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Abstract

The high diversity of Neotropical fishes has been attributed to major South American

palaeogeographic events, such as Andean uplift, rise of the Isthmus of Panama and marine

transgressions. However, the unavailability of temporal information about evolution and

diversification of some fish groups prevents the establishment of robust hypotheses about

correlations between species diversification and proposed palaeogeographical events. One

example is the Anablepidae, a family of teleost fishes found mostly in coastal habitats of

Central and South America, but also in some inner river basins of South America. Historical

aspects of the distribution patterns of the Anablepidae were never analysed and no accurate

estimation of time of its origin and diversification is presently available. A multi-gene analysis

was performed to estimate Anablepidae phylogenetic position, age and biogeography, com-

prising seven nuclear genes. The suborder Cyprinodontoidei was recovered in three major

clades, one comprising all the Old World Cyprinodontoidei and two comprising New World

lineages. Anablepidae was recovered as the sister group of the New World Poeciliidae, with

the Amazonian genus Fluviphylax as their sister group. The ages found for the origin and

diversification of Cyprinodontiformes were congruent with the pattern recorded for other ver-

tebrate groups, with an origin anterior to the Cretaceous-Paleogene (K-Pg) transition and

diversification during the Paleogene. The age estimated for the split between the Atlantic

and Pacific lineages of Anableps was congruent with the rise of Panamanian Isthmus. The

results suggest Miocene marine transgressions as determinant to the current distribution of

Jenynsia.

Introduction

The family Anablepidae is a group of cyprinodontiform fishes comprising three recent genera,

Anableps Scopoli, 1777, Jenynsia Günther, 1866 and Oxyzygonectes Fowler, 1916, commonly

known as four-eyed fishes, one-sided livebearers, and white-eye, respectively [1]. Two species
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of Jenynsia and all those included in Anableps and Oxyzygonectes live in coastal salt-water or

brackish-water habitats, whereas the remaining 12 species of Jenynsia inhabit freshwaters [2, 3,

4, 5, 6].

Regarding the fossil record, a monotypic extinct genus, Carrionellus White, 1927 from the

Early Miocene of Loja, Ecuador, was first described as a member of the Cyprinodontidae [7],

and later transferred to Anablepidae species [2]. However, after a detailed analysis of the type

series of Carrionellus diumortuus White, 1927, the genus was then realocated in the Cyprino-

dontidae family [8]. In a recent study two new monotypic genera from Middle Miocene of

Northern Argentina were described in the family Anablepidae, Tucumanableps Sferco, Herbst,

Aguilera & Mirande, 2017, recovered as the sister group of Anableps, and Sachajenynsia Sferco,

Herbst, Aguilera & Mirande, 2017, the sister of all other genera of Anablepidae except Oxyzy-
gonectes [9].

Species of Anableps exhibit one of the oddest adaptations among Cyprinodontiformes,

comprising prominent eyes that rise above their heads, with horizontally divided pupils with

an hourglass-like shape. This unique eye morphology allows them to simultaneously see aerial

and aquatic environments when swimming with the middle line of the eye at the water surface

[10]. These unusual morphological and behavioural traits attracted attention since the first

European travellers arrived in America, so records of Anableps date from the early 17th cen-

tury [11], more than 150 years prior to the formal description of the first species of the genus

[12]. The complexity of their eye makes these animals important organisms for studies of

embryogeny and gene expression (e.g. [13, 14, 15]). Furthermore, due to the presence of a

modified anal fin of males in a tubular gonopodium and a placenta-like tissue in females,

which together allow internal fertilization and viviparity [16, 17], Anableps and Jenynsia are

also models of studies involving reproduction and ontogeny (e.g. [18, 19, 20]).

The geographical distribution of Anablepidae is restricted to Neotropical areas (Fig 1): Oxy-
zygonectes is a monotypic genus found in the Pacific coast of Central America; Anableps com-

prises three species inhabiting both the Pacific coast of Central America and the Atlantic coast

Fig 1. Geographical distribution of the genera of Anablepidae. Oxyzygonectes in red, Anableps in yellow and Jenynsia in green.

