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Abstract

One of the major questions in high-density transcranial electrical stimulation (TES) is: given a 

region of interest (ROI) and electric current limits for safety, how much current should be 

delivered by each electrode for optimal targeting of the ROI? Several solutions, apparently 

unrelated, have been independently proposed depending on how “optimality” is defined and on 

how this optimization problem is stated mathematically. The least squares (LS), weighted LS 

(WLS), or reciprocity-based approaches are the simplest ones and have closed-form solutions. An 

extended optimization problem can be stated as follows: maximize the directional intensity at the 

ROI, limit the electric fields at the non–ROI, and constrain total injected current and current per 

electrode for safety. This problem requires iterative convex or linear optimization solvers. We 

theoretically prove in this work that the LS, WLS and reciprocity-based closed-form solutions are 

specific solutions to the extended directional maximization optimization problem. Moreover, the 

LS/WLS and reciprocity-based solutions are the two extreme cases of the intensity-focality trade-

off, emerging under variation of a unique parameter of the extended directional maximization 

problem, the imposed constraint to the electric fields at the non–ROI. We validate and illustrate 

these findings with simulations on an atlas head model. The unified approach we present here 

allows a better understanding of the nature of the TES optimization problem and helps in the 

development of advanced and more effective targeting strategies.
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1. Introduction

Transcranial electrical stimulation (TES) is an emerging therapy for the treatment of 

neuropsychiatric conditions such as clinical depression (Kalu et al., 2012), Parkinson’s 

disease (Boggio et al., 2006), anxiety and chronic pain (Mori et al., 2010). Research has also 

shown that TES can be a valuable therapeutic tool in epilepsy (Yook et al., 2011), stroke 

rehabilitation (Schlaug et al., 2008), and other neurological and psychiatric disorders 

(Brunoni et al., 2013). It has also been extensively studied in the context of enhancing 

cognitive skills such as memory and learning (Nitsche et al., 2003; Berryhill and Jones, 

2012). This technique may eventually become an alternative for psychoactive drugs, as it can 

be more selective than drugs by targeting specific regions of interest in the brain with 

minimal adverse side effects. Even without producing direct neuronal firing, TES 

application is capable of modifying cortical excitability (Priori et al., 1998; Nitsche and 

Paulus, 2000) as well as brain rhythms and networks (Priori, 2003; Lang et al., 2005), and 

this is why the method is also named Transcranial Electrical Neuromodulation (TEN). 

Because the goal is to stimulate the brain, TES is also termed Transcranial Brain Stimulation 

(TBS). If direct or alternating currents are used, TES is termed transcranial direct current 

stimulation (tDCS) or transcranial alternating current stimulation (tACS), respectively. 

Despite recent advances, there are ongoing debates on the clinical effectiveness of TES 

(Horvath et al., 2014, 2015; Antal et al., 2015) addressing many issues still to be resolved, in 

particular, substantial inter-subject response variability (Batsikadze et al., 2013; Wiethoff et 

al., 2014). The general idea is that optimal targeting protocols and the use of subject-specific 

accurate head models might enhance rigor and reproducibility in TES (Bikson et al., 2018).

In TES, electric currents are applied to two or more electrodes placed on the scalp. If the 

number of electrodes is larger than 2, it is called multi-electrode TES. If it is even larger, 

being for instance 32, 64, 128 or 256 like typically arranged in high channel count 

electroencephalography (EEG), it is known as high-density TES. A list of electric current 

levels applied to the head at each electrode is known as a current injection pattern, which 

produces an electric field (or current density) map on the brain that can be considered as the 

actual dose in TES. The computation of this map is based on the electromagnetic physical 

laws and known as the TES forward problem (FP). The TES FP equations are typically 

solved numerically using the finite element method (FEM) (Datta et al., 2013), boundary 

element method (BEM) (Goncalves et al., 2003) or finite difference method (FDM) 

(Turovets et al., 2014).

The inverse problem (IP) goal in high-density TES is to determine current injection patterns 

for optimally targeting a specific region of interest (ROI) within the brain. When solving the 

TES inverse problem, one should address a trade-off between maximizing the electric field 

at the ROI and limiting or minimizing it at the non–ROI while constraining the values of the 

applied currents to meet safety standards. The two common limits for the electric currents 

are: total injected current (or “fixed budget”) and maximum current per electrode. 

Depending on the optimality criteria, several schemes have been proposed leading to 

different optimal solutions.
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Least Squares (LS) and Weighted-LS (WLS) are the simplest and most typical 

optimization methods. The LS solution derives from minimizing a second-order error 

between the resulting and the desired electric field (or current density) profiles at a specific 

domain of interest Ω. Typically, these profiles are non-zero at the ROI part of Ω (ΩROI) and 

zero at the non–ROI part of Ω (Ωnon–ROI). Domain Ω can be any volume that includes the 

ROI and the regions where stimulation should be minimized or limited, such as the brain 

(e.g. Dmochowski et al., 2011; Guler et al., 2016a), the gray matter, or the full head 

(Fernández-Corazza et al., 2016). WLS is similar to LS with the addition of a weight matrix 

that, for instance, can control the intensity-focality trade-off (Dmochowski et al., 2011) or 

incorporate additional a-priori knowledge (Ruffini et al., 2014). If no additional current 

injection limits are imposed, the LS or WLS solutions follow a well-known closed-form 

(Dmochowski et al., 2011; Fernández-Corazza et al., 2016; Salman et al., 2016). One option 

to account for the total current budget constraint without the need of iterative solvers is to 

apply a scaling factor to the closed-form LS/WLS solution (as in Fernández-Corazza et al., 

2016; Dmochowski et al., 2017) here designated as “optimally scaled WLS”. Another option 

is to include the total and per electrode current limits explicitly, and solve the problem using 

an iterative optimization algorithm such as LASSO (Dmochowski et al., 2011) or MATLAB 

convex optimization (Dmochowski et al., 2011). Limiting the number of active electrodes 

was also proposed and solved using genetic algorithms (Ruffini et al., 2014; Otal et al., 

2016) and the branch and bound algorithm (Guler et al., 2016b). The LS based optimization 

was also earlier formulated in the context of multichannel Transcranial Magnetic 

Stimulation (TMS) (Ilmoniemi et al., 1999).

Constrained directional maximization of the electric field (or current density) intensity at 

the ROI along a predefined and desired orientation is another optimization approach. It can 

be numerically solved with convex optimization algorithms such as those included in the 

“CVX: Matlab Software for Disciplined Convex Programming” package (Grant and Boyd, 

2014). In this approach, the functional to be maximized is linear with respect to the 

unknown current injection pattern, thus it requires some limiting constraints to get finite 

solutions. The simplest constraint is to consider only the total current limit (Eq. 17 in 

Dmochowski et al., 2011). Later, Guler et al., (2016a, 2018) and Wagner et al. (2016a) 

included upper bounds for the undesired electric field at Ωnon–ROI and per-electrode current 

limits as additional constraints, constituting an extended directional maximization problem. 

The non–ROI constraints can be either the global integral of the electric field energy (Guler 

et al., 2016a), or the electric field maximum intensity at each point in the space (Wagner et 

al., 2016a) or non–ROI subdomain (Guler et al., 2018).

Reciprocity-based optimization solutions are based on the reciprocity theorem in EEG 

(Rush and Driscoll, 1969; Malmivuo and Plonsey, 1995). In this approach, optimal 

stimulation patterns are derived from the EEG forward projection to the scalp of source 

dipoles artificially placed at the ROI and oriented in the direction of interest (Dutta and 

Dutta, 2013; Ruffini, 2015; Cancelli et al., 2016; Fernández-Corazza et al., 2016; Salman et 

al., 2016). Here, “EEG forward projection” refers to the electric potential on the scalp 

produced by the neuronal sources (typically modelled as electrical dipoles), i.e. the solution 

of the EEG FP. One reciprocity approach is to concentrate the electric current sources and 
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sinks as close as possible to the “poles” of the EEG forward projection (Fernández-Corazza 

et al., 2015, 2016; Guhathakurta and Dutta, 2016). These EEG forward projection poles 

denote the two points on the scalp with the largest electric potential difference. In our 

previous work, we mathematically proved that this strategy maximizes the directional 

electric field at the ROI given a fixed current injection budget (Fernández-Corazza et al., 

2016). Another approach is setting the current injection pattern proportionally to the EEG 

forward projection, either directly or after applying a Laplacian filter (Dutta and Dutta, 

2013; Cancelli et al., 2016), though we found that its performance was not better in any of 

the tested metrics compared to other approaches (Fernandez-Corazza et al., 2017). As the 

reciprocity-based solutions are not iterative, they can be also considered “closed-form” 

solutions.

In this work, we link these three apparently unrelated optimization methods and some of 

their variants resulting in a unified formulation that couples together most optimization 

schemes described so far (see Table 1 for a list of covered methods). As far as we know, the 

links we present here have not been fully noticed previously and they are a major novelty of 

this work. In Section 2, we briefly describe the computational methods for the TES FP. In 

Section 3.1, we describe the details of the constrained directional maximization approaches. 

Then, we theoretically link this iterative approach first to LS and WLS solutions (in Section 

3.2), and second, to reciprocity-based solutions (in Section 3.3). In Section 4, we illustrate 

these links with two sets of simulations on a virtual head model. With the first set, we show 

how the directional maximization iterative solutions evolve from the WLS to the reciprocity 

closed-form solutions when varying the imposed bound to the energy integral over Ωnon–ROI. 

