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Abstract

Background: In nonlinear dynamic systems, synchrony through oscillation and frequency modulation is a general
control strategy to coordinate multiple modules in response to external signals. Conversely, the synchrony
information can be utilized to infer interaction. Increasing evidence suggests that frequency modulation is also
common in transcription regulation.

Results: In this study, we investigate the potential of phase locking analysis, a technique to study the synchrony
patterns, in the transcription network modeling of time course gene expression data. Using the yeast cell cycle
data, we show that significant phase locking exists between transcription factors and their targets, between gene
pairs with prior evidence of physical or genetic interactions, and among cell cycle genes. When compared with
simple correlation we found that the phase locking metric can identify gene pairs that interact with each other
more efficiently. In addition, it can automatically address issues of arbitrary time lags or different dynamic time
scales in different genes, without the need for alignment. Interestingly, many of the phase locked gene pairs
exhibit higher order than 1:1 locking, and significant phase lags with respect to each other. Based on these
findings we propose a new phase locking metric for network reconstruction using time course gene expression
data. We show that it is efficient at identifying network modules of focused biological themes that are important
to cell cycle regulation.

Conclusions: Our result demonstrates the potential of phase locking analysis in transcription network modeling. It
also suggests the importance of understanding the dynamics underlying the gene expression patterns.

Background
A major goal of systems biology is to integrate biological
functions of individual genes in terms of their interac-
tions. Time course gene expression profiling, which can
capture the global transcriptional responses to signals
during a biological process of interest, offers a major
data source to achieve this goal [1].
In network modeling of gene expression data, asses-

sing pair-wise relationships is often a starting point. In
early days, correlation coefficient [2,3], Euclidean dis-
tance, as well as their variations, such as partial correla-
tions, empirical Bayes and bootstrap methods [4], were
used. They are effective for computing direction free

linear dependence when the data are independent. Net-
works constructed this way are essentially co-expression
networks. While having the appeal of being simple and
intuitive, correlation metrics have limitations when
applied to time course data. They assume independence
of the order of the data points, while in reality the data
at each time step depend on the previous time points.
Ignoring the inter-time point dependence not only loses
sensitivity toward detecting interactions but could also
lead to erroneous predictions [5].
Significant phase shift in the timing of expression

changes have also been observed for highly associated
genes [6]. Some studies tried to identify the phase lag
directly by shifting gene expression time series with
respect to each other until the optimal alignment is
reached. For instance, Qian et al proposed a local clus-
tering approach based on optimal pair-wise alignment
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through dynamic programming [7]; Schmitt et al used
the Pearson’s correlation [8], Balasubramaniyan et al
used the Spearman rank correlation [9], Pereda et al
used cross correlation [10], to compute the maximum
time-lagged similarity between two transcript profiles,
and utilized the results to identify clusters. The degree
of lag varies widely in different gene pairs, and these
approaches need multiple runs to find the lag that best
aligns each pair. The performance of the alignment
depends on whether the lags are close to integer num-
bers of the sampling steps of the experiment.
More sophisticated methods were also developed. Aach

and Church implemented both simple and interpolative
time warping based on dynamic programming to identify
an optimal alignment of two gene expression time series
[11]. Expanding this approach, Liu and Müller proposed
a non-parametric time-synchronized iterative mean
updating technique to construct modes of temporal
structure in gene expression profiles [12]. Bar-Joseph et
al. [13,14] developed an approach to align temporal data
sets using piecewise spline fitting, extracting shift and
stretch parameters for each data set. Butte et al. [6] uti-
lized digital signal-processing tools, including power
spectral densities, coherence, transfer gain, and phase
shift, to find pair-wise gene associations based on peri-
odically expressed time-invariant gene profiles. More
recently, a hidden Markov model based approach was
utilized to infer the timing in gene expression changes
under different experimental conditions [15].
Linear and non-linear multivariate analysis and signal

processing techniques were also introduced to analyze
time series microarray data [16]. Several studies used
pair wise mutual information to infer interactions and
regulatory relationships between genes [17,18]. This
method assumes a fixed time delay, which might not be
true across different experimental conditions. In fre-
quency domain time series analysis, causality and inter-
relationship among the components can be studied
using coherence and partial coherence. Graphical mod-
els based on such analysis have been studied by Butte
et al [6] and Salvador et al [19]. However, Albo et al
[20] showed that partial coherence-based causality mea-
sures are sensitive to measurement noise.
Apparently, more studies are needed to fully utilize

the dynamics underlying the temporal gene expression
pattern, and to better understand the complex spatial-
temporal architecture of transcriptome. Recently,
increasing evidence, including those from the advance-
ment of single-cell time course gene expression profiling
technologies [21], suggest that like other complex
dynamic systems in nature, synchrony through oscilla-
tion and frequency modulation is a general strategy for
an organism to coordinate the transcription of multiple
target genes in responses to external signals [22-26].