https://doi.org/10.1371/journal.pone.0199201.g001
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of northern South America; and Jenynsia, the most species diverse genus of Anablepidae, com-

prising 14 species inhabiting the Paraná-Paraguay river system and coastal drainages of south-

eastern South America [2, 4, 21]. However, biogeographical historical events responsible for the

present distribution of the Anablepidae were never deeply explored [2]. Previous authors dis-

cussed the distribution of Anableps which could be related to the rise of the Panama Isthmus or

ancient events, but no conclusion was proposed [1, 2, 5]. Jenynsia presents a huge disjunct dis-

tribution when compared to other anablepid genera (Fig 1), but there is no available explanation

for this distribution pattern based on analytical tools for biogeographical inference. Here we

first provide a time-calibrated multi-gene phylogeny of the Anablepidae, discussing two possible

past historical scenarios that have shaped the present distribution of the main Anablepidae

components: (1) invasion of the most recent common ancestor into the Amazon basin through

Miocene marine transgressions followed by dispersion to south through ancient connections

between the Amazon and Paraná river basins or (2) a dispersion along the eastern South Amer-

ica coast with an invasion to the freshwater habitats in the mouth of the La Plata river, during

Miocene, through marine transgression forming the Paranean Sea.

Age estimates for the Anablepidae and other Neotropical cyprinodontoid groups are still

uncertain. Previous studies proposed the origin of the clade comprising Anablepidae and Poe-

ciliidae (sensu [1]) dating back to the Lower Cretaceous (130–110 Ma), before separation

between Africa and South America [22, 23, 24], but a recent time-calibrated analysis [25] esti-

mated the origin of Poecilinae and Anablepidae clade between the Upper Cretaceous and the

Early Palaeocene (62–67 Ma). In the current study, we analysed the largest dataset of genetic

information for Anablepidae to test its phylogenetic position among the Cyprinodontoidei

and to estimate time of origin and diversification of the family and their genera using three cal-

ibrating points based on well-known cyprinodontoid fossils.

Materials and methods

Taxonomic sampling, DNA extraction, PCR, and sequencing

A total of 82 terminal taxa were used, including one species of Beloniformes, the sister group to

Cyprinodontiformes (e.g. [26, 27]), in which the analyses were rooted, and 81 species of Cyprino-

dontiformes, among which are represented all species of Anableps and Oxyzygonectes, and eight of

the 14 species of Jenynsia. Molecular data were obtained from specimens euthanized with buffered

solution of ethyl-3-amino-benzoat-methansulfonat (MS-222) at a concentration of 250 mg/l, for a

period of 10 minutes or more, until completely ceasing opercular movements, following the meth-

ods for euthanasia approved by CEUA-CCS-UFRJ (Ethics Committee for Animal Use of Federal

University of Rio de Janeiro; permit number: 01200.001568/2013-87). These individuals were

fixed and preserved in absolute ethanol. The dataset was complemented with sequences obtained

from GenBank, a complete list of taxa used in the analysis is presented in S1 Table. Seven nuclear

genes were sampled: ectodermal-neural cortex (ENC1), glycosyltransferase (GLYT), cardiac mus-

cle myosin heavy chain 6 alpha (MYH6), recombination activating gene 1 (RAG1), rhodopsin

(RHO), SH3 and PX domain-containing 3-like protein (SH3PX3) and tyrosine kinase exons 8–10

and introns 8–9 (X-SRC). The introns of X-SRC were excluded due to the high degree of variabil-

ity found, which produce highly ambiguous alignments.

Total genomic DNA was extracted from muscle tissue of the right side of the caudal pedun-

cle using the DNeasy Blood & Tissue Kit (Qiagen), according to the manufacturer instructions.

To amplify the fragments of the DNA, the primers provided in the S2 Table were used. Poly-

merase chain reactions (PCR) were performed in 30μl reaction mixtures containing 5x Green

GoTaq Reaction Buffer (Promega), 3.2 mM MgCl2, 1 μM of each primer, 75 ng of total geno-

mic DNA, 0.2 mM of each dNTP and 1U of Taq polymerase. The thermocycling profile was:
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(1) 1 cycle of 4 minutes at 94˚C; (2) 35 cycles of 1 minute at 92˚C, 1 minute at 50–63˚C and 1

minute at 72˚C; and (3) 1 cycle of 4 minutes at 72˚C. In all PCR reactions, negative controls

without DNA were used to check contaminations. Amplified PCR products were purified

using the Wizard SV Gel and PCR Clean-Up System (Promega). Sequencing reactions were

made by Macrogen Inc. (South Korea) using the BigDye Terminator Cycle Sequencing Mix

(Applied Biosystems). Cycle sequencing reactions were performed in 10 μl reaction volumes

containing 1 μl BigDye 2.5, 1.55 μl 5x sequencing buffer (Applied Biosystems), 2 μl of the

amplified products (10–40ng), and 2 μl primer. The thermocycling profile was: (1) 35 cycles of

10 seconds at 96˚C, 5 seconds at 54˚C and 4 minutes at 60˚C. The sequencing reactions were

purified and denatured and the samples were run on an ABI 3130 Genetic Analyzer. Sequences

were edited using MEGA 6 [28] and aligned using ClustalW [29]. The DNA sequences were

translated into amino acids residues to test for the absence of premature stop codons or indels

using the program MEGA 6.0.

