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Abstract 

Background:  Amniotic fluid (AF) provides vital information on fetal development, which is also valuable in iden-
tifying fetal abnormalities during pregnancy. However, the relationship between the metabolic profile of AF in the 
second trimester of a normal pregnancy with several maternal–fetal parameters remains poorly understood, which 
therefore limits its application in clinical practice. The aim of this study was to explore the association between the 
metabolic profile of AF with fetal gender, maternal age, and gestational week using an untargeted metabolomics 
method.

Methods:  A total of 114 AF samples were analyzed in this study. Clinical data on fetal gender, maternal age, and 
gestational week of these samples were collected. Samples were analyzed by gas chromatography/time-of-flight-
mass spectrometry (GC-TOF/MS). Principal component analysis(PCA), orthogonal partial least square discrimination 
analysis(OPLS-DA) or partial least square discrimination analysis (PLS-DA) were conducted to compare metabolic 
profiles, and differential metabolites were obtained by univariate analysis.

Results:  Both PCA and OPLS-DA demonstrated no significant separation trend between the metabolic profiles of 
male and female fetuses, and there were only 7 differential metabolites. When the association between the maternal 
age on AF metabolic profile was explored, both PCA and PLS-DA revealed that the maternal age in the range of 21 to 
40 years had no significant effect on the metabolic profile of AF, and only four different metabolites were found. There 
was no significant difference in the metabolic profiles of AF from fetuses of 17–22 weeks, and 23 differential metabo-
lites were found.

Conclusions:  In the scope of our study, there was no significant correlation between the AF metabolic profile and 
the fetal gender, maternal age and gestational week of a small range. Nevertheless, few metabolites appeared dif-
ferentially expressed.
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Background
Amniotic fluid (AF) is the fluid that surrounds the fetus 
in the amniotic cavity, which plays a key role in pro-
tecting and providing nutrients to the fetus. Numerous 
studies have shown that AF contains DNA, RNA, and 
metabolites that have vital biological functions in fetal 
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development, which can be used to identify any fetal 
developmental abnormalities [1–3].

Metabolomics is a rapidly advancing field in research 
and clinical applications following genomics, transcrip-
tomics, and proteomics [4]. The concept of metabo-
lomics was firstly proposed and defined by Nicholson 
et  al. [5] as “the quantitative measurement of the 
dynamic multiparametric metabolic response of liv-
ing systems to pathophysiological stimuli or genetic 
modification”. It explores the changes of endogenous 
small molecule metabolites(< 1000  Da), such as amino 
acid, carbohydrate, and organic acid upon the inter-
action with factors including heredity, environment, 
diet, drugs, disease, etc. [6, 7]. In the case of organ-
isms, DNA, RNA and proteins are the material basis 
of biological events or processes, but the event may or 
may not occur, and the presence of metabolites reflects 
what has already happened in the course of life. There-
fore, the metabolome is more reflective of a person’s 
phenotype.

Metabolomics can be divided into targeted and non-
targeted metabolomics according to the pertinence of 
detection methods. Targeted metabolomics accurately 
determines specific or several metabolites with similar 
properties, while untargeted metabolomics conducts 
a systematic and comprehensive analysis of the entire 
metabolome of an organism without bias, thus obtain-
ing substantial small-molecule metabolite data [8, 9]. 
Common detection methods include nuclear mag-
netic resonance(NMR), liquid chromatography mass 
spectrometry(LC–MS) and gas chromatography-mass 
spectrometry(GC–MS) [10]. Numerous types of sam-
ples can be analyzed by metabolomics, including blood, 
urine, amniotic fluid, stool, tissue, cells, dried blood spot, 
etc. [11–14]. In recent years, metabolomics has helped in 
making remarkable advancements and achievements in 
many fields, including biomarker screening, disease diag-
nosis, determining disease pathogenesis, and drug devel-
opment [15, 16].

