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Text mining has been shown to be an auxiliary but key driver for modeling, data

harmonization, and interpretation in bio-medicine. Scientific literature holds a

wealth of information and embodies cumulative knowledge and remains the

core basis on which mechanistic pathways, molecular databases, and models

are built and refined. Text mining provides the necessary tools to automatically

harness the potential of text. In this study, we show the potential of large-scale

text mining for deriving novel insights, with a focus on the growing field of

microbiome. We first collected the complete set of abstracts relevant to the

microbiome from PubMed and used our text mining and intelligence platform

Taxila for analysis. We drive the usefulness of textmining using two case studies.

First, we analyze the geographical distribution of research and study locations

for the field of microbiome by extracting geo mentions from text. Using this

analysis, we were able to draw useful insights on the state of research in

microbiome w. r.t geographical distributions and economic drivers. Next, to

understand the relationships between diseases, microbiome, and food which

are central to the field, we construct semantic relationship networks between

these different concepts central to the field of microbiome. We show how such

networks can be useful to derive useful insight with no prior knowledge

encoded.
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1 Introduction

Microorganisms are omnipresent and live in close association with their hosts. The

microbiome is often referred to as the collection of all such microorganisms. The

microbiome is increasingly understood as a primary driver and facilitator of human

health (Eckburg et al. (2005)). Themicrobiome can be found throughout the human body,

in the skin, gut, and even in the blood. The spread and diversity of the microbiota in

different sites of the body have been shown to have a direct impact on overall well-being

and disease states. For instance, taxonomic shifts in intestinal microbiota are shown to be

strongly correlated with inflammatory bowel diseases (IBD) (Bekkers et al. (2021)).
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Studying microbiomes using metagenomic sequence data

through high throughput screening technologies such as 16S

rRNA sequencing, whole metagenome shotgun sequencing,

and their analysis is a topic of major interest and has been

leading to an explosion of major discoveries. Besides this

data (often termed as primary data), scientific publications

store collective knowledge (referred to as secondary data) in

unstructured, natural language form. The ever increasing

rate of publications in the field is evident, as seen in Figure 1),

where we plot the number of publications every year

journaled in PubMed. Interestingly, over 20 percent of

the total publications in the field have been published

in 2021.

PubMed, for instance implicitly stores relationships between

different concepts such as microbes, the diseases they affect, food

that contribute to alterations in microbiome in the abstracts

(unstructured format). Systematically extracting these

relationships from text is the core thesis of the field of natural

language processing (NLP) and text mining. For instance, NLP

models such as Named Entity Recognizers (NERs) can identify

key concepts such as Geographical location, disease terms,

microorganisms name mentions etc. from text and map them

onto the corresponding standard identifiers and further ascertain

relationships between them. Text-mining tools in that sense help

by systematically retrieve, annotate and extract existing

knowledge and potentially be the basis of forming potential

new hypotheses that can be used for designing future

investigations.

Given our nascent level of understanding of the microbiome,

there are many avenues where text mining can aid in first gaining

a succinct understanding of current knowledge, identifying gaps

in them, and further aid in bridging these gaps to accelerate

scientific discovery. For instance, concerning the human

microbiome, there is a multitude of anatomical areas where

the microbiome is prevalent and studied. When we analyzed

the literature in PubMed for the distribution of studies relevant to

anatomical areas, we found that the gut microbiome is the most

studied (> 85%) followed by oral microbiome etc (See Figure 2

for details).

With the help of two illustrative case studies, we show how

text mining can be a powerful enabler. First, for our study, we

focus on bibliometrics which deals with the statistical analysis of

publications (Cobo et al. (2015)). Bibliometrics enables

endpoints such as understanding key scientific leaders or

institutions, major topics, network properties of scientific

discipline among others (Sinatra et al. (2016)). Interestingly,

even within the field of microbiome there have been attempts

to use bibliometrics to understand publication trends (Zhu et al.