Examples include the p53-Mdm2 feedback loop [24,25],
the NF-�B signaling pathway [27], and calcium respon-
sive pathways [23]. These further emphasize the need of
new methods to study and utilize the dynamics. The
oscillations in gene expression, like other oscillations in
biological systems [28], are most often pulsatile or
relaxed oscillations rather than harmonic, thus calling
for mathematical methods rooted from phase space ana-
lysis [29,30].
In this study, we investigate the potential of network

inference using the phase locking analysis technique
[31]. This approach is based on the following concepts
originating from nonlinear dynamics [29,30]: if two time
series interact with each other, there will be a process of
rhythmic adjustment resulting from the interaction,
leading to phase locking. Phase-locked oscillators pro-
gress through their trajectories in phase space at the
same pace (1:1 locking), or rational ratios with respect
to each other (m:n locking, m and n being integers).
Conversely, such phase locking phenomenon can be uti-
lized to infer interaction between two dynamic systems,
even for weak interactions [31]. Recently Kim et al clus-
tered genes of synchronized oscillatory pattern (1:1
phase locking) during yeast cell cycle, and observed that
genes in the same cluster were closely associated, as evi-
denced by the sharing of GO terms and BioGRID inter-
actions [32]. In this study we will apply the phase
locking analysis to the Stanford yeast cell cycle data
[33,34], and examine the phase locking (including higher
order locking) between transcription factors and targets,
between gene pairs with prior evidence of other types of
interaction, and between cell cycle genes. Based on the
results, we will propose a new network inference
approach utilizing the phase locking index, and examine
the modular structure of the networks constructed and
the biological themes shared by genes in the network
modules.

Results
Phase locking of interacting genes
Distribution of l
We first examined the distribution of phase locking
index l in all four datasets of he Stanford yeast cell
cycle study [33,34], the histograms are given in Figure 1.
In each case the distribution is close to normal (p < 1e-
10, KS test), indicating that the way we define the
threshold l for significant locking, 2 standard deviations
above mean, is reasonable. In all histograms there is a
hint of a high-l tail, likely contributed from gene pairs
that are phase locked.
Phase locking between the cell cycle regulating TFs and
their targets
Following the original gene expression study of cell
cycles [33,34], several groups have investigated yeast
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transcription binding using the ChIP-chip technology
[35,36]. These data provide useful information of which
genes are potentially transcription regulation targets of
each TF. We have obtained the data from Simon et al,
where the promoter binding by the 9 known cell cycle reg-
ulating TFs were studied [36]. Both ChIP-chip and micro-
array data are noisy, and we found no direct quantitative
dependence of l or r on the binding p-value (r < 0.1).
However, we obtained interesting results when using

the target and non-target control groups as benchmarks.
The receiver operating characteristic (ROC) curve was
used to determine whether or not l can potentially dis-
criminate targets from non-targets. ROC is a graphical
plot of the sensitivity versus 1-specificity, namely the
fraction of true positives versus the fraction of false
positives, as the discrimination threshold of a classifier
is varied. The area under curve (AUC) reflects the per-
formance. The ROC of a random classifier would be a
45° line with AUC = 0.5. In Figure 2 the ROC plot for
each TF in alpha factor arrest experiment is given.
Overall, l is significantly better than either a random

classifier or r (p < 0.001 in both cases), suggesting that
expression levels from TF and target genes are likely to
exhibit phase locking. In contrast, the expression levels
of TF and their targets seem to correlate little. In fact,
using r does not fare any better than a random classifier
(p > 0.5, t-test). The results from other datasets are
similar, and the AUC of ROC plots from all four data-
sets are summarized in Figure 3. The list of target genes
that exhibit significant phase locking with the TF is
given in Additional file 1.
Phase locking of BioGRID gene pairs
To further investigate the potential of phase locking
analysis in network inference, we examined phase lock-
ing between gene pairs that have evidence of other types
of interaction according to BioGRID http://www.thebio-
grid.org. BioGRID is a freely accessible database of phy-
sical (protein-protein) and genetic interactions, curated
from high-throughput data and literature [37,38]. Of all
possible gene pairs in our data sets, ~53,000 are anno-
tated in BioGRID. We constructed five Bootstrapping
[39] sets that consisted of the same number of BioGRID

Figure 1 Distribution of the phase locking index l.
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Figure 2 The efficiency of using r and l to distinguish targets from non-targets of transcription factors. Overall, l is significantly better
than either r (p < 1e-9) or a random classifier (p < 1e-3). Plotted are data from the alpha factor dataset.