Studies have shown that the composition of metabolites 
in biological samples may be influenced by factors such 
as gender, age, diet, lifestyle, environmental, etc. [17–20]. 
Considering this, AF as a biological sample undergoes 
changes throughout the gestational week as the fetus 
develops. However, to date, few studies have examined 
the factors affecting the metabolomics of AF. The study 
by Orczyk-Pawilowicz et  al. [21] demonstrated that the 
AF during the transition from the 2nd (15.4 ± 0.96 weeks) 
to the 3rd (37.7 ± 1.68  weeks) trimester was associated 
with elevated levels of creatinine, succinate, pyruvate, 
choline, N,N-dimethylglycine, and urocanate, while a 
reduction in the levels of amino acids, glucose, and car-
nitine was observed. However, the impacts of gestational 

week, fetal gender and maternal age on AF metabolic 
profile warrant further exploration.

In this study, untargeted metabolomics based on GC-
TOF/MS was applied to explore the relationship between 
fetal gender, maternal age, and gestational week with the 
metabolic profile of AF in the second trimester, in order 
to identify potential influencing factors that may pro-
vide a foundation for further AF-related metabolomics 
research in the future.

Methods
Samples
From January 2012 to December 2018, a total of 1,859 
AF samples were collected prospectively, from pregnant 
women of similar ethnic backgrounds in the Jiangsu Prov-
ince. These were residual AF following clinical molecular 
diagnostic tests in our prenatal diagnostic center, which 
were stored at -800C. Of these, 114 AF samples were 
selected for this study, with the inclusion criteria as fol-
lows: singleton pregnancy; amniocentesis performed 
due to advanced age or high risk for Down’s Syndrome 
following a serological screening in the second trimester 
of pregnancy; analysis of AF showed normal karyotypes; 
and no abnormality was identified after birth during the 
postnatal follow-ups. AF samples were excluded if they 
were from pregnant women with pregnancy-related dis-
orders, such as hypertension and diabetes.

Chemical materials and instruments for untargeted 
metabolomics
Pyridine, methoxyamine HCl, anhydrous sodium sulfate, 
and fatty acid methyl ester standards (C7–C30, FAMEs) 
were purchased from Sigma-Aldrich (St. Louis, MO, 
USA), while N-methyl-N(trimethylsilyl)trifluoroaceta-
mide (MSTFA) with 1% (vol/vol) trimethylchlorosilane 
(TMCS), dichloromethane, hexane, chloroform, metha-
nol (Optima LC–MS), acetonitrile (Optima LC–MS) 
and acetone were purchased from Thermo-Fisher Scien-
tific (FairLawn, NJ, USA). Ultrapure water was obtained 
through a Milli-Q reference system (Millipore, Billerica, 
MA, USA). GC-TOF/MS (Pegasus HT, Leco Corp., St. 
Joseph, MO, USA) was equipped with an Agilent 7890B 
gas chromatography, a Gerstel multipurpose sample 
MPS2 (Gerstel, Muehlheim, Germany), and a Rxi-5  ms 
capillary column (30 m × 250 μm i.d., 0.25 μm film thick-
ness, Restek Corporation, Bellefonte, PA, USA).