(2021); Yue et al. (2020)). Our motivation stemmed from a recent

study (Abdill et al. (2022)) which analyzed global repositories of

human microbiome studies focused on DNA sequencing data

sets and found that there was an over-representation of the

developed world. Given that the analysis of such data sets often

leads to scientific publications, we hypothesized that similar

trends should be observed in publications too. In this paper,

we perform a thorough analysis of all publication abstracts

FIGURE 1
Growth of publications pertinent to microbiome in PubMed over the years.
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pertinent to the microbiome. Moreover, In addition to

confirming existing studies (using alternate approaches than

text mining), we could further draw additional insights by

analyzing text given the richness of the meta-information in

the publications.

For this, we analyze the mention of geographical information

in text by considering text in abstracts (which we assumed is a

proxy for a study focused on a geolocation) and from author

affiliations (which we assume is a proxy for countries that are

driving research in microbiome through research funding) to

perform geographical trend analysis. Our focus was to compare

funding of research vis-à-vis geo-specific studies. For this, we use

custom-built named entity recognizer modules that identify

geographical entities mentioned in text. Our analysis leads us

to results similar to those shown in Abdill et al. (2022).

Additionally, we were able to draw interesting new insights

based on combining both these dimensions. More details on

the methods and results are presented in further sections of the

paper.

Next, interactions between key concepts relevant to

microbiome, in particular, the microorganisms, the disease,

and the food are being investigated extensively in numerous

studies and this information is scattered in scientific literature.

Manual efforts such as Li et al. (2021) and Janssens et al. (2018)

focus on systematically curating such interactions from

literature manually. There have been multiple studies looking

at learning and identifying interactions through various text

mining and supervised learning methods (Lim et al. (2016);

Zafeiropoulos et al. (2022)). Co-occurrence based interaction

networks have also been attempted (Freilich et al. (2010)).

While most of these methods either rely on labeled data or

on more traditional means of information extraction, our focus

is on leveraging the recent advancements andmodels in the field

of text mining for extracting interactions relying on

unsupervised learning strategies that don’t rely on the

availability of labeled training data. Specifically, we learn a

shallow neural network (word2vec) which in turn learns

word (phrase) embeddings (Mikolov et al. (2013)). The

vectors that represent each word’s (phrase’s) embedding have

implicitly learned the relationship between the words (and

phrases) and hence such vectors can be compared for their

relatedness using measures such as vector cosine similarity.

After learning the embeddings of each word (and phrase) in the

corpus, we construct word2vec embedding based networks

(semantic similarity networks) based on disease, food, and

microbiome terms in the corpus (obtained from running our

NERmodels). The networks have the key concepts as node pairs

with edges weighted by their cosine similarity values. A cosine

threshold was used to limit the edges of the network. We show

that these networks implicitly capture a lot of well-known

associations between the concepts. They are useful to

uncover interesting relationships between key terms and can

be used for encoding prior knowledge effectively. More

importantly, we also made an interactive tool available for

users to explore and draw further insights.

All of the text analysis presented in this paper leverages on

the text analysis and intelligence platform Taxila (Ghosh et al.

(2011)). Taxila focuses on automatic collection, collation,

extraction, and interpretation of knowledge from scientific

communications and other diverse sources of text. It comes

with powerful off-the-shelf NLP modules to harness the

power of text. Additionally, practitioners and machine

learning engineers in NLP can build powerful models directly

into Taxila without any pre-configuration. Taxila in that sense

aims to bridge the gap between domain scientists in bio-medicine

and NLP researchers effectively.

In terms of the structure of the paper, Section 2 details the

methodology of our approach including details of the data set we

use. Section 3 applies the methodology on the microbiome data

set and discusses the results we obtain. Further, Section 4 puts our

results in perspective by identifying avenues of improvements

and sets the stage for further research.