Phylogenetic analysis

The dataset was analysed in the program PartitionFinder [30] to determine the best partition-

ing scheme and nucleotide substitution models. The optimal partition strategy is shown in S3

Table. The phylogenetic analyses were performed in the programs Garli 2.0 [31], for Maxi-

mum Likelyhood (ML) and MrBayes 3.2.6 [32], for Bayesian inference (BI). The support values

of the ML analysis were calculated by 1000 bootstrap replications [33]. For BI analysis, four

independent Markov Chain Monte Carlo (MCMC) were performed with 30 million genera-

tions each, sampling one of every 1,000 trees. The support values of the BI analysis are given by

posterior probability. The quality of the MCMC chains was evaluated in Tracer 1.6 [34], and a

25% burn-in was removed.

Divergence-time estimation

The divergence date analyses were performed in Beast v.1.8 [35, 36], using the concatenated

dataset and the same partitions as described above, and a normal uncorrelated relaxed clock

model, which emphasizes the minimum age and has been considered appropriate for fossil cal-

ibration points [37]. Bayesian inference was performed with 30 million generations, a sam-

pling frequency of 1000. The value of parameters of the analysis, convergence of the MCMC

chains, sample size and the stationary phase of the chains were evaluated using Tracer v. 1.6

[34]. A Yule speciation process for the tree prior [38] was used, establishing three calibration

points. The first one was placed at the stem comprising the genera Aphanius and Valencia. It

corresponds to the origin of the crown European cyprinodontoid clade [39], which was esti-

mated to have occurred at least 33 Ma on the basis of the oldest identifiable clade member, the

fossil Prolebias stenoura Sauvage, 1874 from the Lower Stampien (Lower Oligocene) of Puy-

de-Dôme, France [40] (prior setting: lognormal distribution, mean = 33 and standard devia-

tion = 0.5). The second point was the node where Aphanius and Valencia diverge, correspond-

ing to the most ancient record with recognizable synapomorphies of Aphanius, the fossil

Aphanius chebianus (Obrhelová, 1985) of the Ottnangian (Lower Miocene) of the Cheb basin,

Czech Republic ([41]; WJEMC, pers. observ.), with 17 Ma (prior setting: lognormal distribu-

tion, mean = 17 and standard deviation = 0.5). The third point was placed in the divergence

between Anableps and Jenynsia, this position corresponds to the Tucumanableps cionei Sferco,

Herbst, Aguilera & Mirande, 2017. This species is recognised as the sister goup of Anabelps
from the Meddle Miocene of the Rı́o Sali formation, Argentina [9], with 12 Ma (prior settings:

lognormal distribution, mean = 12 and standard deviation = 0.5). The position of each calibra-

tion points is also shown in Fig 2.
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Reconstructing ancestral habitat

An analysis of ancestral states was used to infer possible past habitat scenarios without a priori
assumptions about states relationships [42]. Reconstruction of ancestral states were conducted

in the program RASP 3.02 [43] using the analytical approach Bayesian Binary MCMC (BBM)

[44]. The analysis was directed to historical pattern of habitats, based on: (A) freshwater and

(B) brackish water.

Results

Phylogenetic relationships

The analyses of BI and ML (Fig 3) presented identical topologies and high supports for most

nodes. Both suborders of Cyprinodontiformes, Cyprinodontoidei, and Aplocheiloidei, were

recovered with high support values. Three main clades were found in Cyprinodontoidei, here

referred as clades A, B and C, clades A and C comprising New World taxa and clade B

restricted to Old World taxa (Fig 3). Both analyses did not recover Poeciliidae (sensu [1]) as

monophyletic, with their taxa appearing in three unrelated lineages: one, including African

procatopodines as part of the Old-World clade B, and two, comprising the subfamily Poecilii-

nae and the Amazonian genus Fluviphylax as unrelated parts of the New World clade A (Fig

3). The analyses highly supported Anablepidae as sister to the internal fertilizing family Poeci-

liidae (sensu [45]), as well as a clade containing Anablepidae, Poeciliidae, and Fluviphylax
(clade A). In Anablepidae the genus Oxyzygonectes was recovered as the sister group of Ana-
bleps and Jenynsia, and both subgenera of Jenynsia were also corroborated [2].