The second set is like the first set, but with electric field intensity limits at each point in 

Ωnon–ROI instead of a unique global restriction for the integral of the electric field energy 

over Ωnon–ROI. The way we present the different optimal solutions in a unified formulation is 

also a novelty of this work. It offers a clear visualization and quantification of the well-

known intensity versus focality trade-off to select the most adequate targeting strategies for 

each practical case.

2. TES forward problem

Due to the low frequencies involved, the FP is governed by the quasistatic Maxwell 

equations. It is described by the Poisson equation for the electric potential ψ(x ) in the head 

volume with Neumann boundary conditions (Frank, 1952; Jackson, 1975). Boundary 

conditions differ in approximation of pointwise or distributed electrodes. In the latter case, 

they are modelled using the complete electrode model (CEM) (Hyvönen, 2004). The FP is 

typically solved using the Finite Element Method (FEM) (Silvester and Ferrari, 1994; Kwon 

and Bang, 2000), where the whole head is meshed into NH elements, usually tetrahedrons, 

and P nodes. Details of the FEM FP formulation in TES can be found for example in 

(Vauhkonen et al., 1999; Windhoff et al., 2013; Ruffini et al., 2014; Laakso et al., 2016). The 

TES forward problem is equivalent to the Electrical Impedance Tomography (EIT) FP, and 

thus, EIT literature also details the same FEM formulation (Lionheart et al., 2004; Abascal 

et al., 2008; Wang et al., 2009; Fernández-Corazza et al., 2013).
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The FEM converts the FP formulation into a linear system of equations Kv = u, where K is 

the stiffness matrix and accounts for the geometry, bulk conductivity or a conductivity map 

of each tissue, and electrode contact impedances (if using CEM); v is the vector of unknown 

electric potentials at each mesh node of the head and at the electrodes, and u is a vector 

accounting for the electric sources and sinks (in TES, the applied currents or, equivalently, 

the current injection pattern). Once the system of linear equations above is solved for v, for 

instance, using the iterative preconditioned conjugate gradient (Barrett et al., 1994) or the 

biconjugate stabilized gradient (van der Vorst, 1992) solvers, the electric field E (x ) can be 

easily computed at each element by: E (x ) = − ∇ (ψ(x )), where ∇  is the gradient operator.

3. Unification of optimization approaches

Table 1 summarizes different optimization methods covered by this unified approach. The 

first five rows correspond to variants of the LS methods (pale pink background), sixth and 

seventh rows are variants of the constrained directional maximization methods (white 

background), and the last two rows correspond to reciprocity-based methods (pale blue 

background). We describe the constrained directional maximization method in Section 3.1 

and we theoretically link it to the WLS and reciprocity-based solution methods in Sections 

3.2 and 3.3, respectively.

Other less common optimization approaches that are not considered in this work have been 

proposed in the literature. One of them is beamforming or Linearly Constrained Minimum 

Variance (LCMV) (Dmochowski et al., 2011; Fernández-Corazza et al., 2016). This 

approach imposes that the electric field at the ROI or target is totally collinear with a desired 

targeting orientation. Similarly to LS or WLS, it has a closed-form solution when no current 

limits are considered. Another approach maximizes the modulus of the electric field at the 

ROI instead of the directional intensity (Sadleir et al., 2012). This problem, although it has 

great interest for multiple applications, is much more difficult to solve as it is nonconvex and 

nonlinear. The authors attempted to solve it using the interior point optimization algorithm, 

but they concluded that there is no guarantee that the solution they found is a global 

optimum due to the complex nature of this optimization problem (Sadleir et al., 2012). 

Although Ruffini et al. (2014) used a formulation of the WLS problem, their treatment 

additionally imposes a limit on the number of active electrodes that we do not consider here. 

Finally, Guler et al. (2016b) proposed reducing the number of active electrodes and solved it 

with the branch and bound algorithm.

3.1. Constrained directional maximization approaches

The constrained maximization approaches consider the maximization of the integral over 

ΩROI of the local electric field E (x ) (or current density) projection onto a desired unitless 

orientation d (x ). The three typical constraints are: (i) upper limits for the electric field in 

Ωnon–ROI, (ii) a total current limit or “budget”, and (iii) current limits per electrode. For 

constraint (i), an option is to constrain the integral of the electric field (or current density) 

energy over Ωnon–ROI by an arbitrary scalar αI, where subindex I stands for “integral” (Guler 

et al., 2016a). Another option is to impose a set of constraints: upper bounds αE(x ) for the 
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electric field at each Ωnon–ROI point or subdomain, as proposed in Wagner et al. (2016a) and 

Guler et al., (2018), where sub-index E stands for “elementwise”. If the upper bound is equal 

for all Ωnon–ROI points or subdomains, this latter approach means constraining the maximum 

intensity at Ωnon–ROI. The mathematical formulation considering both alternatives can be 

stated as follows:

î = argmax
i ∫ΩROI

E (x ) ⋅ d (x )dx , subject to

(i)
(i.a) ∫Ωnon–ROI

‖E (x )‖2
2dx ≤ αI

(i.b)‖E (x )‖2 ≤ αE(x ), ∀ x ∈ Ωnon–ROI

or

(ii) ‖ĩ‖1 ≤ 2imax
(iii)ĩmin ≼ ĩ ≼ ĩmax

(1)

where i is the unknown (L − 1) × 1 current injection pattern (where L is the number of 

electrodes); imax is the maximum total current intensity scalar; ĩ is the expanded current 

injection pattern vector of size L × 1 that considers all electrodes; ĩmin and ĩmax are the L × 1 

minimum and maximum limits per electrode respectively; symbol ≼ means “≤” but 

elementwise; and ‖·‖1 is the l1-norm (sum of absolute values of all vector components). For 

L electrodes, there are (L − 1) independent current injection electrodes (pattern i), as the 

remaining electrode (the last element of expanded pattern ĩ) is the sum of all other currents 

such that total injected current is zero, i.e., Kirchhoff’s Law (see also section 2.2 in Guler et 

al. (2016a) and Eq. (10) constraint in Dmochowski et al. (2011):

ĩ j = ij, ∀j = 1, …, L − 1

ĩL = − ∑
l = 1

L − 1
il

(2)

Note that ĩ = H ⋅ i, with H being the L × (L − 1) matrix 
IL − 1

−1 − 1… − 1
, where IL − 1 is the L − 

1 identity matrix.

Assuming N total brain mesh elements, we define T as the TES 3N × (L − 1) transfer matrix 
where each column “l” is the TES FP solution (i.e., the x, y and z components of the electric 

field) computed as described in Section 2, caused by a current injection pattern that consists 

of injecting the electric current at electrode l with last electrode L being the sink (or 

reference). Note that for L electrodes, there are L − 1 independent current injection patterns. 

All other patterns can be generated from this basis by superposition. Other bases can be used 

such as injecting the electric current at electrode l and assuming all other L − 1 electrodes as 

sinks (as used in Fernández-Corazza et al. (2016)). Note that T can be reduced to cover only 

the gray matter or expanded to cover other head regions of interest to stimulate or to avoid 

stimulation such as the optic nerves, the eyes, facial muscles, etc.

The constrained directional maximization problem in Eq. (1) can be re-stated in a discrete 

form as:
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î = argmax
i

dTΓTi , s . t .

(i) (i.a) iTTTΓnon–ROITi ≤ αI
(i.b) ‖Tni‖2 ≤ αE[n], ∀n ∈ Ωnon–ROI

or

(ii) ‖ĩ‖1 ≤ 2imax

(iii) ĩmin ≼ ĩ ≼ ĩmax

(3)

where d is the 3N × 1 vector representing an N point discretization of the directional vector 

field d (x ) for desired orientation of the stimulation field in the brain, with non-zero values 

at ΩROI and zero values at Ωnon–ROI. The non-zero values of d are typically unitary vectors 

oriented perpendicularly to the cortical surface, but they can be, in general, oriented in any 

direction and have different strengths. Tn is the 3 × (L − 1) transfer matrix of each non–ROI 

element n.

Volume matrices Γ and Γnon–ROI stem from the integration operations in Eq. (1). Γ is a 

diagonal 3N × 3N matrix where each element of the diagonal is the volume of each mesh 

element.1 If Γ is equal to the identity matrix, it means that the sum across the mesh elements 

is used instead of the volume integral (as in Eq. (17) in Dmochowski et al. (2011)). In the 

Ωnon–ROI electric field energy constraint of Eq. (1.i), the integral is taken over the non–ROI, 

hence, Γnon–ROI is obtained from Γ by setting the diagonal elements corresponding to the 

ROI to zero. Note that the ΩROI is typically much smaller than Ωnon–ROI, thus Γnon–ROI ≈ Γ 
with almost any matrix norm. This approximation can also be interpreted as integrating the 

constraint of Eq. (1.i) over the whole domain of interest Ω, and not just over Ωnon–ROI
2.

Optimization problem in Eq. (3) is a convex optimization problem (Boyd and Vandenberghe, 

2004), where the objective function is a linear function, constraints in Eqs. (3.i.a) and (3.i.b) 

are quadratic, and constraints in Eqs. (3.ii) and (3.iii) can be formulated as linear inequalities 

(more details can be found in Appendices A and B). Thus, this problem can be categorized 

as a quadratically constrained linear program (QCLP).