FIGURE 2
Distribution of publications pertinent to microbiome and anatomical areas in PubMed.
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2 Methods

2.1 Data acquisition

For creating a text corpus, we collected PubMed abstracts.

We usedmicrobiome as the search query in PubMed to extract all

abstracts into the Taxila system. Given a search query, Taxila

automatically fetches from PubMed using eutils (Sayers (2009))

and stores the text data (including metadata) after preprocessing

and prepares it for further processing. In total, 108,515 abstracts

were extracted. Publication date ranges for the collected

publications were from 18 Dec 2000 to 01 Mar 2022. The

PubMed id, abstract, title, authors, and their affiliations were

collected. Data was collected on 01 Mar 2022.

2.2 Geographical analysis of text

As discussed in previous sections, recently, it was reported

that microbiome genome data sets are over-represented and

focused on the developed world (specifically the

United States) (Abdill et al. (2022)). While these results have

spurred a lot of debate, we wanted to delve deeper to see if similar

trends can be obtained purely from the analysis of publication

abstracts and more importantly if further new insights can be

drawn from analyzing text. Specifically, we explored the

following dimensions.

• Analyze the geographical trend on the mentions of

geographical information (such as cities, counties etc.)

in the abstract text. We assumed that mention of

geographical information in an abstract suggests a study

focused on that geography.

• Analyze the geographical trend of scientific community

interest in the microbiome. For this, we considered

researchers who were publishing in the field of microbiome

and their affiliations. Here we assume that thismetric is a good

proxy for research funding from the countries as well as a

growing awareness of the field in the geography.

• Combine and compare analyses from one to two together

to see if they led to novel insights.

• In both the above aspects we wanted to understand if there

was a role of the economic status of countries. For this we

used the new world bank economy classification of

countries as a basis to classify countries and present our

analysis (Wor (2022))

Our pipeline for analysis of the above hypotheses is shown in

Figure 3. Specifically, on our dataset, we first perform a round of

pre-processing and clean-up of text. Next, the text analysis

algorithms analyze the text in the abstract section and title of

the papers and information from author affiliations. Taxila’s

geolocation module analyzes these texts separately to assign a

country to every article (where geolocation can be extracted).

While for abstract text it is relatively straightforward to assign a

geolocation i. e mention of geographical location in the abstract,

for author affiliation, we consider the additional aspect that even

if an author published more than one paper in the field, their

name and hence their contribution to the geo statistic occurs only

once. However, if an author has multiple country affiliations,

then they would contribute once to all the countries they hold

affiliations for. The information of the author and the affiliation

is obtained from PubMed.

2.3 Vector based semantic similarity
networks

Next, like co-occurrence networks which are common means of

understanding relationship between terms (concepts) in NLP, we

FIGURE 3
Analysis workflow for geographical trends and semantic similarity in Taxila.
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propose a cosine similarity networkwhere nodes represent key terms/

concepts in a corpus (in our case disease, food, and microbiome

terms) and edges are ameasure of the semantic similarity between the

nodes. For instance, a Cosineθ,V,E network would comprise of nodes

represented by set V which are the set of key terms, an edge exists

between two nodes if and only if the cosine similarity between the two

nodes is above threshold cos θ. The set E, therefore, consists of all

node pairs whose vector cosine similarity is more than the threshold

cosθ. Details of the network are presented in Figure 4. This network

has interesting properties and can be queried to understand the

relationship between key terms in the corpus.

Our NLP pipeline for constructing these semantic similarity

networks is as shown in Figure 3. Specifically, we start with a corpus

of all article abstracts from PubMed for search query microbiome.

Among the over 108K articles, we first perform text pre-processing

and clean up. After this, we run two parallel lines of NLP tasks, one to

train word2vec model on the whole corpus and another on running

named entity recognizers to identify key terms pertinent to diseases,

food and microbiomes (bacteria names).