Figure 3 AUC of ROC of the nine TFs. Including the consideration of higher order locking significantly improved the performance.

Gao et al. BMC Systems Biology 2010, 4:167
http://www.biomedcentral.com/1752-0509/4/167

Page 4 of 16



gene pairs, randomly sampled from all possible pairs.
The distribution of phase locking index was examined
in each group. We found that the distribution for the
BioGRID pairs is skewed toward higher l than the Boot-
strapping sets (p < 1e-5, KS test).
The odds ratio (OR) of the enrichment of phase

locked pairs at a given threshold value l 0, when there
is prior evidence of interaction according to BioGRID,
can be calculated by:

Odds Ratio = >
>

P

P

( | )
( | )

 
 

0

0
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(11)

where P(l >l 0|BioGRID) is the probability of a Bio-
GRID gene pair having a significant phase locking l >l
0 , and P(l >l 0|Bootstrapping) is such probability of a
Bootstrapping gene pair. The OR of the four datasets at
different l 0 is given in Figure 4. Evidently, it increases
with more stringent l 0, and is significantly greater than
1 above the cutoff values of l that we used in this study
(~0.75). These results further validate the idea that l
can be utilized to identify interacting gene pairs.
Phase locking among cell cycle genes
We anticipate the expression of the 144 cell cycle genes
to show significant coordination, as they should all
respond to the master signals that drive the cell cycle,
and form an interaction network that together regulate
the cell cycle progression. We found that indeed they
exhibit phase locking among themselves more often
than with random genes or than within random genes.
On the other hand, when evaluated by the correlation
coefficient r of their expression levels, cell cycle genes
are not different from random genes. To illustrate the
point we present in Figure 5 colormaps of the adjacency
matrix A from the alpha factor arrest dataset, where the

non-zero elements are presented by a black pixel.
According to l, in the subregion of cell cycle genes,
there are significantly more black pixels than in the sub-
region of random genes, or in the subregion of cross
interactions. To give a more quantitative description in
Figure 6 we give the network degrees of all genes in the
network. Evidently, based on phase locking, the cell
cycle genes form a highly connected subnetwork, whilst
random genes are sparsely connected. In sharp contrast,
according to r, there is literally no difference between
the cell cycle genes and the random genes, both with
moderate connectivity. Results from the other three data
sets are similar. Note that in each case the total number
of genes is less than their purported values (144 and
150), this is because we have removed genes with more
than one missing values in their time series
measurements.
Phase lags and m:n phase locking
In general we found that the phase lag Ψ0 between
locked pairs varies widely, and most of them are not
close to 0. This is consistent with observations made by
others [6,40]. Figure 7 gives the distribution of the rela-
tive phase Ψ0 as defined in equation 7 of phase locked
TF and target pairs. They span the whole range of [-π,
π], with no consistent pattern. This is not surprising as
it is the protein of the TF that interact directly with the
target gene transcription, not the expression of the TF
transcript [7,41]. Indeed, it has been observed that
response delay varies widely in gene expression regula-
tion [40]. Additional file 2 presents some examples of
phase locked BioGRID gene pairs with significant phase
lags, where the correlations are low, even with time-
lagged correlations. More examples and movies of phase
lagged gene pairs are available at our website http://zen.
dom.uab.edu:8080/phase/demo/. The universal existence
of phase lags and their variation suggest the advantage
of a method like the phase locking analysis that can
automatically account for them. The pair-wise alignment
approaches will need to align each pair individually thus
adding an extra step in network modeling.
In this study we included the consideration of m:n

phase locking, up to Max{m, n} = 4. We found that
there were a significant number of gene pairs exhibiting
higher than 1:1 locking. The number breakdowns are
listed in Additional file 3. In the cell cycle gene analysis,
on average there are 612.5 gene pairs in each data set
that exhibit significant phase locking. Out of these pairs,
~5.7% are from higher order locking, with ~half contrib-
uted from the 1:2 and 2:1 locking. In the TF-target
pairs, the proportion of higher order locking is signifi-
cantly higher at ~10%. On average, in each dataset there
are 1747 significantly phase locked TF-target pairs. 178
are due to higher than 1:1 locking, and ~70% of them
are contributed from the 1:2 or 2:1 locking. The number

Figure 4 Significantly enhanced presence of phase locking in
BioGRID gene pairs.
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Figure 5 The cell cycle genes form a densely connected subnetwork according phase locking. Presented here are 2 D colormaps of the
adjacency matrix A as defined by the phase locking index l and the correlation coefficient r. Pixels are represented by black color if Ai, j = 1,
white if Ai, j = 0. The diagonal elements Ai, j were set to zero to avoid obscuring the interaction pattern between different genes.