Matrix T in Eq. (3) is the electric field transfer matrix as explained before. Alternatively, one 

can consider the matrix product ΣT as a current density transfer matrix T’ instead of T in 

Eq. (3). In such case, the conductivity matrix Σ is a 3N × 3N symmetric block diagonal 

matrix where each 3 × 3 block of the diagonal is the conductivity tensor of the mesh element 

n. If piecewise isotropic media is assumed, Σ is a diagonal matrix, and moreover, if only one 

homogeneous and isotropic conductivity value σB is assumed for the whole region covered 

by T, matrix Σ can be replaced by the scalar σB.

1To be more precise, the functional to maximize in Eq. (3) should be dROI
T ΓROITROIi, where subscript “ROI” means “trimmed to 

ROI elements”, because the integral of Eq. (1) is taken over ΩROI. But, as the elements of d corresponding to Ωnon–ROI are set to 

zero and Γ is a diagonal matrix, it is equivalent to use dROI
T ΓROITROIi or dTΓTi .

2The approximation error is proportional to the product of average intensity at ΩROI times the ΩROI volume which is typically much 
smaller than the product of average intensity at Ωnon–ROI times the Ωnon–ROI volume.
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3.2. Link between constrained directional maximization and LS approaches

We first assume in Eq. (3) that the integral over Ωnon–ROI of the electric field energy 

constraint (3.i.a) dominates (i.e., αI is low, and thus the total injected current constraint (ii) 

can be neglected), the electric current per electrode bounds (iii) are 

ĩmax = imax1 and ĩmin = − imax1 where 1 is a vector with all ones), i.e., it is allowed that just 

one electrode pair can inject the maximum allowed current, and that Γnon–ROI ≈ Γ holds. 

With these assumptions, Eq. (3) is reduced to:

î = argmax
i

dTΓTi , s.t. iTTTΓTi ≤ αI (4)

The constrained maximizing intensity problem in Eq. (4) belongs to a class of QCLP and, 

the solution, if not infinity or minus infinity, lies at the boundary, i.e. at iTTTΓTi = αI (note 

the “=” instead of the “≤” sign) (Boyd and Vandenberghe, 2004). In Appendix A we prove, 

analytically solving the Karush-Kuhn-Tucker (KKT) conditions,3 that the solution to Eq. (4) 

has the form:

î = TTΓT −1TTΓkd, with k αI = αI/dTΓT TTΓT −1TTΓd (5)

where k(αI) is a scaling constant expressed in [V/m]. Solution in Eq. (5) is also the known 

analytical solution of a typical WLS problem (an unconstrained quadratic problem) of the 

form:

î = argmin
i

{(kd − Ti)TΓ(kd − Ti)} (6)

Note that in Eq. (6), kd plays the role of a desired electric field in the WLS formulation.4 On 

one hand, given an arbitrarily imposed αI value in Eq. (4), the formulation in Eq. (5) gives 

the corresponding value of k and the closed-form solution to problem (4). On the other hand, 

if a desired electric field f = kd (in V/m) is imposed in the WLS formulation of Eq (6), one 

can always assume k = 1V/m. Then, d is equivalent to f but unitless, and the value of αI that 

makes Eqs. (4) and (6) to be equivalent can be derived directly from Eq. (5).

If the approximation Γnon–ROI ≈ Γ is not considered, the solution to Eq. (4) becomes 

î = TTΓnon−ROIT
−1TTΓdk, with k = αI/dTΓT TTΓnon−ROIT

−1TTΓd . This is not exactly a 

WLS solution because Γnon–ROI ≠ Γ, but it is extremely similar if ΩROI is much smaller than 

Ωnon–ROI, and still has a closed-form solution. If Γ is the identity matrix, the equivalence 

between Eqs. (4) and (6) still holds, and the solution has the LS form: 

î = TTT −1TTdk, with k = αI/dTT TTT −1TTd .

3In mathematical optimization, the KKT conditions are the necessary conditions for a solution in nonlinear programming to be 
optimal. If the problem is convex, these conditions are also sufficient (Boyd and Vandenberghe, 2004).
4In the LS/WLS approaches here and in Table 1, a target vector f(or kd) might have non-zero values at Ωnon–ROI. However, in 
LS/WLS it is also common practice to set the desired electric field to zero at Ωnon–ROI. For simplicity, we also adopt this practice for 
fand d throughout the manuscript.
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Overall, if the integral over Ωnon–ROI in Eq. (3.i.a) is low enough such that the solution to 

Eq. (3) requires the injection of less current than the total maximum allowed, the shape of 

the current injection pattern maintains the LS/WLS closed-form regardless of the value of 

αI, and αI only plays the role of a scaling factor. Thus, the LS/WLS solutions belong to a 
limit case of the constrained directional maximization problem of Eq. (3), the one for 
low α values.

3.2.1. Links with additional constraints—In addition, we also show in Appendix A 

that the following two problems (with total budget constraints added in comparison to Eqs. 

(4) and (6)):

î = argmax
i

(dTΓTi), s . t . iTTTΓTi ≤ αI’ and ‖ĩ‖1 ≤ 2imax (7a)

î = argmin
i

{(kd − Ti)TΓ(kd − Ti)}, s . t . ‖ĩ‖1 ≤ 2imax (7b)

also have the same KKT conditions for α1′ = î
T

TTΓTî, with î  being the optimal solution of 

the constrained WLS problem in Eq. (7b) assuming k = 1V/m. The difference between this 

equivalence and the equivalence previously shown in Eqs. (4) and (6) is that now the KKT 

conditions do not have a closed-form solution and an iterative solver such as one of those 

provided by the CVX Matlab package is required. In the proof of Appendix A, the l1-norm 

constraint in Eqs. (7a) and (7b) is converted into a set of linear constraints. Thus, Eq. (7a) 

belongs to a class of QCLP while Eq. (7b) is a Linearly Constrained Quadratic Program 

(LCQP). Note that Eq. (7b) is the same as the problem of the fourth row in Table 1 solved 

using the LASSO algorithm in (Dmochowski et al., 2011).

Moreover, one can further complicate Eqs. (7a) and (7b) by adding the current per electrode 

constraints. Again, the following two problems (also a QCLP, and an LCQP):

î = argmax
i

dTΓTi , s . t . iTTTΓTi ≤ αI”, ‖ĩ‖1 ≤ 2imax and ĩmin ≼ ĩ ≼ ĩmax (8a)

î = argmin
i

{(kd − Ti)TΓ(kd − Ti)}, s . t . ‖ĩ‖1 ≤ 2imax and ĩmin ≼ ĩ ≼ ĩmax (8b)

have the same KKT conditions for αI” = î
T

TTΓTî, now with î  being the optimal solution of 

the constrained WLS problem in Eq. (8b) (assuming k = 1V/m). This is expected because if 

the KKT conditions for Eqs. (7a) and (7b) are equivalent, then adding the same additional 

set of constraints modifies the KKT for both problems in the same way.

3.3. Link between constrained maximizing intensity and reciprocity

In this section we show that when omitting the constraint (3.i) in Eq. (3), the iterative 

solution is equivalent to the closed-form reciprocity-based solution.
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The reciprocity theorem coupling TES and EEG for one dipole and one injection pair states 

that given a dipole at position x  with dipolar moment m [A . m], the electric potential (Φ) 

difference between any points a and b on the scalp can be computed as the dot product:

Φ(a) − Φ(b) = m ⋅ ∇ ψab(x )
Iab

, (9)

where ψab(x ) is the resulting potential at location x  when an electric current Iab is injected 

at the arbitrary points a and b (Malmivuo and Plonsey, 1995; Rush and Driscoll, 1969). In 

our previous work we showed that, as a direct consequence of Eq. (9), if the poles of the 

EEG forward projection are used for two-electrode stimulation, the dot product of the 

electric field and the desired orientation is maximized (Fernández-Corazza et al., 2016). 

Mathematically,

A, B = argmax
a, b

Φ(a) − Φ(b) = argmax
a, b

∇ ψab(x )
Iab

⋅ m ∇ ψAB(x ) ⋅ m

is maximal .
(10)

In this work, we go a step further and explicitly link the same reciprocity-based approaches 

of our previous work with the directional maximization problem in Eq. (3). For this link to 

be valid, we assume that αI or αE is large enough such that the total current limit constraint 

in Eq. (3.ii) dominates over the Ωnon–ROI energy limit in Eq. (3.i). Note that this assumption 

results in a similar problem to the simpler maximizing intensity approach of Eq. (17) in 

Dmochowski et al. (2011), formulated therein for a pointwise ROI. Also note that this case 

is opposite to the extreme case considered in the previous Section 3.2, where the Ωnon–ROI 

energy limit in Eq. (3.i) dominates over the total current limit constraint in Eq. (3.ii).

Eq. (9) can be generalized for multiple dipoles and multiple injection pairs, implying that the 

elements of TES transfer matrix T and EEG lead field matrix L are related by transposition: 

T = LT (both in [V/(Am)]). Each column of L corresponds to the electric potential at L − 1 

electrodes (assuming electrode L as the reference) due to a unit dipole at a canonical 

orientation located at each cortical (or brain) element. Thus, matrix L has size L − 1 × 3N. 