For the first task, we used the vectorization module in Taxila

with the following parameters to train a word2vec model. Vector

length: 100, Train epoch: 10, Initial learning rate: 0.025, Window:

5, Minimum word count (in corpus): three and Algorithm: skip-

gram with negative sampling (=5). For the second task, we used

custom trained taggers (NERs) in Taxila for identifying disease

terms, microbiome terms and food terms in the corpus.

Once these two tasks run independently, we get the vector for

every term identified by the tagging module. The key terms and

their vectors will now be used to create the semantic networks

based on the cosine distances as described earlier.

3 Results

This section details the results of our analysis for both the

geographical analysis and the semantic network construction

analyses.

3.1 Geo-analysis

3.1.1 United States leads the pack, followed by
China and most of the developed world in
microbiome research

First, we considered the text in the title and abstract of

publications and identified geographical location mentions

(i.e., say a city, country mention) using Taxila’s geolocation

model. We then mapped them to their corresponding

country. We assumed that mention of a geographical location

in the abstract or title, directly refers to a microbiome study

focused on the geographical area. Figure 5A shows the

distribution of the articles on a geographical map. It was

interesting to see that the United States and China led the

pack by huge margin, followed by countries like Germany,

Japan and Switzerland (top 20 countries are shown in

Figure 5C). Given that the number of publications of the top

two countries (United States and China) was considerably higher

than the other countries, we also show Figure 5B on a logarithmic

scale the distribution of countries. This image shows that even

among the long tail of countries, African and South American

countries (excluding Brazil) had very few microbiome studies.

This led us to look at statistics w.r.t. continents. Not surprisingly,

North America and Asia led the pack (riding on the United States

and China respectively). As seen in the country distribution,

Africa, South America, Oceania, and Antarctica had considerably

less studies.

It was clear that the number of microbiome studies focused

on specific geographies had clear differences and patterns. Next,

we wanted to check if this was reflected in the geographical

location derived from researchers who were working in the field

of microbiome. For this, using Taxila, we extracted information

about affiliation of authors publishing in microbiome and using

this information, assigned a geolocation for each researcher. For

instance, if a researcher is affiliated to one or more institutions in

the United States, their geolocation would be the United States.

Similarly, if a researcher is affiliated to institutions in multiple

FIGURE 4
Construction of vector based semantic similarity networks.
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countries, they would be counted one time each for every

country. We devised this experiment to understand if the

availability of geolocation specific microbiome studies/datasets

(proxy by geographical information in an abstract) correlated

with corresponding increase in the number of researchers

working on microbiome and subsequently to funding. As

expected, we found similar trends as before. The United States

and China led the pack with a considerable number of

researchers active in the field of microbiome as evident in

Figures 6A–C. Interestingly though, when we grouped them

into continents like before, we observed that Europe led the

pack followed by Asia and North America. This meant in terms

of just research interest/funding (proxy by the number of

researchers working in the field), Europe led the group.

While it seemed that countries which had geolocation

mentioned in abstract and title were indeed those where a

lot of research activity was observed, we wanted to see if this

was always correlated. For this, we used the help of a scatter plot

with the number of abstracts vs. number of scientists from a

geography as shown in Figure 7. As expected, one could see a

linear correlation between the two. However, it was interesting

to see, for instance, Antarctica has a lot more abstracts

mentioning Antarctica than the number of researchers with

affiliations to it. On the other hand, countries like Luxembourg,

seemed to be having a lot more researchers interested in

microbiome than the amount of data sets originating from

there. This was interesting and something that was not analyzed

before.

3.1.2 Economic stability, a key driver of
microbiome research

Next, based on the outputs and analysis of the country and

continent distribution, we wanted to see howmuch the economic

stability of a country was a primary driver of research and

advancements in the emerging field of microbiome. For both

the dimensions explored earlier, we mapped countries into High

income, Upper middle income, Lower middle income, Low income

and Not classified based on the World Bank classification of

countries (by income). In line with our hypothesis, both in-terms

of microbiome data sets and researcher interests, High income

countries were driving progress in the field followed by Upper

middle income, Lower middle income and low-income countries.

