in the superficial layer showed intense labeling

whereas the smaller vessels found in the deeper layers exhibited a

less intensely labeled meshwork (Fig. 5A). Because the retinal

vasculature is confined to the inner retina (from the neural fiber

layer to the outer plexiform layer) of the WT animal, most of the

blood vessels could be brought into sharp focus using a 10X

objective. Injection of saline has no effect on the normal retinal

vasculature (Fig. 5A). On the contrary, we observed many

brightly labeled vessels that were either coiled or enlarged in the

saline injected Vldlr-/- animal (Fig. 5B). Because these neovessels

were small, irregular in shape, and were found throughout the

whole retina (most of them in the ONL), we called these

intraretinal neovascular blebs (IRN blebs). Because these blebs

were located in different focal planes within the retina, many of

them appeared as out-of-focus blur in the representative image

(Fig. 5B). However, in the nanoceria injected Vldlr-/- eyes

(Fig. 5C), we observed a substantial reduction of these neovessels.

The vascular filling assay also enables visualization of subretinal

neovascular lesions that have penetrated through the retina to be

in contact with the RPE in the subretinal space. Eyecup flat

mounts containing the RPE-choroid-sclera are ‘‘pie-cut’’ and

placed with the RPE facing up (Fig. 5D–F). The pigmented RPE

prevented visualization of any of the choroidal vasculature in the

normal C57 mouse (Fig. 5D) but the eyecups from the saline

injected Vldlr-/- mice (Fig. 5E) had many bright subretinal

neovascular (SRN) tufts which projected into the RPE layer.

However, the eyes of the Vldlr-/- mice that had been injected with

nanoceria (Fig. 5F) had far fewer SRN tufts. Because the IRN

blebs and the SRN tufts in the Vldlr-/- eyes are readily visible as

distinct spots, they can be quantified. Enumeration of the IRN

blebs (Fig. 5B) in the Vldlr-/- retinas showed a progressive

increase in their number from P14 through P28 and a reduction

(Fig. 5G) at each of the ages following a single injection of

Figure 2. Nanoceria reduce oxidative stress in the Vldlr-/- retina. Retinal sections from saline injected WT mice (A,D,G,J); saline injected
Vldlr-/- mice (B,E,H,K) and CeO2 injected (C,F,I,L) Vldlr-/- mice are shown as imaged by confocal microscopy. The DCF assay (A,B,C) visualizes ROS as
punctuate fluorescence and demonstrates a very low level of ROS in the normal (A), a considerable amount in the Vldlr-/- (B), and a greatly reduced
amount in the retina of the Vldlr-/- mice injected with CeO2 (C). Similar results were obtained with the other three assays. NADPH-oxidase, (P47-phox;
D,E,F) a major producer of ROS, was very high in the Vldlr-/- retina and almost reduced to control levels in the CeO2 injected mice. Nitrotyrosine,
(G,H,I) a reflection of oxidative activity due to increases in nitric oxide concentration, was highest in the Vldlr-/- retina and significantly reduced in the
nanoceria injected mice. ROS-mediated damage to DNA was indicated by the labeling of the retina with an antibody against a DNA adduct,
8-hydroxy-29-deoxyguanosine (8-OHdG; J,K,L) which showed little labeling in the control, significant labeling in the saline injected Vldlr-/- retina, and
a greatly reduced amount in the nanoceria treated retina. DAPI (blue) was used to visualize the nuclei.
doi:10.1371/journal.pone.0016733.g002
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Figure 3. Nanoceria prevent the ectopic increase of VEGF during postnatal development of the Vldlr-/- retina. (A) Western
immunoblots show that VEGF levels were higher in the Vldlr-/- retinas than in the WT at P14 and P28. Densitometry of these bands (B) indicated that
by P28 the Vldlr-/- retina had about 3 fold more VEGF than the WT retina. Ectopic developmental increases (P14, P21, P28) of VEGF in the Vldlr-/- retina
were seen in the immunoblots (C) of the retinas of saline injected Vldlr-/- mice, and significant reduction of VEGF was observed in retinas of mice
injected with nanoceria at P7. Densitometric analysis (D) of the bands showed about a five-fold decrease in VEGF level by P28 following injection of
nanoceria at P7.
doi:10.1371/journal.pone.0016733.g003

Figure 4. Nanoceria inhibit the ectopic expression of VEGF in the ONL of the Vldlr-/- retina. Photomicrographs of the Vldlr-/- retina
showed discontinuous heavy staining of VEGF across the ONL (C,D) at P28. The labeling was greatly reduced in the nanoceria injected (E,F) Vldlr-/-
mice. WT retinas (A,B) had low levels of VEGF in the rod outer segments. DAPI (blue) was used to visualize the nuclei.
doi:10.1371/journal.pone.0016733.g004
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nanoceria at P7. Likewise, the SRN tufts (Fig. 5E) increased about

six-fold (Fig. 5H) from P14 to P28 in the saline injected eyes

whereas the nanoceria injected eyes (Fig. 5H) had four-fold fewer

SRN tufts at P28 than were detected in the saline injected eyes.