The fact that T = LT derives from the reciprocity principle in Eq. (9) is well known and 

proven in the literature (Weinstein et al., 2000; Wolters et al., 2004; Hallez et al., 2005; 

Malony et al., 2011; Wagner et al., 2016b), see also more recent discussions in Dmochowski 

et al. (2017) and Salman et al. (2016). Then, the linear functional to be maximized in Eq. (3) 

can be written as:

î = argmax
i

(dTΓTi) = argmax
i

(sdTΓLTi) = argmax
i

(ΦΓ
Ti) (11)

ΦΓ = LΓds is a synthetic potential at the electrodes generated by the EEG dipolar source 

field sdTΓ, which is shaped by the desired orientation vector field d with the magnitude 

given by an arbitrary constant and positive dipole source density s (in [Am/m3]). Note that 

Fernández-Corazza et al. Page 10

Neuroimage. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the effect of Γ is just weighting the strength of each dipolar source according to the volume 

of the containing element.

Now, Eq. (3) is reduced to the l1-constrained linear optimization problem

î = argmax
i

(ΦΓ
Ti) s . t . (12)

‖ĩ‖1 ≤ 2imax

Note that ΦΓ
Ti = ∑l = 1

L − 1φlil, where φl is the EEG potential at the lth electrode. As this 

problem has a l1-norm constraint, the most typical approach for solving it until now has 

been using iterative solvers. We can now prove that the solution to Eq. (12) is:

ĩ
^

= imaxelmax − imaxelmin (13)

where el is a zero L × 1 vector with a “1” at element “l”,5 lmax is the electrode with 

maximum ΦΓ and lmin is the electrode with minimum ΦΓ.

Since the functional to maximize in Eq. (12) is linear, the fundamental theorem of linear 

programming states that the solution to Eq. (12) belongs to the boundary, i.e., when 

‖ĩ‖1 = 2imax (Luenberger and Ye, 2008). Moreover, the same theorem states that if the 

feasible domain is a bounded polyhedron (as the l1-norm defines), the solution occurs at a 

domain’s corner. The next step is to prove that the corners in the feasible domain of Eq. (12) 

only have two active electrodes. In Appendix B, we depict the feasible domains for two and 

three electrodes (2D and 3D geometrical representations) showing that, effectively, their 

vertices correspond to only two active electrodes. Then, we extend the proof for larger 

dimensions. Finally, among all possible pairwise solutions, it is obvious that picking the two 

electrodes with maximum ΦΓ difference also maximizes ΦΓ
Ti. Thus, the reciprocity-based 

optimization approach is the solution that belongs to another limit case of the 
constrained directional maximization problem in Eq. (3), the one with high α values.

3.3.1. Considering maximum current per electrode limit—If we include 

maximum current per electrode limit constraints ĩmin ≼ ĩ ≼ ĩmax, closed-form solutions like 

Eq. (13) can be derived using a similar reasoning as described above. The details can be 

found in Appendix B. If ĩmin or ĩmax are the same for all electrodes, the resulting solution has 

groups of neighboring electrodes injecting the same amount of current, imitating TES 

“patches”. For instance, suppose that we set ĩmax = imax/2 1 and ĩmin = −imax/20 1 . This 

means that the solution will have at least two sources to reach the upper current limit and 

maximally twenty sinks to fulfill Kirchhoff’s law. To maximize ΦTi, the two electrodes with 

maximum Φ with respect to the reference electrode L should be selected as sources to inject 

5These vectors correspond to the canonical basis.
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imax/2 and the 20 electrodes with minimum Φ with respect to L should be selected as sinks 

to inject – imax/20. Similarly, it is possible to obtain the “opposite”, “one source-all sinks”, 

and “10 sources-30 sinks” schemes suggested in Fernández-Corazza et al. (2016) by solving 

Eq. (3) with corresponding maximum current per electrode constraints imposed by Eq. 

(3.iii).6

4. Simulations

In this section we illustrate our analytical findings with simulations using a head model 

based on the ICBM-152 symmetric atlas (Mazziotta et al., 2001). The unified visualization 

scheme we use here to present the results can help a potential TES planner to determine the 

best stimulation strategy according to the experimental criteria and specific needs.

4.1. Simulation framework

We used a head model with four tissues: brain, CSF, skull and scalp based on the ICBM-152 

atlas, which is an average of 152 individual heads (Mazziotta et al., 2001). Base-line 

triangular surfaces were obtained from the SPM8 MATLAB package (Friston, 2007) and 

further refinement, smoothing and tetrahedral meshing was performed using the Iso2mesh 

MATLAB package (Fang and Boas, 2009). The final tetrahedral mesh had ~1 million 

elements and ~150k nodes. We assumed homogeneous and isotropic conductivities for each 

tissue assigning literature values: 0.3, 0.006, 1.79, and 0.33 S/m for the scalp, skull, CSF, 

and brain, respectively (Gabriel et al., 1996; Baumann et al., 1997; Fernandez-Corazza et al., 

2018). The model is completed with 64 pointwise electrodes placed following a subset of the 

standard 10–10 EEG electrode coordinates. All algorithms can be applied to more complex 

models with different conductivity values and number of electrodes, as theoretical findings 

described in previous sections are model-independent.

We selected a part of the M1 cortical region of ~1.4 cm3 as ΩROI or target. For each 

tetrahedral element of the ΩROI, its centroid was projected to the closest triangular element 

of the external brain surface and the normal to the cortex vectors of these surface triangles 

were computed. A vector representing an average orientation of the ROI was defined as a 

weighted by element volume average of these surface triangle normal vectors. Then, this 

unique orientation was replicated in each ΩROI element to form the target vector d. Note that 

any other orientation, even arbitrary, can be used instead. The transfer matrix T was obtained 

as described in Section 2 using our MATLAB implementation of linear tetrahedral FEM 

with the Galerkin approach (Silvester and Ferrari, 1994; Kwon and Bang, 2000; Lionheart et 

al., 2004; Fernández-Corazza et al., 2013).

4.2. Simulation results

4.2.1. non–ROI energy constraint—First, we solved the constrained directional 

maximization problem in Eq. (3) using the iterative SDPT3 solver (Toh et al., 1999) 

included in the CVX package (Grant and Boyd, 2014) for a wide range of αI values, 

6To exactly reproduce solutions from (Fernández-Corazza et al., 2016), Γ in Eq. (10) should be set as the identity matrix as in our 
previous work we didn’t consider integration in the objective function.
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considering total current limit constraint in Eq. (3.ii) as imax = 1mA, and current limit per 

electrode constraint in Eq. (3.iii) as ĩmax = imax1 and ĩmin = − imax1 .

For each optimal solution î  of the spanned αI range, we computed (a) the integral of the 

electric field over ΩROI (i.e., the maximized functional dTΓTi of Eq. (3)): normalized by the 

ΩROI volume, (b) the used budget, i.e., ‖ĩ‖1, and (c) a focality metric. We defined focality as 

the ratio between the mean intensity at ΩROI to the square root of the mean energy at 

Ωnon–ROI:

Integral focality =

dTΓTÎ
ΩROI volume

ÎTTTΓnon−ROITÎ
Ωnon–ROI volume

(14)

There are several ways of defining focality, but we can group them in basically two types: as 

ratios between some ROI intensity and some non–ROI intensity (Cancelli et al., 2016; 

Wagner et al., 2016a), or as the radius of a sphere centered at the ROI containing some 

amount of total intensity (Dmochowski et al., 2011; Fernández-Corazza et al., 2016). We 

found the definition of Eq. (14) as the more natural definition according to the general 

problem in Eq. (3): the ratio of the expression to maximize in Eq. (3) to the constraint in Eq. 

(3.i.a). As the constraint is quadratic and the functional to maximize is linear with respect to 

î , we applied the square root to the denominator (this also makes the metric to be unitless). 

Note that the integral focality in Eq. (14) can be interpreted as a ratio of the “therapeutic 

dose” to the “side-effects” where the larger is the better. In Fig. 1A, we plot the intensity, the 

amount of budget used and the integral focality as a function of αI. Fig. 1B depicts some 

examples of optimal current injection patterns and their resulting electric fields in the brain 

for evenly spaced and representative values of αI, and Movie M1 shows them for all the 

evaluated values of αI.

Supplementary video related to Fig. 1 can be found at https://doi.org/10.1016/

j.neuroimage.2019.116403.

In Fig. 1A, three zones can be distinguished by different background colors. In the left zone 

(pale pink), the used budget is less than 100% of the allowed budget, Ωnon–ROI energy 

constraint in Eq. (3.i.a) dominates, and the total current limit constraint in Eq. (3.ii) has no 

influence on the solution. In the right zone (pale blue), the optimal solution remains the 

same regardless the value of αI, both the used budget and the maximum electric field at ΩROI 

are saturated, the total current limit constraint in Eq. (3.ii) dominates, and the Ωnon–ROI 

energy constraint in Eq. (3.i.a) has no influence. Lastly, in the middle zone (white 

background), the current budget is saturated, but a more intense electric field is delivered to 

ΩROI at the expense of a larger electric field energy at Ωnon–ROI (by increasing αI). The 

focality-intensity trade-off is clearly observed between critical points “a” and “b” (see 

Movie M1).
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We then computed the closed-form WLS and reciprocity solutions following Eqs. (5) and 

(13), respectively. Supplementary Fig. S1 depicts injection patterns and their resulting 

electric fields obtained with the optimally scaled WLS formulation (left column) and with 

the one-to-one reciprocity optimization approach (right column). It is observed that they are 

indeed identical to the first and last columns of Fig. 1B, respectively.