Sample processing
The frozen AF samples stored at -80  °C were thawed 
on ice. Then, they were mixed well and centrifuged at 
1,000 g for 3 min at 4 °C. Each 100 μL of AF sample was 
aliquoted into a pre-cooled Eppendorf tube and 10 μL of 
the internal standard solution was added. For metabolite 
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extraction, each 200 μL of pre-cooled methanol: chloro-
form (3:1, v/v) was used. After centrifugation (13,000 g, 
20  min, 4  °C), the supernatant was transferred into an 
auto-sampler vial (Agilent Technologies, Foster City, CA, 
USA). Quality control (QC) samples were prepared by 
mixing the remaining supernatant from each AF sample. 
To remove the chloroform solvent, all the samples were 
centrifuged for 5 min in a vacuum centrifuge concentra-
tor (Labconco, Kansas City, MO, USA), and then trans-
ferred to a freeze dryer (Labconco, Kansas City, MO, 
USA) and completely lyophilized. Dichloromethane was 
added to ensure complete dryness of the samples, fol-
lowed by high-purity nitrogen (Parker Balston, Lancaster, 
NY, USA) filling in the dried powder at room tempera-
ture. Untargeted metabolite analysis was performed on 
the XploreMET platform (Metabo-Profile, Shanghai, 
China). Briefly, 50 μL of methoxyamine (20  mg/mL in 
pyridine) was added to each dried sample at 30 °C for 2 h 
and then mixing with 50 μL of MSTFA (1% TMCS) con-
taining FAMEs at 37.5 °C for 1 h.

Chromatographic conditions
Helium (99.9999%) was used as the carrier gas at the con-
stant flow rate of 1.0 mL/min. The injection volume was 1 
μL, and the injection and transfer interface temperatures 
were both at 270 °C. The GC temperature programming 
was set to 2 min of isothermal heating at 80 °C, followed 
by 12  °C/min oven temperature ramps at 80–300  °C, 
4.5 min at 300 °C, 40 °C/min at 300–320 °C, and 1 min of 
final maintenance at 320 °C.

Mass spectrometry conditions
In the full scan mode (m/z 50–500), metabolites were 
measured using electron impact ionization (70 eV), and 
the ion source was set at 220 °C. The acquisition rate was 
25 spectra/s, and the mass range was 50–500 Da.

Data analysis
Peak picking, automated baseline denoising, deconvolu-
tion, and signal alignment were processed by XploreMET 
3.0 software [22, 23]. Each data set was transformed into 
the comparable data vectors, and MetaboAnalyst 5.0, an 
open software, was used for multivariate statistical analy-
sis, including the PCA, OPLS-DA and PLS-DA. PCA is 
an unsupervised classification model, which continuously 
reduces the dimensions of multi-dimensional data into 
several main components (PCs) to describe the charac-
teristics of the original data to the furthest extent possible 
[24]. On the other hand, the PLS-DA model and OPLS-
DA model are supervised classification models, which 
can maximize the differences between groups accord-
ing to the predefined classification and achieve a better 
separation effect than PCA [25]. However, supervised 

analytical models may produce the phenomenon of over-
fitting [26]. There are two parameters, R2Y and Q2 in the 
model, of which R2Y measures the goodness of fit and Q2 
measures the predictive ability of the model. The closer 
these two values are to 1, the more exemplary the model, 
with Q2 > 0.5 indicating good predictability [27]. A nega-
tive value of Q2 indicatesthe overfitting of the model, sug-
gesting no significant difference between the groups [28]. 
Univariate statistical analysis was performed using SPSS 
22.0 software (IBM, USA), and P < 0.05 was considered 
statistically significant.

Results
Association between fetal gender and AF metabolic profile
The demographics including the number of AF samples, 
maternal age range, and gestational week range based 
on gender were outlined in Table 1. A total of 64 mater-
nal AF samples of female fetuses and 50 male fetuses 
were included. For the female and male fetal groups, the 
medians of the gestational week were both at 20 (17–24) 
weeks, while the maternal age was at 31.92 ± 5.20 and 
31.00 ± 5.65  years, respectively. When comparing the 
2 groups, there were no statistically significant differ-
ences in the gestational week (P = 0.80) and maternal age 
(P = 0.25).

In an unsupervised PCA analysis model, there was no 
significant trend of separation of the metabolic profiles 
between the female and male fetal groups (Fig. 1A). The 
OPLS-DA model showed a trend of separation between 
the two groups, but the parameter Q2 value was -0.224, 
indicating that this trend of separation was attributed to 
the overfitting of the models rather than the difference in 
the gender groups (Fig. 1B). These findings suggested no 
significant association between the difference in the fetal 
gender and the total metabolic profile of AF.