Time-calibrated analysis

The Beast 1.8.3 time-calibrated analysis is shown in Fig 2. Divergence times and their esti-

mated 95% highest posterior density (HPD) intervals place the origin of Cyprinodontiformes

in the Upper Cretaceous (77.6 Ma). Subsequent diversification of Cyprinodontoidei in the

clades A, B and C occurred in Eocene (between 41.4–37.2 Ma). The currently recognised fami-

lies originated between Eocene and Miocene (38.1–19.6 Ma).

Reconstructing ancestral habitat

The reconstruction of ancestral habitats recovered the ancestor of Anablepidae as a brackish

water species (Fig 4). In the genus Jenynsia, the BBM analysis recovered the most recent com-

mon ancestor as a freshwater species, a condition kept in derived lineages, except in the clade

comprising J. lineata and J. darwini, wherein the analysis recovered the ancestor inhabiting

brackish waters.

Discussion

Phylogenetic relationships of Anablepidae

The present study is congruent with most recent analyses of Cyprinodontiformes (e.g. [25, 39,

45]), where Poeciliidae (sensu [1],) is not corroborated. Similarly, the phylogenetic analyses

recovered three unrelated clades, presently receiving family status, Fluviphylacidae, Poeciliidae

and Procatopodidae [45] (Fig 3). Once again, the African clade Procatopodidae was recovered

as the sister group of a clade comprising Valenciidae and Aphaniidae [39, 45, 46], composing

the Clade B, and the New World lineages Poeciliidae and Fluviphylacidae, recovered in the

Clade A along with the Anablepidae (Fig 3). The proposed sister group relationships between

Anablepidae and Poeciliinae have been reported since the first molecular phylogenetic
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Fig 2. Time-calibrated analysis performed in Beast 1.8.3. Black circles indicate the position of the calibrations used.

Bars represent the 95% highest posterior credibility intervals of divergence times.

https://doi.org/10.1371/journal.pone.0199201.g002
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analyses of Cyprinodontiformes [25, 47, 48], but the position of Fluviphylax as the sister group

of this clade was only suggested in recent studies [25, 45].

In addition, this study supports relationships among genera of Anablepidae as proposed in

analyses exclusively based on morphological characters [1, 2], with Oxyzygonectes as the sister

group of the clade containing Jenynsia and Anableps.

Timing of origin and diversification of the Anablepidae

In contrast to previous phylogenetic studies where the distribution of the Cyprinodontoidei in

both the New and Old World was assumed to be result of continental drift between Africa and

South America in the Cretaceous [22, 24], the current time-calibrated analysis (see below)

Fig 3. Maximum likelihood (ML) tree. ML tree with the same topology of the Bayesian Inference (BI) tree. Values on the nodes are relative to the Bootstrap of ML and

posterior probability of BI analyses respectively. Asterisks mean maximum values and dashes mean values under 60%.

https://doi.org/10.1371/journal.pone.0199201.g003
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indicated that the whole order Cyprinodontiformes had its origin in the Upper Cretaceous

(77.6 Ma, 95% HPD 106.6–57.0 Ma) and the diversification of the Cyprinodontoidei occurred

in the Eocene (41.4 Ma, 95% HPD 47.0–37.3 Ma), therefore much more recently than the com-

plete separation of Africa and South America (about 100 Ma). The origin of the Cyprinodonti-

formes clade just before the Cretaceous-Paleogene transition (K–Pg), followed by a great

diversification during the Paleogene, is a pattern also found in other animal groups, such as

placental mammals, crocodyliforms, birds and some other groups of teleost fishes (e.g. [49, 50,

51, 52, 53]). The K–Pg event has been associated with a mass extinction event that affected

great part of Earth’s biodiversity, as well as considered as an important event for the subse-

quent diversification of vertebrates [49, 54, 55, 56]. The results of the present analyses and the

biogeographic information previously published for Poeciliidae [25] indicates that the origin

of Anablepidae, and the clade composed by both families, have probably occurred in South

America. The origin of the Anablepidae is here estimated to have occurred during the Oligo-

cene (29.6 Ma, 95% HPD 34.7–24.5 Ma), followed by a split between the oviparous brackish

and marine genus Oxyzygonectes and the clade of viviparous anablepids comprising the brack-

ish and marine genus Anableps and the predominantly freshwater genus Jenynsia (27.9 Ma,

Fig 4. Analysis of evolution of ancestral habitat. BBM analysis based on the Bayesian Inference (BI) tree. Blue indicates

freshwater (A), and yellow indicates brackish water (B). Only Anablepidae is shown.