An interesting observation from Fig. 1 is that, for a specific value of αI, the optimal solution 

obtained iteratively is equivalent to the WLS solution with the ℓ1 constraint (row 4 of Table 1 

and Eq. (7a)). This finding verifies the equivalence of Eqs. (7a) and (7b) in Section (3.2.1). 

As we can determine the exact point that makes these two problems identical, we show both 

identical solutions in the first two columns of Supplementary Fig. S2. In the last two 

columns of Fig. S2, we show an example of verification of the equivalence between Eqs. 

(8a) and (8b), where the current limit per electrode constraints of Eq. (3.iii) are also 

considered.

We also obtained the iterative solutions of Eq. (3) in the right pale blue zone (large α), but 

setting different current limits per electrode (constraint in Eq. (3.iii)): first, setting 

ĩmax = imax1 and ĩmin = − imax/(L − 1)1, and second, setting 

ĩmax = imax/2 1 and ĩmin = −imax/20 1 . In Supplementary Fig. S3 we show that the optimal 

iterative solutions for these two cases are equivalent to the “1 source - (L − 1) sinks” and “2 

sources - 20 sinks” closed-form reciprocity-based solutions introduced phenomenologically 

in Fernández-Corazza et al. (2016), thus verifying what we derive in Section 3.3.1.

4.2.2. non–ROI elementwise intensity constraint—We also solved Eq. (3) but 

limited the electric field intensity at each Ωnon–ROI element (Eq. (3.i.b)) instead of limiting 

the integral of electric field energy (Eq. (3.i.a)) to compare with the previous approach. We 

set the constraint αE to be equal for all mesh elements, which can be interpreted as limiting 

the maximum intensity in Ωnon–ROI. We defined the most natural focality metric for this case 

as the ratio between the mean intensity at ΩROI to the maximum intensity at Ωnon–ROI:

Elementwise focality = mean directional intensity over ΩROI
maximum intensity in Ωnon−ROI

=
(dTΓT̂ î)

ΩROI volume

max
n ∈ Ωnon−ROI

‖Tn î2‖

(15)

Fig. 2A shows the intensity, injected current and elementwise focality plots as a function of 

αE: Fig. 2B depicts some examples of the resulting optimal patterns and the imprinted brain 

electric field, and Movie M2 shows the full evolution of the optimal solutions.

Supplementary video related to Fig. 2 can be found at https://doi.org/10.1016/

j.neuroimage.2019.116403.

When comparing Figs. 1 and 2, and Movies M1 and M2, the general behavior of a 

“scalable” solution on the leftmost zone, an intermediate transition zone, and a right zone 
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resembling the one-to-one reciprocity solution holds for both optimization approaches. Note 

that the variety of solutions in the transition zone is not as rich as in the previous case. Also 

note that the extreme optimal solution for αE < a looks somehow unintuitive as a large 

portion of Ωnon–ROI has intensities of the same order of magnitude as in ΩROI. We present 

related discussion about this unintuitive pattern in Section 5.1.3 and Fig. S4. In that figure, 

we compared this unintuitive pattern with the WLS solutions and show that they are worse 

than this pattern in terms of the elementwise focality metric.

4.2.3. Focality comparison—Figs. 1A and 2A are not directly comparable because the 

x-axis has different values in each case. To compare both cases it is necessary to plot the 

cross-focality metrics, i.e., the integral focality for the solutions obtained when imposing the 

Ωnon–ROI elementwise electric field constraint, and the elementwise focality for the solutions 

obtained when imposing the Ωnon–ROI integral constraint. In Fig. 3A we depict the integral 

focality values of the solutions obtained with both constraints and in Fig. 3B we plot the 

elementwise focality values for the same solutions. To make the comparison clearer, the 

focality values are plotted as a function of the mean electric field in ΩROI.

In Fig. 3A, for ROI mean intensities larger than ~0.075 V/m, the integral focality obtained 

with the elementwise electric field restriction is almost as good as when optimizing for the 

energy integral. For ROI mean intensity values between ~0.04 V/m and ~0.075 V/m, the 

focality obtained with the elementwise constraint grows for lower ROI intensity values but 

less than the “natural” focality. Below ~0.04 V/m the focality for the solutions obtained with 

the elementwise constraint decrease with decreasing ROI intensity. Note that ~0.04 V/m 

corresponds to the inflection point in the focality plot marked as “c” in Fig. 2. Fig. 3B shows 

that the elementwise focality obtained with the integral energy constraint is about 30% lower 

than when using the elementwise constraint in almost all the evaluated range. Interestingly, 

for lower values of ROI mean intensity, the cross-focality (solid line) gets better, contrary to 

what happens in the dotted line of Fig. 3A for values lower than ~0.04 V/m.

4.3. Data and code availability statement

No prospective data were used for the research described in this article. The code supporting 

the findings of this study is available from the corresponding author upon request.

5. Discussion

5.1. Links between existing optimization algorithms

We theoretically proved that the apparently unrelated LS, WLS, and reciprocity-based 

solutions all belong to the same family of the general constrained maximizing intensity 

problem solutions of Eq. (3), constituting a unified approach (Sections 3.2 and 3.3). We also 

proved that constrained LS and WLS (Section 3.2.1) as well as constrained reciprocity 

(Section 3.3.1) are covered by the unified formulation. Even expanding “ring” 

configurations are also part of the same family, although this last finding was empirical. All 

these links were not fully noticed before, and it is the major novelty of this work.

An interesting finding is the existence of critical points “a” and “b” in all studied cases. For 

non–ROI electric field bounds (αI or αE) lower than “a”, all iterative solutions are 
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identically shaped, no matter if the restriction is for the energy integral over Ωnon–ROI (Eq. 

(3.i.a)) or elementwise (Eq. (3.i.b)). This is the pale pink zone in Figs. 1 and 2, where 

constraint in Eq. (3.i) is active and constraint in Eq. (3.ii) is inactive. In the case of 

restricting the integral, the optimal injection pattern shape is equivalent to the LS or WLS 

solution, but without exploiting the full current injection budget. Thus, an important result of 

this work is that the LS or WLS closed-form solutions, artificially scaled such that the total 

current budget is exploited (“scaled LS” in Table 1), is a simple way of obtaining the 

solution at point “a”. In the case of restricting the electric field elementwise (Eq. (3.i.b)), all 

iterative solutions for αE values lower than “a” also have the same shape and different scale 

(see Movie M2) but we found this effect empirically and did not link them to a closed 

formula. In all cases, the solution at critical point “a” is the optimal solution in the sense that 

it exploits the full available budget and has the best focality,7 although, at the same time, it 

has the lowest ROI intensity and low sparsity requiring more active electrodes.

For αI or αE values larger than “a” and lower than “b”, the total current limit shapes the 

solutions producing a smooth transition towards reciprocity solutions when increasing 

(relaxing) the non–ROI intensity limit. This is the white background zone in Figs. 1 and 2, 

where both constraints of Eq. (3.i) and (3.ii) are active. A rich variety of optimal solutions 

consisting of expanding radius ring-shaped patterns occur naturally in this transition zone, 

which are more clearly seen in the first studied case (Fig. 1 and Movie M1). Many solutions 

in this middle zone resemble the ad-hoc “ring” patterns of previous studies (Datta et al., 

2009; Dmochowski et al., 2011; Kuo et al., 2013; Fernández-Corazza et al., 2016). Thus, we 

computationally found that these “ring” solutions are also optimal. The well-known focality-

intensity trade-off can be clearly observed and quantified in this transition zone, which is the 

zone with most practical interest. Moreover, we proved and verified that this middle zone 

also contains the WLS with limited total current injection optimal solution, either 

considering or not the current limit per electrode constraints (Supplementary Fig. S2).

Once critical point “b” is reached, the optimal solutions collapse into one of the reciprocity-

based optimal solutions and remain identical for larger αI or αE values. This is the pale blue 

zone on the right part of Figs. 1 and 2, where constraint in Eq. (3.i) is inactive and constraint 

in Eq. (3.ii) is active. When not considering a current limit per electrode (Eq. (3.iii)), 

solutions in this zone are equivalent to the one-to-one reciprocity solution. In this case, the 

source and sink electrodes are selected directly as the nearest electrodes to the most positive 

and most negative forward projection EEG “poles” respectively. Moreover, we proved in 

section 3.3.1 that by setting different current limits per electrode in constraint of Eq. (3.iii), 

iterative solutions to Eq. (3) agreed exactly with the other rather intuitive variations of the 

“opposite” reciprocity solutions described in our previous work (Fernández-Corazza et al., 

2016), proposed there with the aim of spreading out the typically undesired electric field 

concentration due to a low number of sinks. Thus, these solutions are not ad-hoc, but part of 

the set of solutions of the optimization problem in Eq. (3) (see Supplementary Fig. S3).In 

such cases, multiple current sources and sinks are selected as the electrodes with maximum 

differences in the virtual EEG forward projection potential. Overall, the solutions at critical 

7For each case natural definition of focality.
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points “b” exploit full available budget, have the highest ROI intensity and sparsity 

(requiring the minimum number of active electrodes), but the lowest focality.