Collectively, these data demonstrated that the pathologic angio-

genesis in the Vldlr-/- eye can be inhibited by a single injection of

the nanoceria and that the extent of inhibition can be quantified.

Nanoceria cause down regulation of VEGF and regression
of existing pathologic neovessels

Injection of nanoceria at P7 dramatically reduced the

developmental increase of retinal VEGF (Fig. 3), IRN blebs and

SRN tufts (Fig. 5) when analyzed at P28. We next asked whether

developmental changes that had occurred prior to injection of

nanoceria could be reversed. For this experimental paradigm

(Fig. 6), Vldlr-/- mice received an intravitreal injection of

nanoceria at P28 and the eyes were analyzed a week later at

P35. The results were striking in that the presence of the nanoceria

for only one week caused down regulation of VEGF (Fig. 6A, B),

and regression of both IRN blebs (Fig. 6C), and SRN tufts

(Fig. 6D) to levels similar to those which resulted from the

presence of nanoceria for the three-week period from P7 to P28.

We conclude from these data that the continued presence of

elevated levels of VEGF and maintenance of the pathologic retinal

neovessels, require the continual production of excess ROS and

that their inhibition by nanoceria produces a rapid decrease in

each parameter.

Discussion

Oxidative stress is proangiogenic
Our results support a causative relationship between oxidative

stress and the pathologic new blood vessel formation in the Vldlr-/-

retina. Using biomarkers for oxidative damage (Fig. 2), we

definitively showed that oxidative damage was apparent in the

retinas of Vldlr-/- mice by P28. We also demonstrated that we

Figure 5. Nanoceria inhibit the development of pathologic intra-, and sub-retinal vascular lesions in the Vldlr-/- retina.
Photomicrographs of whole mount retinas (A–C) and eyecups (RPE, choroid, and sclera) (D–F) from P28 animals are shown. All retinal blood vessels
were labeled green by the vascular filling assay. WT retinas (A) showed the normal web-like retinal vasculature whereas those from the Vldlr-/- mice
(B) showed numerous intraretinal vascular lesions or ‘‘blebs’’ (IRN blebs). See white arrows for examples. A single injection of nanoceria at P7
inhibited (C) the appearance of these lesions. Eyecups from WT mice (D) showed no SRN ‘‘tufts’’ but those from Vldlr-/- mice (E) had many bright SRN
tufts. A single injection of nanoceria on P7 inhibited the appearance of these SRN tufts (F). G and H show the quantitative analyses of IRN blebs and
SRN tufts from this set of the experiment. Data were from nine animals, three at each of the three developmental ages (P14, P21, P28) with or without
nanoceria. * p,0.05; **p,0.01. See text for further information.
doi:10.1371/journal.pone.0016733.g005
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could dramatically reduce the level of oxidative damage in the

retina (Fig. 2), the abnormal developmental rise of VEGF, a potent

angiogenic factor, in the ONL (Fig. 3–4), and the growth of

pathologic retinal new blood vessels by a single application of

nanoceria, a catalytic and regenerative antioxidant (Fig. 5) in the

vitreous of the Vldlr-/- mouse. Our results showed that reduction

of oxidative stress in the young retinas of Vldlr-/- mice reduced

retinal neovascularization. Our findings are consistent with the

observations in another mouse model that develops retinal

neovascularization. Superoxide dismutase 1 (Sod1), a major

antioxidant enzyme that neutralizes superoxides in the cytosol of

cells, when deficient in the mouse, causes oxidative damage in the

retina [36]. Dong and coworkers [37] showed that the sod1-/-

deletion, when in a genetic background overexpressing VEGF in

the rod photoreceptors (Tg-rhoVegf), produced significantly

higher numbers of subretinal neovascular lesions, indicating that

oxidative stress is proangiogenic. Collectively, this evidence

suggests that oxidative stress may also be proangiogenic in eye

diseases such as AMD and DR.