https://doi.org/10.1371/journal.pone.0199201.g004
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95% HPD 15.0–12.3 Ma), which diverged from each other in the Miocene (12.5 Ma, 95% HPD

28.7–16.2 Ma). The last time estimate is thus temporally congruent with the Miocene marine

transgressions in the Amazon basin [57, 58, 59]. The transition of South American marine fish

lineages to freshwater environments have been associated with Miocene marine transgres-

sions, followed by species diversification in freshwater habitats, as the Pebas Mega-wetland sys-

tem in the Amazon river basin and the Paranean Sea in the Paraná river basin [57, 58]. Those

systems were complex ecosystems with different kinds of habitats, promoting diversification

of vertebrate and invertebrate lineages and adaptation to freshwater environments [60, 61, 62].

More recently an analysis concluded that marine to freshwater transition in South American

drums and pufferfishes was temporally coincident with Miocene marine transgressions in the

Amazon river basin [63]. Considering the result of the BBM analysis and that species of Ana-
bleps and Oxyzygonectes are restricted to coastal marine habitats of Central America and north-

ern South America (Fig 4), we postulate that Jenynsia is a marine-derived lineage, the origin of

the genus is associated with a transition of the ancestor from marine to freshwater environ-

ments favoured by Miocene marine transgressions.

The present analysis found that the current geographical range of species of Jenynsia, (Fig

1) [2, 21], may be a consequence of an invasion to the freshwater environments and subse-

quent dispersal through the Pebas Mega-wetland system, combined with an ancient connec-

tion between the Amazon and Paraná river basins [59, 64, 65]. Despite some divergences [61,

62, 63, 64, 65, 66], most authors agree that this connection lasted until the Late Miocene (11–

10 Ma) [59, 64, 65]. According to the time-calibrated analysis (Fig 2), species diversification of

Jenynsia occurred in the Early Pliocene (4.3 Ma, 95% HPD 5.9–3.0 Ma), after separation of the

Amazon and Paraná river basins. The most recent ancestor of Jenynsia must have dispersed

along this ancient connection and subsequently invading the Paranean Sea, then reaching the

current distribution of the genus, which is partially coincident with the geographical range of

this marine transgression in the Paraná river basin from Middle to Late Miocene [21, 67]. The

diversification of Jenynsia in Early Pliocene (4.6 Ma, 95% HPD 6.5–3.1 Ma) is congruent with

the regression of the Paranean Sea [59, 68], so that the current range of the species of Jenynsia
would be the result of the decrease of this marine transgression, as previously proposed for

some of the species of genus [67]. The present distribution pattern of Jenynsia is also similar to

that found for other aquatic organisms which the distribution is attributed to the Paranean

Sea, including the freshwater Crustacean families Palaemonidae, Sergestidae and Trichodacty-

lidae [69]. Both known fossil genera of Anablepiadae were found in an area previously occu-

pied by the Paranean Sea [9]. The presence of Tucumanableps, the sister group of Anableps,
and Sachajenynsia, the sister group of all genera of Anablepidae except Oxyzygonectes, in this

area also corroborates the ancient connections between Amazon and Paraná river basins. This

also indicates that the ancestors of Jenynsia and other Anablepidea fossil species inhabited

Pebas Mega-wetland and Paranean Sea.The time-calibrated analysis inferred the divergence

between A. dowei, endemic to the Pacific coast of Central America, and the clade comprising

A. anableps and A. microlepis, two species endemic to northern South American coast,

occurred in the Early Pliocene (3.5 Ma, 95% HPD 5.5–2.0 Ma). This age is coincident with the

final stages of the rise of the Panamanian Isthmus [70], as previously suggested [2, 5]. How-

ever, due to the complex geological history of Central America and the absence of time infor-

mation, previously authors argued that this disjunctive distribution pattern could also be

caused by older events. The present time-calibrated analysis is the first to highly supports that

disjunction as a result of the rise of the Panamanian Isthmus.

The only known fossil record of a recent anablepid genus consists of a premaxilla belonging

to an unidentified species of Jenynsia from the Late Pleistocene (230–125 Kyr) of Centinela del

Mar, Argentina [71]. The only extant anablepid species found in this area is J. lineata, for
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which an age of 1.4 Ma (95% HPD 2.4–0.6 Ma; Pleistocene) is herein estimated. Considering

the premaxilla morphology, the site localization, and the fossil age, we conclude that this fossil

probably represents a specimen of J. lineata or an extinct closely related species.
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