5.1.1. Focality—Many definitions of focality have been proposed in the literature so far. 

In this work, as we used different optimization criteria, we defined focality in the most 

natural way for each specific approach according to our understanding: the functional to 

maximize divided by the Ωnon–ROI electric field constraint. We also computed the 

“unnatural” or “cross” focality metrics, shown in Fig. 3. In this figure, it can be verified what 

is expected, that each focality definition is better for the solutions of its corresponding 

problem for any given ROI electric field intensity. Each optimal solution performance in 

terms of its cross-focality definitions might be of interest for a specific stimulation scenario 

and pre-treatment planning. For instance, by inspecting Fig. 3, it is possible to quantify how 

much of a focality metric is deteriorated when using a different optimization method than 

the “natural” one for this particular focality definition.

If a different focality metric is proposed to better quantify the trade-off between the wanted 

versus the unwanted effects, the problem statement should be changed accordingly to 

maximize whatever is defined as “wanted effects” constraining it to whatever is defined as 

“unwanted effects”. For example, we found that although directional electric field is 

maximized, the modulus of the electric field at Ωnon–ROI is typically limited. Moreover, the 

modulus of the electric field or the current density is typically depicted in most publications 

about TES optimization. We find this practice somehow contradictory. Therefore, besides 

depicting the modulus, we also depict the normal-to-cortex component in Figs. 1, 2, S1, S2, 

and S3. The directional optimization methods studied in this work result in much better 

focality when only considering normal-to-cortex component instead of the modulus. Note 

that some of the undesired Ωnon–ROI “hot-spots” seen when depicting the modulus are being 

targeted tangentially to the orientation assumed as physiologically influential. Thus, a new 

possible optimization method with its corresponding natural focality definition might be 

maximizing the directional intensity (as we did in this work), but constraining just the 

projected component of the electric field to the orientation assumed as physiologically 

influential at the Ωnon–ROI elements instead of the electric field modulus. Typically, it is 

assumed that only the normal to the cortical surface electric fields affect the brain, but this is 

still an open question.

5.1.2. Previous studies placed into the unified context—According to the 

patterns shown in Figs. 3 and 4 of (Guler et al., 2016a), iterative solutions resemble the 

sparse reciprocity “opposite” solutions involving 6–7 electrodes as sources and the same 

number as sinks. Effectively, they adopted a non–ROI energy bound of 10−6 A2/m, which 

corresponds to a loose constraint for their equivalent to our αI value according to their Fig. 

6. This value of the non–ROI energy bound brings a solution into the reciprocity zone. The 

constraint on current per electrode defined roughly the number of active electrodes. The top 

part of their Fig. 6 (large αI) is equivalent to the right “pale blue” reciprocity zones of Figs. 

1A and 2A, and the bottom part (low αI.) is equivalent to the left “pink” WLS zone of Fig. 

1A. In Fig. 7 of Guler et al. (2016a), a different (much lower) non–ROI energy bound value 
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is used to get non-sparse LS-like solutions resembling the constrained LS solutions by 

Dmochowski et al. (2011) and Ruffini et al. (2014).

5.1.3. WLS vs LS—In Section 3.2, we showed that the integrals in Eq. (1) can be 

formulated as a version of WLS where the weights are the volumes of each finite element. 

However, in most TES optimization approaches using FEM meshes, this weighting by 

element volume was not considered (e.g. Dmochowski et al., 2011; Ruffini et al., 2014; 

Cancelli et al., 2016; Fernandez-Corazza et al., 2016) - including our previous work - 

deriving in unweighted LS. In FEM, the element volumes might vary significantly from each 

other, thus we believe that the WLS version with the weighting matrix containing the 

element volumes is more appropriate than the unweighted LS. Of course, additional 

weighting matrices can also be considered in addition to the volume weighting matrix Γ.

5.1.4. Elementwise non–ROI intensity constraint—In Fig. 2B, the lower extremal 

solutions for αE < a do not look optimal in terms of focality. This is because, based on our 

intuition, we typically think of the focality metrics in terms of the integral focality definition. 

In Supplementary Fig. S4, we verify that indeed this rather unintuitive solution is optimal in 

terms of elementwise focality for this example, which is the most natural focality definition 

for constraint in Eq. (3.i.b). Note that if the elementwise maximum intensity is restricted, 

there is a very sharp transition imposed at the ΩROI boundary between a “free” and a 

“restricted” element. If αE is too small, on the boundary it is not possible for the electric 

field to follow this large jump between a “free” ROI element and a non–ROI constrained 

element right next to it. If αE increases, this restriction is loosened allowing a softer 

transition between ROI and non–ROI neighboring elements. Note that this sharp restriction 

is not necessarily imposed when restricting the non–ROI integral of the electric field. An 

interesting observation is that these rather “unintuitive” solutions between points marked as 

“a” and “c” produce no improvement in focality and thus, have little practical interest. And 

at point “c”, the optimal solution looks qualitatively more focal also in terms of integral 

focality than the solution at point “a” (see Fig. 2). The most interesting region is thus 

between points “c” and “b”, where the intensity-focality trade-off is more visible.

5.2. Practical applications of this work

The way we present the focality-intensity trade-off in Figs. 1 and 2 should help a TES-

planner to better define what α value (either αI or αE) to select for a specific ROI, head 

model, and focality criteria depending on the specific application requirements. This 

focality-intensity visualization approach is also a novelty of this work.

For instance, it is possible to quantify how much intensity or focality is lost for each value of 

α at intermediate values within the “a” - “b” range. If a minimum intensity threshold is 

defined for a desired ROI, a TES-planner can search for the lowest α value with this 

intensity, quantify how much focality is lost, select this α value to feed the optimization 

problem and use the optimal solution to stimulate that ROI. One can also compare critical 

points “a” and “b” scanning ROIs placed at different brain locations to generate spatial brain 

maps of maximum possible focalities or doses. Even more, one can study how much these 

focality and intensity bounds are influenced by model parameters such as the skull 
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conductivity for example. It might also be interesting to analyze how the gap between 

critical points “a” and “b” varies for superficial versus deep ROIs.

Another practical use is the analysis of the one-to-one reciprocity approach that resembles 

the anodal-cathodal current injection pattern, probably the most frequently used pattern in 

TES. If placed at the EEG “poles”, the anodal-cathodal montage is the extreme solution of 

the maximal intensity and the lowest focality on the target. This pattern can produce 

unwanted large amounts of stimulation near the cathodal electrode. In order to reduce this 

unwanted effect, a potential TES user can evaluate the possibility of using the two possible 

alternatives we presented: selecting a lower α value or choosing a lower value of |ĩmin| . The 

first alternative can be seen in Figs. 1 and 2, where lower values of α reduce large intensities 

near the sink. For the second alternative, we show, in the first two columns of 

Supplementary Fig. S3, an example of selecting ĩmin = − imax/(L − 1)1, where it is 

effectively observed how the unwanted stimulation near the sink is drastically reduced. The 

interesting aspect of this work is that these solutions can be derived and analyzed from the 

general framework of Eq. (3).

Our findings suggest that a sliding bar for selecting the non–ROI constraint (αI or αE ) can 

be included in neurostimulation planning software to span the whole range of optimal 

solutions. Moreover, within the same framework, a disconnected ROI can be selected to 

target multiple brain regions simultaneously as it can be useful, for instance, to alter large-

scale brain networks. Also, different restrictions can be imposed for anatomically specific 

non–ROIs with different sensitivity (for instance, visual nerves) by partitioning constraints 

(3.i.a) or (3.i.b) into subdomains of Ωnon–ROI.

Although the analysis done in this work is based in the TES context, the same results can be 

applied to other techniques, for instance, to multi-electrode intracranial electrical stimulation 

using electrocorticography (ECoG), or to deep brain stimulation with stereo-EEG electrodes 

(Guler et al., 2018). In these applications, the electric field intensities can be much larger 

than in TES due to electrode proximity to brain tissue and thus, the focality might be 

prioritized. Another technique that can benefit from this work is the application of high 

frequency alternating electric fields to treat malignant glioma, known as TTFields (Miranda 

et al., 2014; Wong et al., 2015). In this application, the goal is to inject currents that cover all 

possible orientations at the localized tumor. An evenly distributed set of orientations can be 

defined as different targets within the tumor, and the TES optimization problems can be 

solved for each target to determine a set of current injection patterns that improves the 

spatial and directional coverage. The reciprocity principle also holds for the magnetic field 

and a duality like this one can be found for TMS/MEG, although dual TMS/MEG equipment 

is technically much more complex to build.

5.2.1. Experimental findings—There have been some studies that experimentally 

tested individually optimized TES montages and/or compared different solutions covered in 

this work. The reciprocity based TES targeting method has been used by Luu et al. (2016) in 

a pulsed TES study of the subject-specific motor area with a restricted number of electrodes, 

eight sources and eight sinks. They found significant effects compared to sham controls, 

though no comparison with a standard montage or other optimization methods was made. 
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Dmochowski et al. (2013) and Richardson et al. (2015) did an experimental post-stroke 

rehabilitation study comparing the optimal directional maximization with the total current 

constraint using two sources and two sinks (that we showed here to be equivalent to the 

reciprocity method) and a conventional two-patch tDCS electrode placement. They found a 

better outcome with the optimized pattern, but with no statistical significance.