Figure 6 Comparison of network degrees in the networks of random genes and cell cycle genes. According to l, the cell cycle genes
clearly form a highly connected subnetwork, while random genes are sparsely connected. In contract, the two groups of genes show no
connectivity difference according to r. Data presented are from the alpha factor synchronization dataset.
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of phase locked pairs, versus Max{m, n}, is given in
Figure 8. Interestingly, an exponential dependence is
evident. Including higher order phase locking signifi-
cantly improved the performance of l as a classifier to
detect TF targets. In Figure 3 we also included results
that only considered 1:1 locking. Clearly, the perfor-
mance is not as good as when higher order locking is
included (p ~ 0.02), though it is still better than r or a
random classifier (p < 0.05).
The basis of higher order phase locking is the different

intrinsic dynamic time scales of the different time series.
Figure 9 presents some examples of order 2 locked Bio-
GRID gene pairs. The corresponding PubMed ID that
contains evidence of their interaction is also given.
More examples of high order locked pairs from the cell
cycle genes, and TF-target pairs are given in Additional
files 4 &5. In these examples, the values of l1,1, and r
are low, and interaction would have been missed if
using them as the metric. Demo movies of higher order
phase locking are available at our website http://zen.

Figure 7 Distribution of phase lags between TF and phase locked targets.

Figure 8 Higher order phase locking in gene expression
changes. The number of phase locked gene pairs decrease
exponentially with max{m, n}.
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dom.uab.edu:8080/phase/demo/. The wide range of
phase lags and the significant proportion of higher order
locking emphasize the need of a rigorous method like
the phase locking analysis that can automatically take
care of them.
Agreement between the 4 datasets
As observed by others, we see large variation among the
4 datasets. However, when we examine the phase locked
pairs, we found that there is significant concordance
between the four datasets, with p < 0.0014 (Fisher’s
exact test). The Venn diagram is given in Figure 10A.
Interestingly, we find that often for gene pairs that
show consistent phase locking in multiple datasets, their
correlation do not follow the trend. Figure 10B is an
example, where the TF-target pair Swi5-ASH1 [42],
shows high l consistently in the alpha, cdc15 and ELU
experiments, but their expressions correlate in no
dataset.

Network inference using phase locking
In our study so far, we have demonstrated that phase
locking in expression changes is a good indicator of
interaction. It is therefore natural to utilize it to con-
struct gene interaction networks.
Highly connected genes tend to be essential genes
We first examined the network defined by the adjacency
matrix given in equation 9. Analysis of the yeast pro-
tein-protein interaction network in the past has revealed
that highly connected genes are more likely to be essen-
tial for survival [43]. In a recent study of co-expression
network by Zhang et al [44], strong positive correlations
between the network degree and the functional essenti-
ality of genes were also observed. In our phase locked
networks, we also observed a positive correlation
between the network degree ki of a gene and its likeli-
hood of being essential. The relationship is nicely cap-
tured In Figure 11A. All genes were ranked according to

Figure 9 Examples of BioGRID pairs that are 1:2 or 2:1 phase locked in their expression time series. The frequency of the slower time
series has been doubled. The PubMed ID gives the literature that contains evidence of their interaction. Data from the ELU experiment.
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their ki and partitioned into 20 equal sized bins. The
proportion of essential genes in each bin was then
plotted against the mean ki. A linear dependence is evi-
dent (r ~ 0.6, p ~ 7e-5). We also examined the degree
distribution of essential versus non-essential genes,
given in Figure 11B. Compared to the non-essential
ones, essential genes are significantly skewed toward
having higher numbers of phase locked partners (p <
1e-5, KS test).
Genes in network modules have focused biological themes
The structure of the phase locked network is further
studied through hierarchical clustering using the topolo-
gical overlapping matrix given in equation 10. As
depicted in Figure 12 modular organization is evident.

Genes in the grey regions did not belong to any mod-
ules (which we call the scattered set). Most of the mod-
ules (five out of seven) contain higher numbers of
essential genes than the scattered set (p < 4.9e-05, c2-
test). Based on the theory of phase locking and our
results so far, one anticipates genes from the same mod-
ule to be highly interactive among themselves. This is
indeed true for all the modules when we annotate them
with BioGRID information (p < 0.02). In addition, onto-
logical analysis of each identified module was performed
using GOstat [45], to examine the biological themes and
the functional relationship of the module members. We
found that genes in the same module tend to be
involved in a set of focused signaling pathways. At a

Figure 10 Agreement among the 4 datasets. A. Venn diagram of sharing of the phase locked pairs in the four datasets. (B) A TF-target pair
that shows phase locking across three datasets, but exhibits low correlation consistently.