These trends are shown in Figure 8. Further we color coded

countries based on their economic classification in the scatter

plot, it can be observed there are clear clusters w.r.t. high income

countries. It was interesting to see China, Brazil and India (from

the other pack being leaders in microbiome research and output).

3.2 Mining semantic associations between
disease, microbiome and food

We constructed semantic similarity networks as described

in section 2.3 for our data set. The network attributes of nodes

FIGURE 5
Analysis of geographical location mentions in text. (A) shows the number of publications in absolute numbers on a map where the intensity of
the color represents the numbers; (B) Same statistics as (A), but plotted in logarithm scale; (C) Top 20 country mentions; (D) Continent level
distribution of articles.
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and edges are dependent on the cosine distance threshold that

is chosen. For instance, choosing a smaller value of threshold

would result in fewer connected nodes and edges in the

network. The nodes and edge combinations in such a

network would represent a more confident association based

on the available literature since a low value of cosine distance

between two nodes indicates that they are semantically similar

or related. As we increase the cosine threshold, more nodes

and edge would be added to the network with a lot more false

positives. To understand the effect of the increase in the

FIGURE 6
Analysis of geographical location from researcher affiliations (A) shows the number of authors in absolute numbers on a map where the
intensity of the color represents the numbers; (B) Same statistics as (A), but plotted in logarithm scale; (C) Top 20 countries based on researcher
affiliations; (D) Continent level distribution of articles.

FIGURE 7
Scatter plot between the number of abstracts mentioning geographical information to the number of scientists from a geographical location
(logarithmic scale). Each dot on the scatter plot describes a country and the color denotes the income classification of the country. Key countries
have been labeled. For complete set of labels please refer the supplementary section.
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threshold, we plotted the distribution of the change in edge

and node characteristics. Details can be found in Figure 9, it

shows the distribution of the edges (left side) and nodes (right

side) of the networks as we increase the cosine distance

threshold for the disease-food, microbiome-food and

microbiome-disease pairs. It is interesting to note that all

the network combinations show a normal distribution for

edge distribution with different means. For instance, the

mean of the disease-food network is closer to a cosine

distance of 1, while for microbiome-disease and

microbiome-food networks are much less than 1. The

networks change w. r.t to the chosen cosine distance cut-

off. We present a publicly available interactive portal to view

these networks Syed Ashif Jardary Al Ahmed 2022a).

Networks can be dynamically generated in the portal by

changing the cut-off values.

It is important to note that all these networks (and

relationships) have been derived in an unsupervised manner,

i. e just using the text corpus only with no labeling or training

data (usually needed for supervised learning models). No prior

knowledge about the relationships between the microbiome,

disease and food pairs were used to train the model. For us, it

was interesting to see how well relationships can be learnt in this

setting.

To assess the quality of the associations that were derived

from the semantic networks, we set out to compare them with

FIGURE 8
Distribution of researcher geographical profiles and geographical location mention in text grouped by economic classification of countries. As
expected, High income and Upper middle income countries lead the pack by driving over 90% of research outputs and data sets.

FIGURE 9
Node and edge distribution of the constructed semantic similarity networks, the left side of the plot shows for all the three concept pairs, the
distribution of edges in the network as we increase the cosine distance. The right side of the graph shows the same metric w. r.t to the nodes of the
network.
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association networks that were manually curated from

experimental data and full-text articles. We choose to

compare our approach to the Disbiome database (Janssens

et al. (2018)). Disbiome collects and systematically presents

published microbiome-disease information. We downloaded

the latest version of the database (downloaded on 7 July 2022)

which consisted of microbiome-disease pairs. We wanted to

check how many of these links are present in our networks,

derived from just abstracts. Among the 8,456 edges in the

Disbiome database, 7,910 edges were found in our semantic

network (93.5% of the edges). We believe that the remaining

edges are not present since the mention of the disease terms or

microorganism names does not occur in the abstract of the

article. Figure 10 shows the edge coverage in semantic

networks with increasing cosine threshold to the associations

found in Disbiome database. While it is interesting that many of

the relationships were extracted only from abstracts, we believe

that the accuracy can be further improved using full-text articles.