Cole et al. (2018) studied the effects of high definition (HD) tDCS (a ring shaped montage 

with one source and four sinks) and conventional tDCS on motor learning in children and 

they found differences with respect to sham controls but no significant differences between 

the two tested montages. Kuo et al. (2013) compared HD and conventional tDCS with an 

experiment stimulating the motor cortex and they found that neuronal plasticity changes 

showed a more delayed peak and longer lasting after-effects after HD tDCS, as compared to 

conventional tDCS. Jacquemin et al. (2018) reported no significant differences in the effects 

of electrical stimulation in tinnitus patients comparing conventional versus HD tDCS. In 

these studies, the placement of HD tDCS electrodes was based on standardized atlases or 

templates but not on subject specific optimal locations.

Fischer et al. (2017) compared a classical tDCS montage stimulation targeting a single brain 

area with a multifocal optimized stimulation based on resting state fMRI networks, finding 

that multifocal network targeting increased the M1 excitability when compared to traditional 

single ROI stimulation. More recently, Laakso et al. (2019) found a correlation between the 

modelled electric field intensity and the efficacy of tDCS in a motor evoked potential 

experiment. This finding suggests that the inter-subject variability might be explained by 

differences in individual electric fields and thus, individual optimization patterns should 

improve individual TES efficacy.

The major conclusion of these studies is that individual head modeling and TES 

optimization are very important to produce individual optimal patterns that can possibly 

account for the variability of experimental results. More comparative studies are still needed 

to assess the true efficacy of the full range of possible individualized optimal solutions, from 

critical point “a” to critical point “b” in Figs. 1 and 2.

5.3. Open debates

We believe that the question of whether focality or intensity (total or directional) should be 

prioritized for each application is still an open question. Each algorithm is optimal in a 

different sense, and the spirit of this work is to be impartial to all presented algorithms 

without judging them by their neurophysiological efficacy. Quantitative analysis of these 

algorithms in terms of focality, intensity and other performance metrics for clinical 

applications is out of the scope of this work, as this was done at length elsewhere (Datta et 

al., 2009; Dmochowski et al., 2011; Datta et al., 2013; Dmochowski et al., 2013; Ruffini et 

al., 2014; Fernández-Corazza et al., 2015; Cancelli et al., 2016; Fernández-Corazza et al., 

2016; Wagner et al., 2016a).

A question of which orientation is better to target in TES, i.e. which one is more 

physiologically influential, is still in debate and would depend on the specific application. If 

pyramidal neurons are the target, a stimulation perpendicular to the cortex surface should be 
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preferred, whereas if interneuron synapses are aimed, a tangential-to-cortex stimulation 

would be more appropriate. Note that all covered algorithms in this work are applicably for 

any orientation of choice. We opted to use normal-to-cortex orientation to illustrate our 

results because it is the most commonly used orientation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Appendix A.1. Equivalence between Eqs. (4) and (6)

Proof that the QCLP in Eq. (4) has the solution of Eq. (6). The standard form of this QCLP 

is î = argmin
i

(−dTΓTi) s . t . iTTTΓTi − α ≤ 0 . Optimal î and λ̂ must satisfy the Karush-Kuhn-

Tucker (KKT) conditions (Boyd and Vandenberghe, 2004):

iTTTΓTi − α ≤ 0 (A.1.a)

λ ≥ 0 (A.1.b)

λ(iTTTΓTi − α) = 0 (A.1.c)

∂(−dTΓTi)
∂i + λ∂(iTTTΓTi − α)

∂i = − dTΓT + λ2iTTTΓT = 0̄ (A.1.d)

Clearing iT from Eq. (A.1.d) we get

iT = dTΓT(TTΓT)−1

2λ
(A.2)

From Eq. (A.1.c) either λ = 0 or iTTTΓTi = α. When λ = 0, since Γ is not 0, from the fourth 

condition the desired orientation field d should be null, which is uninteresting, so λ ≠ 0 and 

iTTTΓTi = α. This means that optimal solution lies on the edge of the feasible set, as 

expected in a QCLP. Replacing i from Eq. (A.2) into iTTTΓTi = α, we get:
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λ = 1
2

dTΓT TTΓT −1TΓd
α . (A.3)

Replacing λ in Eq. (A.2) with Eq. (A.3), we obtain the solution of Eq. (6). The same 

procedure holds if Γnr
8 is used instead of Γ as in the constraint of Eq. (4). Note that λ is in 

[m/V].

Appendix A.2. Equivalence between Eqs. (7a) and (7b)

We now prove that Eqs. (7a) and (7b) have the same KKT conditions for α′ = î
T

TTΓTî, and 

thus, the problems are equivalent. First, we replace the ℓ1-norm constraint ‖ĩ‖1 ≤ 2imax by an 

equivalent linear set of constraints. The points in the L-dimensional space determined by this 

constraint are the interior points of an L-dimensional orthoplex or hyperoctahedron (the 

extension of a square with vertices ±2imax, 0 , 0, ± 2imax  in 2D and of a octahedron with 

vertices ±2imax, 0, 0 , 0, ± 2imax, 0 , 0, 0, ± 2imax  in 3D). The faces of the orthoplex are 

all regular simplices (hyperplanes) scaled by 2imax. For instance, for the 3D case, we can 

rewrite ‖ĩ‖1 ≤ 2imax as the set of constraints:

ĩ1 + ĩ2 + ĩ3 ≤ 2imax

ĩ1 + ĩ2 − ĩ3 ≤ 2imax

ĩ1 − ĩ2 + ĩ3 ≤ 2imax

ĩ1 − ĩ2 + ĩ3 ≤ 2imax

−ĩ1 + ĩ2 − ĩ3 ≤ 2imax

−ĩ1 + ĩ2 − ĩ3 ≤ 2imax

−ĩ1 − ĩ2 + ĩ3 ≤ 2imax

−ĩ1 − ĩ2 − ĩ3 ≤ 2imax

1 1 1
1 1 −1
1 −1 −1
1 −1 −1

−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1

J

ĩ ≼ 2imax1 j̃ĩ ≼ 2imax1 JHi

≼ 2imax1,

(A.4)

where J is a new matrix that accounts for the eight faces of the octahedron, H is the matrix 

that does the conversion ĩ = H ⋅ i, 1 is a vector with all ones, and ≼ means ≤ but elementwise. 

Note that first and last rows of J impose trivial constraints as the additional constraint 

1Tĩ = 0 must hold, i.e. the sum of all elements of ĩ is zero by Kirchhoff’s current law.

Matrix J can be similarly built for the L-dimensional space as a large but linear set of 2L 

constraints (or 2L − 2 if trivial top and bottom constraints are removed), i.e. ‖ĩ‖1 ≤ 2imax is 

equivalent to Jĩ ≼ 2imax1 . The linear set of constraints as an alternative formulation for the 

ℓ1-norm constraint is useful to calculate the derivative in the last KKT condition. Indeed, the 

KKT conditions for Eq. (7.a) become:

8In the Appendices, nr = non − ROI.
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iTTTΓTi − α ≤ 0 (A.5.a)

JHi − 2imax1 ≼ 0̄ (A.5.b)

1THi = 0 (A.5.c)

λq
a ≥ 0 (A.5.d)

λl
a ≽ 0̄ (A.5.e)

λq
a(iTTTΓTi − α) = 0 (A.5.f)

λ1
aT JHi − 2imax1 = 0̄ (A.5.g)

−dTΓT + λq
a2iTTTΓT + λl

aTJH + va1TH = 0̄ (A.5.h)

Where λq
a is the multiplier associated to the quadratic constraint of the first row, λl

a is a 

vector with the 2L multipliers associated to the linear inequality constraints of the second 

row, v is the multiplier associated to the linear equality constraint of the third row, and 

superscript “a” is to distinguish them to the multipliers of Eq. (7.b).

Similarly, the KKT conditions for Eq. (7.b) are:

JHi − 2imax1 ≼ 0̄ (A.6.a)

1THi = 0 (A.6.b)

λl
b ≽ 0̄ (A.6.c)

λl
bT

JHi − 2imax1 = 0̄ (A.6.d)

−2kdTΓT + 2iTTTΓT + λl
bT

JH + vb1TH = 0̄ (A.6.e)

Where now the superscript “b” refers to Eq. (7.b). Note the slight difference of a “2” 

multiplying the first term of Eq. (A.6.e) and the lack of a multiplier in the second term of 
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same equation. These two terms arise from taking the derivative with respect to i of the 

functional to minimize in Eq. (7b).9

Dividing Eq. (A.6.e) by 2k, both KKT set of conditions (A.5) and (A.6) are equivalent when 

2kλq
a = 1, 2kλl

a = λl
b, and 2kva = vb . KKT condition in Eq. (A.5.g) and 2kλq

a = 1 mean that 

λq
a ≠ 0 and imply that α’ = î

T
TTΓTî, where î  is the optimal solution to both problems. In our 

example, we solved Eq. (7.b) assuming k = 1V/m, used that solution to compute 

α’ = î
T

TTΓTî  and verified that with this specific value, solution to Eq. (7.a) indeed is 

identical to solution to Eq. (7.b). We show this comparison in the first two columns of 

Supplementary Fig. S3.