A total of 265 metabolites were detected in the amni-
otic fluid, of which 178 were successfully identified. Of 
these, the proportions of amino acids, organic acids, car-
bohydrates, nucleotides, lipids, indoles, fatty acids and 
others were 30%, 25%, 19%, 7%, 3%, 3%, 3%, and 10%, 
respectively.

Univariate analysis revealed 7 differently expressed 
metabolites between the two groups, including isoleu-
cine, 3-aminoisobutanoic acid, ribonolactone, fructose 

Table 1  Demographic characteristics of subjects in studying the 
effect of fetal gender on AF metabolic profile

Subject characteristics Female Male P-value

Number of samples(n) 64 50

Gestational week, median 20(17 ~ 24) 20(17 ~ 24) 0.800

Maternal age (years),‾x ± SD, 31.92 ± 5.20 31.00 ± 5.65 0.250
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6-phosphate, citric acid, phosphoenolpyruvic acid, and 
hypoxanthine (Table 2).

Association between maternal age and AF metabolic 
profile
The demographics including the number of AF sam-
ples, fetal gender composition, and gestational week 
range based on the maternal age were outlined in 
Table  3. AF samples were categorized into 4 groups 
of maternal ages, including 21–25  years, 26–30  years, 
31–35 years and 36–40 years, with the numbers of AF 
samples in each group were 16, 37, 33 and 19, respec-
tively, while the numbers of female/male fetuses were 
8/8, 19/18, 20/13 and 11/8, respectively, with no sig-
nificant difference between the groups. Similarly, no 
significant difference was demonstrated in the medi-
ans of the gestational week between the groups, which 
were 19.5 (17–24) weeks, 20 (18–24) weeks, 20 (17–23) 
weeks and 20 (18–23) weeks, respectively.

PCA was performed to explore the differences in 
the metabolic profile between the four groups, which 
showed no significant trend of separation (Fig.  2A). 

Similar findings were observed when the PLS-DA 
model was performed (Fig.  2B). The model parameter 
Q2 value of the first three components was-0.22 and 
the P-value of the permutation test of the model was 
0.54. These findings indicated that maternal age had 
no significant influence on the AF metabolic profile. 
Among the 178 metabolites successfully identified, only 
2-hydroxybutyric acid, guanidinosuccinic acid, eryth-
rose and putrescine were significantly different among 
these groups (Table 4).

Association between gestational week and AF metabolic 
profile
A total of 109 samples were selected to explore the 
association between the gestational week and the meta-
bolic profile of AF, as shown in Table  5. There were 3 
gestational week groups, which were 17–18  weeks (12 
cases), 19–20  weeks (67 cases), and 21–22  weeks (30 
cases), with the numbers of female/male fetuses in each 
group were 5/7, 39/28, and 18/12, respectively, the dif-
ference of which between the groups was not statisti-
cally significant. Also, no significant difference was 
demonstrated between the groups in the medians of the 

Fig. 1  Multivariate analysis of the influence of the fetal gender on the AF metabolic profile. A Two dimensional unsupervised PCA analysis; B 
Supervised OPLS-DA, R2Y = 0.340; Q2 = -0.224. A negative Q2 value indicated an over-fitting of the model

Table 2  Differential metabolites of male and female fetuses in the maternal AF

HMDB Human metabolome database, FC Fold change

Class Metabolite HMDB ID Trend in female FC P-value

Amino Acids Isoleucine HMDB0000172 ↑ 1.22 0.040

3-Aminoisobutanoic acid HMDB0003911 ↓ 0.83 0.049

Carbohydrates Ribonolactone HMDB0001900 ↓ 0.42 0.029

Fructose 6-phosphate HMDB0000124 ↑ 1.15 0.043

Organic Acids Citric acid HMDB0000094 ↑ 1.17 0.040

Phosphoenolpyruvic acid HMDB0000263 ↑ 1.17 0.017

Nucleotides Hypoxanthine HMDB0000157 ↓ 1.20 0.018
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maternal age, which were 28.5 (24–42) years, 31 (21- 
42) years, and 31 (24–42) years, respectively.