Figure 11 Genes of higher network degree are more likely to be essential genes. (A). Fraction of essential genes goes up linearly with
increasing network degree (r = 0.59, p ~ 7e-5). (B) Cumulative distribution fraction (CDF) plot shows that the network degree distribution of
essential genes is skewed toward having higher network degrees (p < 1e-5, KS test).
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stringent cutoff p = 0.01, genes in the 7 modules share a
total of 65 GO categories, and 105 at p = 0.05, whilst
random gene sets of the same sizes and the scattered
gene set do not share any GO category even at a very
loose cut off p = 0.10. In Table 1 we list the GO Biolo-
gical Processes shared by genes in each module at p <
0.01. A common theme is evident that most of these
processes are critical to DNA replication and cell cycle
regulation. For instance, genes in the turquoise module
likely form a cell cycle regulatory module, while the yel-
low module is likely associated with RNA processing.

Discussion
The importance of phase space information
Synchrony through oscillation is a common, maybe the
most efficient, way to coordinate regulation in complex
nonlinear dynamic systems. It is also a ubiquitous phe-
nomenon in biological systems, where oscillations are
observed in all organisms across a wide range of tem-
poral and spatial scales, and are believed to play an
important role in maintaining homeostasis and deliver-
ing encoded information [22,46,47]. Examples include

the synchronized oscillations in interneuron networks,
pulsatile endocrine hormone secretion, circadian oscilla-
tors, Somite segmentation, and innumerable others.
Higher order phase locking occurs frequently, reflecting
the multi-stability of complex systems, and is believed
important to function. For instance, in the study of car-
diorespiratory synchronization, when plotting the instan-
taneous respiratory phase at the occurrence of a
heartbeat versus time, Schäfer and co-workers found n:1
synchronization between heart and respiration [48]. In a
study with anesthetized rats, Stefanovska et al. further
observed lengthy synchronization epochs, and transi-
tions from one ratio to another. They suggested that
such transitions might be useful in monitoring depth of
anesthesia [49,50].
Increasing evidence suggests that, as in many other

complex systems in nature, oscillation and frequency
modulation is also a general strategy for an organism
to coordinate multi-gene responses to external signals
[22]. It is found that the transcription factor activities,
rather than levels of transcription factor expression,
mediate transcriptional regulations [26]. In the

Figure 12 Network modules identified based on phase locking in the alpha factor dataset.
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negative feedback loop between the tumor suppressor
p53 and the oncogene Mdm2, p53 is expressed in a
series of discrete pulses after DNA damage, leading to
oscillations in Mdm2 [24,25]. The amplitude of the
oscillations was much more variable than the period,
suggesting strong temporal regulation. In the NF-�B
signaling pathway, NF-�B (RelA) localization showed
asynchronous oscillations following cell stimulation
that decreased in frequency with increased I�Ba tran-
scription. Transcription of target genes depended on
its oscillation persistence, and thus the functional

consequences of NF-�B signaling likely depend on
temporal characteristics of the oscillations [27]. In
yeast cells it has been shown for several calcium stress
responsive TFs (Crz1 and Msn2) that calcium concen-
tration controls the frequency, but not the duration, of
their oscillatory localization bursts, and the oscillation
propagates to the expression of downstream genes.
It has been argued that such frequency modulation of
localization bursts ensures proportional expression
of multiple target genes across a wide dynamic range
of expression levels [23].

Table 1 Top GO Biological Processes shared by the genes in the 7 modules shown in Figure 12, at p < 0.01