Appendix A.3. Equivalence between Eqs. (8a) and (8b)

Similarly to previous subsection, one can prove the equivalence of the KKT conditions for 

Eqs. (8a) and (8b) when α”′ = î
T

TTΓTî, now with î  being the optimal solution of the WLS 

problem in Eq. (8b). The difference with Eq. (7) is the addition of the set of constraints 

ĩmin ≼ ĩ ≼ ĩmax . These are simple linear constraints that can be easily incorporated to the 

KKT conditions of Eqs. (A.5) and (A.6). We validated this equivalence in an example and 

depict it in the last two columns of Fig. S3.

Appendix B

Appendix B.1. Proof that solutions to Eq. (12) have only 2 active 

electrodes

Here we prove that the corners of the feasible domain of Eq. (12) only have two active 

electrodes. We start by studying the intersection of the ℓ1-norm constraint for î  and the 

Kirchhoff’s Law condition in Eq. (2). Thus, we can rewrite Eq. (12) as 

î = argmax
i

(ΦTi) s . t . ‖ĩ‖1 ≤ 2imax1T ⋅ ĩ = 0 where ĩ = Hi is the expanded current injection 

pattern considering all electrodes as defined in Eq. (2), and 1 is a vector with all ones and 

same length of î . The ℓ1-norm constraint ‖ĩ‖1 ≤ 2imax can be represented as an L-

dimensional orthoplex or hyperoctahedron (see Appendix A). Fig. B1 shows the ℓ1-norm 

constrained domain in blue (square in 2D and octahedron in 3D) and the Kirchhoff’s Law 

geometrical representation for the 2D and 3D cases (two and three electrodes respectively) 

of expanded î  in red.

9The functional is (kd − Ti)TΓ(kd − Ti) = k2dTΓd − 2kdTΓTi + iTTTΓTi .
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Fig. B1. 
Feasible domains D for the 2D (left) and 3D (right) cases, assuming two and three 

electrodes respectively. All vertices correspond to only two active electrodes. The 2D case is 

trivial, with two electrodes, there are only two possible injection patterns: 

(imax, − imax) and (−imax, imax) . For the 3D case there are six vertices, i.e., six possible 

solutions.

The fact that the corners of the intersection of the two constraints are vertices where only 

two electrodes are active can be generalized to L dimensions as follows. The two constraints 

can be expressed as:

(a) ±ĩ1 ± ĩ2 ± ĩ3 ± … ± ĩL − 1 ± ĩL = 2imax

(b) ĩ1 + ĩ2 + ĩ3 + … + ĩL − 1 + ĩL = 0
(B.1)

where the ± sign changes for each orthant (n-dimensional generalization of 3D octant). First, 

note that the two hyperplanes in Eq. (B.1.a) bounding the two orthants with all positive and 

all negative signs are parallel to the hyperplane in Eq. (B.2.b). Thus, there is no intersection 

among them. Second, without loss of generality we analyze the hyperplane at the orthant 

where first R < L variables are positive and the rest are negative, i.e. condition in Eq. (B.1.a) 

is + ĩ1 + ĩ2 + ĩ3 + … + ĩR − ĩR + 1 − ĩR + 2 − … − ĩL = 2imax . By adding and subtracting this 

expression to Eq. (B.1.b) we obtain:
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(a) ĩ1 + ĩ2 + ĩ3 + … + ĩR = imax

(b) −ĩR + 1 − ĩR + 2 − … − ĩL = imax
(B.2)

The expressions in Eq. (B.2) are the positive and negative standard simplices (scaled to imax) 

of R and L − R dimensions respectively. It is known that the D + 1 vertices of the standard 

D-simplex are the points ei ∈ ℝD + 1 corresponding to the canonical basis vectors. Thus, the 

vertices of the intersection in Eq. (B.2) have the form: 

imaxei − imaxej, for i ∈ 1, …, R and j ∈ R + 1, …, L  meaning that only two electrodes are 

active at each possible solution, finalizing the proof.

Appendix B.2. Considering maximum current per electrode limit

We now consider additional constraints ĩmin ≼ ĩ ≼ ĩmax, where the absolute value of every 

entry of ĩmin and ĩmax is smaller than imax. For simplicity, let us assume first that we impose 

the same values c.imax for all ĩmax elements and −c . imax for all ĩmin elements, with c being 

an arbitrary real scalar in the [0, 1] range. For visualization purposes, let us also assume that 

R = 3 in Eq. (B.2.a). Depending on the value of constant c, the simplex will be now 

truncated by the planes ĩ i = c . imax, and six or three vertices will replace previous 3 vertices 

v1, v2 and v3, as depicted in Fig. B2 for different values of constant c.
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Fig. B2. 
Example of how the standard simplexes in Eq (B.3) are altered with a current limit per 

electrode lower in absolute value than imax. In this example we set 

c > 1
2 (left), c = 1

2 (center), c < 1
2 (right) . Corners v1; v2; v3 do not longer belong to the 

truncated simplex, and points va; vb; vc are new corners and thus, possible solutions.3

If c > 1
2 or c = 1

2 , all corners are defined by two active (positive) electrodes and one inactive 

electrode with zero current. If c < 1
2 , three electrodes are active, two of them supplying the 

maximum possible current per electrode and the third one supplying the rest to inject a total 

of imax.

When c is small enough (in this example, if c < 1
3), there is no possible solution on the 

simplex because the sum of the three positive injections can never be equal to imax. In this 

case, more electrodes (i.e. R > 3) are needed to inject imax. That is, a different orthant with 

more positive current injection electrodes (with R > 3) contains the optimal solution for the 

sources. As c gets smaller, more electrodes are involved in the possible solutions or corners, 

all of them injecting the total allowed current per electrode c.imax, except, possibly, for one 

that supplies the rest of the current to reach imax. The reasoning for imposing ĩmin limits to 

the sink electrodes is analogous. In the extreme case that c < 1
L/2 , half of the electrodes will 

be involved as sources and the other half as sinks, and the optimal solution will not touch 

any simplex determined by the ‖ĩ‖1 ≤ 2imax constraint.

Among all corners or possible solutions, the optimal one is the one that maximizes ΦΓ
T i (see 

Eq. (12)). It is then evident that the optimal solution involves the electrodes with maximum 

potential ΦΓ differences. And all sources inject the same amount of current except, possibly, 

for one, and the same happens with the sinks.

Lastly, if the current injection bounds are not the same for all electrodes, the same reasoning 

can be applied and the optimal solution is found as follows: pick the electrode with largest 
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electric potential and inject as much current as possible, then select the second electrode 

with maximum potential and inject as much current as possible, and repeat this process until 

the total maximum current injection limit is reached. Then, repeat this procedure for the sink 

electrodes but for the lowest ΦΓ. That one is the optimal solution to Eq. (12) with the 

addition of the ĩmin ≼ ĩ ≼ ĩmax set of constraints.

Appendix C.: Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/

j.neuroimage.2019.116403.
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Fig. 1. 
Iterative solutions to the constrained directional maximization problem in Eq. (3) with 

constraint of Eq. (3.i.a) and computed with the SDPT3 solver. (A) Mean ROI directional 

intensity measured as the functional to be maximized in Eq. (3) divided by ΩROI volume 

(blue line), total injected current (red line), and integral focality (black line) as a function of 

the Ωnon–ROI energy upper bound (αI). (B) Some examples of the iterative solutions: optimal 

current injection patterns î  (first row); modulus of the electric field at the brain with ΩROI 

circled in black (second row), and absolute value of the normal-to-cortex component of the 

electric field (third row). Color scale limits are different, increasing from left to right. The 

solutions in the pale pink zone of (A) are equivalent, except for a scaling constant, to the 

WLS closed-form solution. The iterative solutions in the pale blue zone of (B) are equivalent 

to the closed-form one-to-one reciprocity solution. Between critical points “a” and “b”, there 

is a smooth transition between both extreme solutions.
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Fig. 2. 
Iterative solutions to the constrained directional maximization problem in Eq. (3) with the 

constraint of limiting the electric field intensity at each Ωnon–ROI element (Eq. (3.i.b)). (A) 

Mean ROI directional intensity measured as the functional to be maximized in Eq. (3) 

divided by ΩROI volume (blue line), total injected current (red line), and elementwise 

focality (black line) as a function of the Ωnon–ROI maximum electric field (αE). (B) Some 

examples of the optimal solutions: optimal current injection patterns î  (first row); modulus 

of electric field at the brain with ΩROI circled in black (second row), and absolute value of 

the normal component of the electric field (third row). Color scale limits are different, 

increasing from left to right. The solutions in the pale pink zone of (A) have the same 

pattern, except for a scaling constant. The iterative solutions in the pale blue zone of (B) are 

equivalent to the closed-form one-to-one reciprocity solution. Between critical points “a” 

and “b”, there is a smooth transition between both extreme solutions. We marked an 

additional point “c”, where the focality starts to decrease more sharply.
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Fig. 3. 
Focality values as a function of the mean electric field intensity in ΩROI for the solutions 

obtained with the Ωnon–ROI integral constraint (solid line) and with the Ωnon–ROI elementwise 

constraint (dotted line). Subfigure A shows the integral focality plots and subfigure B shows 

the elementwise focality plots for both optimal solution approaches. The red circles indicate 

the corresponding critical points “a” of Figs. 1A and 2A, i.e. the points where the optimal 

solutions reach the maximum available budget.
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Summary of covered approaches in the unified framework.
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