The PCA revealed no significant separation in the AF 
metabolic profiles among the three gestational week 
groups (Fig.  3A), which were further validated by the 
PLS-DA model with a negative Q2 value (Fig. 3B). These 
findings indicated that gestational week had no sig-
nificant influence on the AF metabolic profile at 17 to 
22 weeks, but had an impact on the level of 23 metabo-
lites, as shown in Table 6.

Discussion
The innovations of chromatography, mass spectrom-
etry, as well as bio-information technology have ena-
bled metabolomics to develop rapidly. Metabolomics 
is a growing field of research especially in liver dis-
ease, cancer, cardiovascular disease, traditional Chi-
nese medicine, and intestinal microbiota. Loomba et al. 
[29] have used metabolomics to evaluate the relation-
ship between dose and therapeutic effect of GS-0976 
in patients with nonalcoholic steatohepatitis (NASH). 
Also, Huang et al. [30] have carried out a large prospec-
tive serum metabolomic research involving 523 cases of 
lethal prostate cancer and an equal number of matched 

controls. In the study, 34 metabolites were associated 
with lethal prostate cancer, in which dipeptide leucyl-
glycine and three gamma-glutamyl amino acids were 
associated with an increased risk of lethal prostate can-
cer. The study by Chen et al. [31] has applied the untar-
geted metabolomics method to examine and compare 
serum samples of untreated black hypertensives treated 
with slow sodium tablets or placebo tablets, and identi-
fied β-hydroxyisovalerate and methionine sulfone were 
significantly increased in the treatment group, indi-
cating that low sodium diet reduces blood pressure. 
In traditional Chinese medicine, studies have applied 
metabolomics to explore the components and pharma-
cokinetics of ginseng [32]. In recent years, research on 
intestinal microorganisms has been popularized. The 
study by Hagan et al. [33] has demonstrated the impor-
tant role of intestinal microorganisms in regulating the 
body’s immunity. All in all, metabolomics is a valuable 
tool for exploring drug efficacy, screening of tumor 
markers, studying of pathological mechanisms, drug 
metabolism and many other aspects.

Metabolomics also has important applications in the 
studies of abnormalities in pregnant women or fetuses 
during pregnancy. Bahado-Singh et  al. [34] have used 
NMR to explore the serum profile of pregnant women 
at 11–13 weeks to predict pre-eclampsia, and the results 

Table 3  Information on fetal gender and gestational week in 
different maternal age groups

Maternal 
age(years)

n Gender 
(female/
male)

P-value Gestational week 
(week), median

P-value

21 ~ 25 16 8/8 0.839 19.5(17 ~ 24) 0.374

26 ~ 30 37 19/18 20(18 ~ 24)

31 ~ 35 33 20/13 20(17 ~ 23)

35 ~ 40 19 11/8 20(18 ~ 23)

Fig. 2  Multivariate analysis of the influence of maternal age on the AF metabolic profile. A Two dimensional unsupervised PCA analysis; B 
Supervised PLS-DA, the Q2 value of the first three components was-0.22. A negative Q2 value indicated an over-fitting of the model