GO Accession # Description Module

GO:0006412 translation Red

GO:0044249 cellular biosynthetic process Red

GO:0009059 macromolecule biosynthetic process Red

GO:0042254 ribosome biogenesis Green

GO:0022613 ribonucleoprotein complex biogenesis Green

GO:0006412 translation Brown

GO:0009059 macromolecule biosynthetic process Brown

GO:0044249 cellular biosynthetic process Brown

GO:0044267 cellular protein metabolic process Brown

GO:0019538 protein metabolic process Brown

GO:0044260 cellular macromolecule metabolic process Brown

GO:0009058 biosynthetic process Brown

GO:0010467 gene expression Brown

GO:0006364 rRNA processing Yellow

GO:0016072 rRNA metabolic process Yellow

GO:0042254 ribosome biogenesis Yellow

GO:0006396 RNA processing Yellow

GO:0022613 ribonucleoprotein complex biogenesis Yellow

GO:0016070 RNA metabolic process Yellow

GO:0010467 gene expression Yellow

GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process Yellow

GO:0022613 ribonucleoprotein complex biogenesis Turquoise

GO:0042254 ribosome biogenesis Turquoise

GO:0000278 mitotic cell cycle Turquoise

GO:0022402 cell cycle process Turquoise

GO:0007049 cell cycle Turquoise

GO:0006412 translation Turquoise

GO:0044249 cellular biosynthetic process Turquoise

GO:0006396 RNA processing Turquoise

GO:0022403 cell cycle phase Turquoise

GO:0006364 rRNA processing Turquoise

GO:0000074 regulation of cell cycle Turquoise

GO:0006261 DNA-dependent DNA replication Turquoise

GO:0006260 DNA replication Turquoise

GO:0016072 rRNA metabolic process Turquoise
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These facts all imply the importance to study syn-
chrony in expression oscillation, to understand the
information encoded and the underlying interaction/reg-
ulation mechanisms. Data from these studies [22-27]
also indicate that oscillations in gene expression, like
most other oscillations in biological systems, are often
pulsatile rather than harmonic. Therefore, mathematical
methods rooted from phase space analysis are desirable.
The latter can potentially lead to new efficient network
modeling algorithms, and help to understand the com-
plex spatial-temporal architecture of transcriptome.

Advantages and limitations of the phase locking analysis
Additional to the theoretical appeals, we believe that
phase locking analysis has several advantages in cluster-
ing genes of similar patterns and in network modeling.
Firstly, compared to approaches that primarily rely on
the similarities in the amplitude domain patterns, phase
locking utilizes the dynamics underlying the temporal
pattern, which is more robust against noise. This is par-
ticularly appealing in network modeling of gene expres-
sion data, as they usually contain high noise. Also the
transcript abundance measurements often reflect a com-
pressed, even altered representation of the true expres-
sion changes due to technical issues [51-54]. These can
significantly mask the true patterns in amplitude
changes. In contrast, phase locking analysis, which
focuses on the timing of the changes, will be less
affected by the noise and the technical issues in the
microarray gene expression study. In fact, it is known
that noisy coupled nonlinear dynamic systems may syn-
chronize in phase whilst their amplitudes remain uncor-
related [31,55]. In our analysis, we have seen ample
examples where interacting gene pairs (according to
BioGRID or ChIP-chip) exhibit obvious phase locking,
but have very low correlation (See Figure 9 and Addi-
tional files 2, 4 and 5).
Secondly, in phase locking analysis, the phase lags in

gene expression changes between different genes are
automatically accounted for, and the performance is not
affected by the amount of lag. On the other hand, the
performance of alignment approaches depends on
whether the lag is close to an integer number of the
time steps of the experiment, and they need to be
adjusted for each pair as the lags of different gene pairs
vary greatly.
Thirdly, phase locking does not require the two time

series to have the same dynamic time scale, or the same
frequency. It is known that some pathways or gene
groups in a cell respond to external signals at a much
faster time scale than others [11]. High order m:n phase
locking analysis can take care of such interacting gene
pairs, whilst they would be missed by the alignment
method.

A limitation of the phase locking analysis is its reli-
ance on the temporal spectrum to accurately derive the
instantaneous phase, which could significantly affect
results when either the number of sampling points or
the sampling frequency is too low. Note that higher
sampling frequencies are needed to detect high order
phase locking. We have carried out a set of numerical
simulations and observed significant deterioration in
performance when the number of sampling points is
reduced to ~5 or lower (data not shown). This limita-
tion is not unique to the phase locking analysis. All
pair-wise alignment approaches suffer from the same
limitations as they all rely on adequate sample size to
make a good assessment of whether the expression pat-
terns of the pair are similar or not. There is also a
caveat with the application of phase locking analysis to
network modeling. Gene interactions or phase locking
occurs inside each cell. High throughput time series
gene expression studies commonly measure a popula-
tion of cells all at one time, effectively averaging the
expressions of each gene across the whole cell popula-
tion. In processes where there is high synchrony in the
whole cell population, such as the cell cycle study pre-
sented here, phase locking between gene expression
changes that occur inside each cell is preserved at popu-
lation level, and can be detected from population mea-
surements. In other biological processes, where cellular
heterogeneity plays a key role, information of the signal-
ing dynamics and phase locking inside each cell could
be lost in population-level measurement. Again, in such
situations, the performance of the co-expression align-
ment approaches to detect interaction will also be
affected.
Lastly, the recent advancements in single-cell techni-

ques has enabled the generation of time-series gene
expression measurements in a large number of indivi-
dual living cells [21]. We believe that phase locking ana-
lysis will be particularly suitable for such data. The
dynamic information at the level of individual living
cells will be critical to unravel how a genetic network
operates at the systems level.