Details of the edges and the cosine distances are available in the

supplementary details of the paper.

Further, we now show the efficiency of the learnt relationships

using a few empirical case studies. For instance, Figure 11A shows

the network with a cosine threshold of 0.35 (for disease and

microbiome pairs). Yellow nodes represent diseases, blue nodes

FIGURE 10
Edge distribution of the different microbiome-disease associations from Disbiome database found in our semantic networks along with the
corresponding cosine distance range.

FIGURE 11
(A)Cosine network for cosine threshold of 0.35 of disease vs. microbiome relationship; (B)Cosine distance heatmap for disease vs. microbiome
relationship.
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represent bacterial microorganisms and an edge between a yellow

node and a blue node indicates that the cosine distance between the

terms is at most 0.35 i.e., they are likely to be very close to each other.

For instance, in the top part of the network one can see a link

between dysentery and brachyspira hyodysenteriae. This indicates
that semantically these two concepts are related to each other, as

corroborated by literature evidence (Leser et al. (2000)). Similarly,

Figure 11B shows the same information as a heat map where rows

correspond to microorganism names and columns correspond to

diseases. The intensity of the color corresponds to the cosine

threshold. Similar sub-networks can be extracted for (disease,

food), (disease, microbiome) and (microbiome, food)

combinations. All of this can be used in the tool that we make

public with this paper. We have also attached the network diagrams

of various threshold 0.2, 0.45, 0.5, 0.6 in the supplementary section.

For instance, consider some of the (disease, food) and (disease,

microbiome) combinations. We investigated colorectal cancer as

the disease term. Figure 12 shows the disease-microbiome network.

As one can see there seems to be strong link between the disease and

bacterial species such as fusobacterium nucleatum (Leser et al.

(2000)), bacteroids fragilis (Ulger Toprak et al. (2006)) etc which is
corroborated by strong literature evidence. Similarly, for colorectal

cancer, we wanted to check which are the food terms which had the

most correlation. As it turns out, terms like celery (Hu et al. (1991)),

rhubarb (Mantani et al. (2002)) and sweetener (Li et al. (2020))

came up as important food. The key point to take away is that these

relationships have been automatically inferred only from text and

no other prior knowledge was fed into the algorithm for learning.

Next, we focused on food terms as the focus and investigated

the (food, microbiome) aspect. For instance, to understand the

microbiome participants which are correlated with buckwheat

which has been well known for its regulatory effects on the body

and gut microbiome, we investigated the network for terms

buckwheat and common buckwheat. Figure 13 shows the

network. We can see that bacterial species such as those of

genus lactobacillus (Coman et al. (2013)), lactococcus
(Shigemori et al. (2013)), bifidobacterium (Zhou et al. (2018))

are highly correlated with buckwheat.

After this let us see an example pertaining to which are the

food items which have a regulatory effect on certain bacterial

species. Let’s consider verrucomicrobia, which are well known

bacterial species known for their positive impact on the gut

health, we found that food terms such as rye bread (Prykhodko

et al. (2018)), granola (Ren et al. (2021)), sesame oil (Yuan et al.

(2019)) and seaweed (undaria pinntifida) (Sichert et al. (2020))

have a high association. Figure 14 shows the network. This could

imply a diet rich in these food items could have some impact on

the incidence of the verrucomicrobia.
While all of the illustrative case studies described above were

confirmatory, we wanted to check if the networks could be used

for predictive purposes. For this, we chose to focus on “Long

COVID”, which is a collective term used to describe the effects

and persistence of symptoms for those who have already

recovered from COVID (Crook et al. (2021)). According to our

semantic network, the top 10 microbiome players relevant were

human coronavirus, mycoplasma pneumoniae, actinomycetaceae,

respiratory syncytial virus, aeromonas salmonicida, human

adenovirus, sarcina ventriculi, arcanobacterium, enterovirus,

cytomegalovirus, and corynebacterium pseudodiphtheriticum.