Regenerative nanoceria have prolonged antioxidant and
anti-angiogenic effects

In this study, we also demonstrated that the nanoceria possessed

radical scavenging activity in vivo. The amount of ROS, measured

by DCF fluorescence, in the Vldlr-/- retina remained at a reduced

level three weeks after nanoceria application (Fig. 2). The

regenerative property of nanoceria demonstrated in vitro in

suspension [31] appears to be retained when applied in biological

environments, more specifically in the retina. Besides decreased

ROS, we observed significant reduction of intra- and subretinal

NV using the experimental paradigm of injecting nanoceria at P7

and analyzing the anti-angiogenic effects at P28. This prolonged

anti-angiogenic effect exhibited by the nanoceria is a substantial

improvement over the transient anti-angiogenic effect demon-

strated by Dorrell and coworkers in the Vldlr-/- mouse [27]. They

used a cocktail of Macugen, an integrin antagonist, and a fragment

of tryptophan transfer RNA synthetase (T2-TrpRs) with angio-

static activity, in young Vldlr-/- mouse. The anti-angiogenic effect

was observed during 8 days of treatment (P12 injection and P20

analysis) but this effect was abolished within 2–3 weeks of

injection, most likely due to clearance of the agents.

In another experimental paradigm, we administered nanoceria

at P28, when retinal neovascularization was well underway, and

examined the retinal vasculature one week later at P35. We

observed dramatic reductions of VEGF levels and intra- and sub-

retinal neovascular lesions (Fig 6). These results further support

our hypothesis that oxidative stress is proangiogenic and is likely to

lie upstream of the pathogenesis of RNV in the Vldlr-/- mouse.

Furthermore, the sensitivity of new blood vessels to ROS levels

may be related to the malformation of these newly formed vessels.

Chen and co-workers [30] showed that at six weeks of age, many

of the endothelial cells in the subretinal neovasculature of Vldlr-/-

retinas were not associated with alpha-Smooth Muscle Actin-

positive (ASMA-positive) pericytes. The potential lack of pericytes

or the association of dysfunctional pericytes with these new blood

vessels was further demonstrated by the reduction of the pericyte

survival factor, platelet-derived growth factor-BB (PGDF-BB) in

the mutant retinas [30]. Because new blood vessels found in

patients with proliferative diabetic retinopathy are leaky and do

not mature [38,39], we speculate that application of the nanoceria

may be an effective treatment to cause regression of these

pathologic new blood vessels.

VEGF overexpression is in the ONL
In this study, we showed that ectopic VEGF expression in the

retinas of Vldlr-/- mice was within photoreceptor cells and

coincided with zones of intra- and subretinal NV. Since Vldlr

mRNA is highly expressed in the ONL and the outer segment of

photoreceptors in the WT retinas [27], we speculate that the lack

of VLDLR renders photoreceptor cells more vulnerable to

Figure 6. Retinal vascular lesions in the Vldlr-/- retinas require continual production of excess ROS. Vldlr-/- mice were injected at P28
with saline or nanoceria and killed one week later on P35. Analysis of VEGF levels by Western blots (A) showed a four-fold reduction (B) within one
week of nanoceria injection. The numbers of IRN blebs (C), and SRN tufts (D) were also dramatically reduced. * p,0.05; **p,0.01.
doi:10.1371/journal.pone.0016733.g006
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oxidative stress, and therefore causes upregulation of VEGF. Not

surprisingly, the intra- and subretinal NV phenotypes we observed

in Vldlr-/- mice were very similar to the developmental progression

of subretinal neovascularization observed in the Tg-rhoVegf mice

[40]. In this transgenic mouse, ectopic VEGF is expressed by rod

photoreceptors in the ONL. New vessels sprout from the deep

layer of the retinal vasculature, invade the ONL and subretinal

space and eventually these neovascular lesions are engulfed by

RPE cells. One major difference between these two models is the

eventual anastomoses of the subretinal neovascular lesions with the

choroidal vasculature in the Vldlr-/- mice, which is not observed in

the Tg-rhoVegf mice.

Even though anti-VEGF therapy may be an effective treatment

for neovascular diseases of the eye, recent findings suggest that a

low level of VEGF is normally present in the adult rodent retina,

and is necessary to maintain the functions of retinal neurons and

glia [41]. Systemic or localized neutralization of VEGF may result

in neuronal and glial cell death. We, therefore, propose that

therapies using nanoceria may be a superior alternative as they act

upstream of the angiogenic pathway and do not interfere with the

normal production and functions of VEGF.