Conclusion
A major challenge in systems biology is to reconstruct
gene networks that are involved in basic cellular pro-
cesses, and to understand how alterations to the net-
work affect functions and consequently phenotypes.
Interactions between genes can result in expression
amplitude variations as well as temporal patterns.
Therefore, network inference utilizing temporal domain
information deserves more attention. In this study, we
investigated the potential of the phase locking analysis
in network modeling of time course gene expression
data. We demonstrated that interacting gene pairs,
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including transcription regulation interaction, protein-
protein, or genetic interaction, are more likely to exhibit
phase locking in their gene expression changes, and vice
versa. Among the phase locked pairs, up to ~10% are
contributed from higher order locking, and the relative
phase difference spans across the whole range of [-π, π].
Based on these findings, we constructed interaction net-
works and revealed that genes with higher network
degrees are more likely to be essential genes. Utilizing
the phase-locking index based topological overlapping
matrix, we further investigated the modular structures
in the network. We showed that genes forming network
modules are more likely to be essential genes than scat-
tered genes in the network, and members of the same
module tend to be involved in the same biological func-
tions and processes. In view of the importance of the
frequency domain signal in transcription regulation, we
believe that the phase locking analysis can potentially
lead to new network modeling approaches and help to
understand the dynamic designs of the intracellular sig-
naling networks.

Methods
Gene expression data
Yeast cell cycle gene expression data were downloaded
from the Yeast Cell Cycle project at the Stanford Uni-
versity http://genome-www.stanford.edu/cellcycle/data/
rawdata/. These studies profiled expression changes in
6178 genes at ~20 time points under each condition fol-
lowing alpha factor arrest (18 time points from 0-119
minutes), elutriation ELU (14 time points from 0-390
minutes), and arrest of a cdc15 (24 time points from 10-
290 minutes) and a cdc28 (28 time points from 0-160
minutes) temperature sensitive mutant [33,34]. Many
genes have missing data points. The cdc28 data is the
most severely affected, ~80% of genes contains at least 1
missing values. For the other three datasets, it ranged 6-
27%. In this study, we kept genes that had at most 1
missing data point in each data set for further analysis.
Among all 6178 genes profiled, 144 are annotated by
the Gene Ontology (GO, http://www.geneontology.org/)
to be involved in the biological process of cell cycle
(Since the start of our study, more genes have been
annotated to be involved in this biological process. The
number is now higher than 144). They are termed cell
cycle genes in this study.

ChIP-chip data of transcription binding
Simon et al studied the transcription regulation of yeast
genes by 9 cell cycle regulating transcription factors
(TF): Fkh1, Fkh2, Ndd1, Mcm1, Ace2, Swi5, Mbp1,
Swi4, and Swi6, using the ChIP-chip technology [36].
We have obtained their data and used it as benchmark
of transcription interaction. For each TF, the study

derived a binding p-value for each gene which reflects
the likelihood that the TF binds to the promoter of this
gene. We log-transformed the p-value to a significance
score by

sig log p= − 10 (1)

For each gene i, the Z-score of the sig across the 9
TFs is also determined to examine binding specificity.
We constructed a positive control target set for each

TF that consists of those with sig > 3 (significant bind-
ing), and the Z-score > 1.5 (the binding is specific). The
number of targets for each TF ranges from 18-54 for
the alpha factor arrest data set, 12-50 for the cdc15
dataset, 1-21 for the cdc28 dataset, and 19-65 for the
ELU data set. A negative control non-target set is con-
structed for each TF that includes all genes with sig <1
(p > 0.1). This set consists of over 3,000 genes for each
TF in the alpha factor and cdc15 datasets, over 875 for
each TF in the cdc28 dataset, and over 4,000 for each
TF in the ELU dataset.

Phase locking analysis
We adopt the analytic signal concept [31] to derive the
phase of an arbitrary signal. Briefly, given a time series s
(t), its Hilbert transformation [31,56] is given by

s t
s t

t
dH( )

( )=
−−∞

∞

∫1
 

PV (2)

where PV stand for Cauchy Principal Value of the
integration [57]. The corresponding analytical signal can
then be constructed

s t is t A t eH
i t( ) ( ) ( ) ( )+ =  (3)

where the instantaneous phase � (t) is thus uniquely
determined. � (t) calculated this way can be sensitive to
low-frequency trends [31]. We used Matlab’s detrend
function to remove low frequency trends in data, and
the following string of commands to obtain the instanta-
neous phase for the time series of each gene gj(t):
[31,58].

 j jt g t( ) ( ( ( ( ( ))))= unwrap angle Hilbert detrend (4)

For two time series with instantaneous phase �i(t) and
�j(t), their cyclic relative phase is determined by

Ψ( ) ( ( ) ( )) ( )t mod= −  i jt t 2

If two time series interact with each other resulting in
phase locking, Ψ = Ψ0 is a constant. On a Poincare
phase map this will be represented by a stable fixed
point. For noisy time series the phase difference is in
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general not a constant but distributes around Ψ0 : |Ψ -
Ψ0 | <const , where Ψ0 is the average relative phase
shift, and the significance of phase locking can be
assessed in the statistical sense [31]. The phase locking
can be a general (m:n ) locking, with