Table 4  Differential metabolites of different maternal age in AF

HMDB Human metabolome database

Class Metabolite HMDB ID P-value

Organic Acids 2-Hydroxybutyric acid HMDB0000008 0.007

Guanidinosuccinic acid HMDB0003157 0.025

Carbohydrates Erythrose HMDB0002649 0.003

Alkylamines Putrescine HMDB0001414 0.047
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demonstrated that a combination of citrate, hydroxyis-
ovalerate, glycerol, and methionine produced a better 
predictive effect (75%). Also, the study by Ciborowski 
et  al. [35] has revealed that serum metabolites in early 
pregnancy could predict the risk of macrosomia. AF is 
crucial to the normal development of the fetus. It sur-
rounds the fetus, which acts as a mechanical buffer to 
balance the external pressure. It also contains a variety 
of nutrients and growth factors that are needed for the 
growth of the fetus [36]. The diversity in the composition 
of the AF provides a good source of research materials, 
providing opportunities for the assessment of fetal matu-
rity, disease diagnosis, the discovery of biomarkers, etc. 
[37–39]. Therefore, scientific research on the composi-
tion of AF is greatly warranted by applying untargeted 
metabolomics. It is recognized that the composition of 
the AF changes with the growth of the fetus, but at pre-
sent, little is known regarding the factors that affect the 
composition of the AF. In this study, we have applied an 
untargeted metabolomics method to identify as many 
minute molecular metabolites as possible in a selected 
cohort of AFs. Our findings revealed that the main 
metabolites in AF were amino acids, followed by organic 
acids, carbohydrates and fatty acids, which provided fur-
ther insight into the composition of the AF. Nevertheless, 

the effects of several factors such as the gestational week, 
maternal age and fetal gender on the metabolic composi-
tion of AF remained inadequately understood.

Following the analysis of AF metabolic profile using 
an untargeted metabolomics approach, the findings 
were correlated with factors including fetal gender, 
maternal age, and gestational week. We found that 
there was no significant correlation between the AF 
metabolic profile and differences in the fetal gender, 
maternal age and gestational week within a small range 
of maternal age (21 to 40  years) and gestational week 
(17 to 22  weeks). However, several metabolite levels 
were affected. Our findings were consistent with the 
study by Graca et al. [40] that examining AF metabo-
lism using Nuclear Magnetic Resonance (NMR) spec-
troscopy on 51 AF samples. Additionally, our findings 
revealed the metabolites that may be influenced by 
these three factors. Furthermore, the study by Orczyk-
Pawilowicz et al. [21] has demonstrated the differences 
in the AF metabolic profile between the second and 
third trimester of pregnancy, suggesting that the ges-
tational week may affect the constitutions of the AF if 
gestational week varies greatly. All in all, the influence 
of gestational week on the metabolic profile of AF is 
dependent on the range of gestational week.

There were several limitations to our study. Firstly, 
maternal BMI may influence the metabolic profile of 
AF but this was not explored. Secondly, sample sizes 
were small for several subgroup analyses. Nevertheless, 
our findings provide a basis for further research, which 
will shed light on how these factors may influence the 
AF metabolic profile and will generate opportunities 
for clinical application.

In summary, this study correlated the AF meta-
bolic profile with several factors including detailed 

Table 5  Information on fetal gender and maternal age in 
different gestational week groups

Gestational 
week (week)

n Gender 
(female/
male)

P-value Maternal age 
(year), median

P-value

17 ~ 18 12 5/7 0.522 28.5(24 ~ 42) 0.812

19 ~ 20 67 39/28 31(21 ~ 42)

21 ~ 22 30 18/12 31(24 ~ 42)

Fig. 3  Multivariate analysis of the influence of the gestational week on the AF metabolic profile. A Two dimensional unsupervised PCA analysis; B In 
the PLS-DA model, the Q2 value of the first three component was -0.14. A negative Q2 value indicated an over-fitting of the model
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classifications of the gestational week, maternal age, 
and fetal gender. A small range of maternal age or 
gestational week did not significantly affect the AF 
metabolic profile but impacted several metabolite 
expressions. Gestational week, maternal age and fetal 
gender may affect the expression of some metabolites 
and thus, correlation of these factors in clinical studies 
is paramount. This study demonstrates a new approach 
in analyzing the metabolites in AF that guides the fur-
ther study of biomarkers in pregnancy-related diseases.
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