Materials and Methods

Animals
Breeding pairs of mutant mice with targeted deletion of the Vldlr

gene (B6;129S7-Vldlrtm1Her/J; Vldlr-/-) were obtained from the

Jackson Laboratory (Bar Harbor, ME). C57Bl/6 were used as WT

controls.

Ethics Statement
Animals were cared for and handled according to the

Association for Research in Vision and Ophthalmology statement

for the use of animals in vision and ophthalmic research. The

study was approved by the University of Oklahoma Health

Sciences Center Institutional Animal Care and Use Committee

(OUHSC IACUC) and the Dean McGee Eye Institute (DMEI)

IACUC. The approved protocol numbers were 09-027 and 09-

105 from the OUHSC IACUC, and D-09-027 and D-09-105

from the DMEI IACUC.

Synthesis of nanoceria
Cerium oxide nanoparticles were synthesized using simple wet

chemistry methods as described previously [31]. Briefly, stoichiomet-

ric amount of cerium nitrate hexahydrate (99.999% from Sigma

Aldrich) was dissolved in deionized water. The solution was oxidized

using excess of hydrogen peroxide. After the synthesis of nanopar-

ticles, the pH of the solution was maintained below 3.0 using nitric

acid (1N) to keep the synthesized nanoceria in suspension.

Intravitreal injection of nanoceria
Intravitreal injection was performed as described previously [32].

Briefly, mouse pups at P7 were ‘‘cold’’ anesthetized by placement on

ice. One ml of 1 mM (172 ng) cerium oxide nanoparticles (nanoceria)

in saline was injected into the vitreous under an ophthalmic operating

microscope. Control mice were injected with 1 ml of saline. Both eyes

of each animal received the same treatment. Animals with retinal

bleeding or lens injury following the injection procedure were

excluded from the study. Animals were euthanized at 7, 14, or 21

days after injection, and the eyes were rapidly enucleated.

FITC-dextran vascular filling assay
Angiography was performed in deeply anesthetized mice using

intracardial injection of 30 ml, 50 mg/ml fluorescein isothiocya-

nate-conjugated high molecular weight Dextran (FITC-Dextran,

,26106 molecular weight; Sigma) [28]. Eyes were enucleated

three minutes after perfusion. They were fixed in 4% paraformal-

dehyde at room temperature for 2 hours. Cornea, iris and lens

were removed from the eyecup and then the retina was carefully

dissected free of the rest of the eye. Radial cuts were made in the

retinas and eyecups from the edge to the equator for flat-

mounting. For retinas, the ganglion cell layer was facing up; for

eyecups, the RPE was facing up. Images were captured using a

Nikon Eclipse 800 fluorescence microscope equipped with a

Micromax CCD camera (Princeton Instruments, Trenton, NJ) and

the MetaVue software (Molecular Devices, Downingtown, PA).

Western blot analysis
Western blot analysis was performed as described previously

[42–45]. Fifty mg of retinal protein per sample were used for SDS-

PAGE mini-gels. After electrophoresis, proteins were transferred

to nitrocellulose paper, washed for 2610 min in TTBS (0.1%

Tween 20 in 20 mM Tris-HCl, pH 7.4, and 410 mM NaCl) and

blocked with 10% BSA in TTBS with 5% milk for 2 hours at

room temperature. Blots were incubated with rabbit anti-VEGF

polyclonal antibody (1:500, Santa Cruz Biotechnology, Santa

Cruz, CA) overnight at 4uC; washed three times for 5 min each

with TTBS; incubated for 1 hour with anti-rabbit IgG HRP-

linked secondary antibodies (1:3000, GE Healthcare, Pittsburgh,

PA); washed four times for 10 min each with TTBS and developed

by enhanced chemiluminescence.

Immunohistochemistry and confocal imaging
Immunohistochemical staining was performed as described

previously [42–46]. The 4% paraformaldehyde fixed eye was cut

along the vertical meridian, and cryostat sections were incubated

with rabbit anti-VEGF polyclonal antibody (1:100, Santa Cruz

Biotechnology, Santa Cruz, CA), and then secondary antibody

conjugated to fluorescein isothiocyanate (Vector Labs, Burlin-

game, CA). In control experiments, the primary antibody was

incubated for 2 hours at 4uC with its blocking peptides before

applying to the sections. Sections were visualized and analyzed

with a confocal laser scanning microscope system (IX81-FV500;

Olympus, Melville, NY).