Ψ m n t mod, ( ) ( ( ) ( )) ( )= −m t n ti j  2 (5)

constrained around a constant value Ψ0, where m and
n are integers.
To evaluate the significance of phase locking, we uti-

lize the circular mean of the phase difference

m n

N l

N

l

i t

i t
t

, ,

,

exp ( )

exp ( )

= 〈 ( )〉

=
⎛

⎝
⎜

⎞

⎠
⎟ ( )⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=∑

Ψ

Ψ

m n

m n
1

1

(6)

In a perfect locking l m, n = |exp(iΨ0)| = 1, and l m, n

® 0 when Ψm,n(t) is randomly distributed.
The mean relative phase Ψ0 is calculated by

Ψ Ψ

Ψ

0

1

1
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⎠
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arg ( ) exp ( )

,

,

i t

i t
t N l
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l

m n
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(7)

where arg is a mathematical function operating on
complex numbers and gives the angle. Note that the
value of lm, n is not affected by the value of the relative
phase difference Ψ0 ; the two time series can have any
amount of phase lag.
In this study, we considered locking with Max{m, n}

up to 4, and define the final phase locking index to be

 = =max{ , , , , , },m n m n 1 2 3 4 (8)

Here max is used because the two genes are consid-
ered phase locked if the value of anyone of the l m, n’s,
is high. We do not think there is a need to consider
higher order than 4 due to the limited number of time
points in these datasets, and the noise in microarray
data. In addition, higher order locking is less common
and probably unstable in the presence of noise [59]. We
have also investigated several other measures of phase
locking, including the Shannon’s entropy and the inten-
sity of the first Fourier mode of the distribution of Ψm,

n, [31]. No significant difference in predictions was
found. Therefore, in this study we will only report the
results of l.

Network modeling
To construct interaction networks, we define the phase
locking adjacency matrix (Ai, j) by

Aij
ij

ij
=

≥
<

⎧
⎨
⎪

⎩⎪

1

0
0

0

,

,

 
 

(9)

Where l 0 is a threshold. The network degree of each
gene i thus can be calculated by ki = ∑j Aij. In this
study, l 0 is chosen to be μ + 2s (i.e. Z-score = 2),
where μ and s are the mean standard deviation of l
between random gene pairs. Namely, gene pairs with
the value of their phase locking index at least two stan-
dard deviations above mean of all pairs are considered
significantly phase locked. In the 4 yeast cell cycle data
sets, l 0 ~0.75 - 0.80. When we compare phase locking
networks with the networks predicted using the correla-
tion coefficient r, a same Z = 2 cutoff was used.
The topological overlapping matrix is defined follow-

ing the same strategy as in [60], by

T n n
i j

i j

ij

il jl ij
l

i j ij
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,

,
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(10)

where ni = ∑j l ij is the node connectivity. T measures the
sharing of first degree phase locked neighbors, and is
designed to identify the modular structure in interaction
networks. Hierarchical clustering is then performed using Tij

as the similarity measure to identify the network modules.

Additional material

Additional file 1: TF-target pairs with high phase locking index.

Additional file 2: Phase lagged BioGRID examples. Examples of
BioGRID pairs that are phase locked in their expression time series, but
with low time-lagged correlation. The maxim absolute values of lagged
correlation are calculated with time lags from -4 to 4. This clearly shows
that time-lagged correlation failed to capture the association when the
time lag is not an integral number of sampling step in the experiment.

Additional file 3: Number of m:n phased locked cell cycle gene
pairs (TF-target pairs) at different values of m and n.

Additional file 4: Examples of 1:2 lock phase locked cell cycle gene
pairs. The top 16, max{m, n} = 2, phase locked cell cycle gene pairs from
the cdc15 arrest dataset. (A) When the original expression profiles of the
locked pairs are presented, phase locking is not immediately visible. (B).
When the frequency of one partner is doubled, phase locking is evident.
All pairs have low l 1,1(< 0.13,) or r(< 0.35).

Additional file 5: Examples of 1:2 phase locked TF-target pairs.
Expression profiles of the top five 2:1 phase locked Swi5-target pairs in
the cdc28 dataset. Top panel: original expression profiles. Dashed line:
Swi5; Solid line: target genes; Bottom panel: The frequency of the Swi5
profile has been doubled. For all pairs, l 2,1 > 0.77, l 1,1 < 0.2, and r <
0.45.

List of abbreviations used
AUC: area under curve; CDF: Cumulative Distribution Fraction; GO: Gene
Ontology; KS test: Kolmogorov-Smirnov test; OR: odds ratio; ROC: receiver
operating characteristic; TF: transcription factor.
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