Next, we started looking for literature evidence implicating these

microbiome players. While for most of the microbiome players, we

found literature evidence, there was no explicit evidence for

actinomycetaceae, arcanobacterium and aeromonas salmonicida

in the corpus of literature that we considered for the analysis.

Interestingly, we found a publication, Wang et al. (2022), which

implicated bacteria of the actinomycetaceae in Long − COVID, it is

important to note that we had only considered publications till

March 2022 for this analysis. Similarly, arcanobacteriummay be

linked to the condition since they have been implicated in

sepsis, pharyngitis, etc. While we do explicitly make claim of the

FIGURE 12
Disease and food keywords most relevant to colorectal cancer inferred from the semantic similarity network.

Frontiers in Physiology frontiersin.org10

Ahmed et al. 10.3389/fphys.2022.933069

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.933069


predictive nature of these networks, we think that these

networks can be the basis of devising new hypothesis

generation algorithms in the future.

More importantly, we wish to highlight that we chose a

limited subset of interactions to describe for the paper. Users are

free to use the interactive tool, where they can interactively

generate the networks by dynamically changing the threshold.

The tool is hosted online and can be accessed here.

4 Discussions and conclusion

In this paper we show how using NLP tools, we can quickly

harness large, focused text corpus to draw interesting insights

with no prior knowledge. Using our text mining platform Taxila,

we focus on two case studies. First, we attempted to understand

the geographical distribution of microbiome research purely

from information coming from abstracts (text + metadata).

We were able to draw some interesting insights on the

geographical distribution of microbiome research which was

consistent with similar published work that focused on

analyzing microbiome data sets. In terms of future work,

while the focus of our analysis was purely on the frequency

calculations on the microbiome subset of papers, we realize that

for more meaningful insights can be drawn by normalizing the

publication counts w. r.t to total papers from a country.

Additionally, we did not focus our study only on human

related studies, we considered the general microbiome space.

Both these considerations can be the focus of future studies and

currently are out of scope of this paper’s analysis.

Next, we focused on retrieving interactions and relationships

between key concepts in microbiome space namely disease terms,

food terms and microbes. Instead of traditional ways of

extracting relationships, either through co-occurrence or

training supervised machine learning models. We leveraged

the method of computing word embeddings (using the

word2vec algorithm) to capture the relationship between key

terms and showed that the embeddings preserve relationships

between these concepts. Such networks are already very useful

aids for understanding the key relationships quickly and more

importantly can be used as features for further focused studies

(such as in Alachram et al. (2021)). We also did not compare the

quality of the networks with existing hand curated manual efforts

in this direction, it will interesting future work to perform a data

driven comparison to assess the performance. Additionally, it

would be interesting to use these embeddings to infer causality or

to infer positive or negative correlations between concepts (such

as in Wu et al. (2021)). Additionally, in this study we only

established the quality of the learnt semantic relationships

empirically since our focus was only to establish the potential

of text mining algorithms to derive such relationships with no

pre-training or domain understanding, a more rigorous analysis

FIGURE 13
Microbiome players most correlated with buckwheat inferred from the semantic similarity network.

FIGURE 14
Microbiome and food keywords most relevant to
verrucomicrobia inferred from the semantic similarity network.
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of the networks is interesting future work. Additionally, it would

be interesting to compare relationships with manually curated

efforts (or prior knowledge in databases) in this direction.

Additionally, linking the two analysis together

i.e., geographical analysis with concepts of disease or

microbiome is interesting, to study to see if there are trends

on disease focus or microbiome focus.
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