Flat mounts of the neural retina, after blocking in PBS with

0.5% Triton X-100, 2% BSA, and 10% goat serum for 30 minutes

at room temperature, were stained with biotinylated-peanut

agglutinin (1:200, Vector Labs, Burlingame, CA) overnight at

4uC, followed by incubation with Texas red-streptavidin (1:1000,

Vector Labs, Burlingame, CA) at room temperature for 60

minutes. When examined under confocal microcopy, the cone

sheaths in the neural retina appeared red, and the retinal

vasculature green. Stacks of images (0.2 mm) spanning the entire

thickness of the retinal vasculature were generated and three-

dimensional reconstruction of the retinal vasculature was obtained

using Fluoview image analysis software (Olympus).

Reactive oxygen species detection
Reactive oxygen species (ROS) generation was examined by

two independent methods [47,48]. Dichlorofluorescein (DCF), the

oxidation product of 5-(and-6)-chloromethyl-29,79-dichlorodihy-

drofluorescein diacetate, acetyl ester (CM-H2DCFDA; Invitrogen,

Carlsbad, CA) emits a green fluorescent signal localized primarily

to mitochondria, and is a marker of cellular oxidation by hydrogen

peroxide, hydroxyl radicals and peroxynitrite. Unfixed retinal

cryostat sections were incubated with CM-H2DCFDA (10 mM) for

60 minutes at 37uC. DCF detection at 505 nm was visualized by

confocal microscopy. Dihydroethidium (DHE) is oxidized on
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reaction with superoxide to ethidium bromide, which binds to

DNA in the nucleus and fluoresces red. Serial cryosections from

fresh-frozen retinas were incubated with DHE (0.625 mM)

(Invitrogen, Carlsbad, CA) at 37uC for 20 minutes, followed by

confocal microscopy with detection at 585 nm.

Immunofluorescence staining for oxidative damage
We performed immunostaining using antibodies against bio-

markers of oxidative damage according to previously described

methods [49,50]. The activating subunit for NADPH oxidase,

p47phox, was detected with rabbit anti-p47phox (1:50, Santa Cruz

Biotechnology, Santa Cruz, CA). Nitrotyrosine and 8-hydroxy-2-

deoxyguanosine (8-OHdG) were detected using rabbit anti-

nitrotyrosine (1:100, Chemicon, Temecula, CA) and goat anti-8-

OHdG (1:150, Chemicon, Temecula, CA), respectively. For anti-

nitrotyrosine staining, antigen retrieval was done by covering

sections with 0.02 M citrate buffer (pH 6.0) and heating them in a

microwave oven for 3 min. After cooling to room temperature,

additional buffer was added and the slides were reheated; this

heating/cooling process was repeated three times. For anti-8-

OHdG staining, tissues were pretreated with 10 mg/ml of

proteinase K for 20 minutes. Subsequent procedures were as

described above.

Statistical analysis
Each experiment was performed at least three times. Repre-

sentative data were shown. For quantitative analyses, sample size is

from three animals (six eyes). Values were expressed as means 6

SD. Statistical analyses were performed using Student’s t-test;

P,0.05 was considered significant.

Supporting Information

Figure S1 Raw XPS spectra of nanoceria samples. The

peaks between 875 and 895 eV belong to the Ce 3d5/2 while peaks

between 895–910 eV correspond to the Ce 3d3/2 energy levels.

The higher extent of Ce3+ oxidation state in nanoceria could be

easily seen with contribution from peaks at 880.160.5, 885.260.3,

900.160.5 and 903.560.3eV belonging to the Ce3+ oxidation

state. Inset shows the high resolution transmission electron

micrograph of nanoceria depicting the individual 3–5 nm particle

size of nanoceria in an agglomerate of less than 10 nm.

(DOCX)

Figure S2 Photomicrographs of dihydroethidium (DHE)
labeling of retinal sections. Superoxide production in retinal

sections was assayed by using the oxidative fluorescent dye, DHE.

DHE is oxidized on reaction with superoxide to ethidium bromide

which binds DNA in the nucleus and fluoresces red. There was no

discernable difference in the DHE-labeled retinas from Vldlr-/-

and WT mice. GCL = ganglion cell layer; INL = inner nuclear

layer; ONL = outer nuclear layer.

(TIF)

Text S1 Experimental Details and Results for Characterization

of Nanoceria.

(DOCX)
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