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ABSTRACT: RET receptor tyrosine kinase is crucial for nerve and
tissue development but can be an important oncogenic driver. This
study focuses on exploring the design principles of potent RET
inhibitors through molecular docking and 3D-QSAR modeling of 5,6-
fused bicyclic heteroaromatic derivatives. First of all, RET inhibitors of
49 different bicyclic substructures were collected from five different data
sources and selected through molecular docking simulations. QSAR
models were built from the 3399 conformers of 952 RET inhibitors
using the partial least-squares method and statistically evaluated. The
optimal QSAR model exhibited high predictive performance, with R* (of
training data) and Q* (of test data) values of 0.801 and 0.794,
respectively, effectively predicting known inhibitors. The optimal model
was doubly verified by patent-filed RET inhibitors as the out-of-set data
to demonstrate acceptable residual analysis results. Moreover, feature
importance analysis of the QSAR model outlined the impact of substituent characteristics on the inhibitory activity within the S,6-
fused bicyclic heteroaromatic core structures. Furthermore, the relationship between structure and inhibitory activity was
successfully applied to the RET screening of known clinical and nonclinical kinase inhibitors to afford accurate off-target prediction.

Predicted Activity(pIC50)

1. INTRODUCTION inhibitors (MKIs) and selective RET inhibitors have received
FDA approval for the management of radioiodine-refractory
differentiated thyroid cancer or metastatic medullary thyroid
cancer (MTC).” Notably, Selpercatinib (also known as
Retevmo or LOXO0-292) has been granted Accelerated
Approval by the FDA.® This approval applies to the use of
the RET kinase inhibitor in patients with metastatic NSCLC
harboring RET fusions, as well as those with MTC harboring
RET mutations. Recent data demonstrate the efficacy of
Selpercatinib over standard care therapy in cancer types
characterized by recurrent RET alterations.’

Although RET inhibitors (Figure 1) have been continuously
reported, quantitative structure—activity relationship (QSAR)
models and other predictive models have not been sufficiently
studied. To our best knowledge, reported 3D-QSAR models
for RET kinase inhibitors used a focused data set sharing one

The rearranged during transfection (RET) receptor tyrosine
kinase plays a crucial role in the development of the enteric
nervous system and genitourinary tissues.” Cancer research
identified RET as an oncogenic driver in nonsmall-cell lung
cancer (NSCLC),” RET alterations exhibit significant associ-
ations with various malignancies.” The activation of down-
stream pathways such as PI3K/AKT and MAPK, which are
observed in the RET fusion protein tyrosine kinase, stems from
ligand-independent homodimerization and autophosphoryla-
tion resulting from the intrachromosomal rearrangement of
RET.” Cancers related to RET alterations encompass lung
adenocarcinoma, colon adenocarcinoma, medullary carcinoma
of the thyroid gland, cutaneous melanoma, and melanoma; of
the various alterations, RET point mutations and fusions are
prevalent,” both of which are closely linked to unfavorable
prognoses. Notably, the occurrence of brain metastasis among
RET-altered patients, RET(+) stands at 46%, markedly higher Received:  August 26, 2024
than that observed in RET(—) counterparts.’ Although rare, Revised: ~ November 23, 2024
RET rearrangements delineate a distinct subtype of metastatic Accepted:  November 27, 2024
colorectal cancer characterized by poor prognosis under Published: December 6, 2024
conventional therapies, warranting specialized management

approaches.” Following pivotal clinical trials, multikinase

© 2024 The Authors. Published b
American Chemical Societ¥ https://doi.org/10.1021/acsomega.4c07843

v ACS PUbl ications 49662 ACS Omega 2024, 9, 49662—49673


https://pubs.acs.org/curated-content?journal=acsodf&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sumin+Jin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Surendra+Kumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mi-hyun+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.4c07843&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07843?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07843?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07843?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07843?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07843?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/9/50?ref=pdf
https://pubs.acs.org/toc/acsodf/9/50?ref=pdf
https://pubs.acs.org/toc/acsodf/9/50?ref=pdf
https://pubs.acs.org/toc/acsodf/9/50?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.4c07843?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

ACS Omega http://pubs.acs.org/journal/acsodf
TKIs Approved for TKIs Approved for Selective ibitor Ap ed fo
Medullary Thyroid Cancer (MTC) Differentiated Thyroid Cancer (DTC) RET(+) Thyroid Cancer & NSCLC
N Y L P N
Vandetanib(2011) O\»m Lenvatinib (2015) ) ’ Selpercatinib (2020)
o 7 . cl
Phase 3 ZETA trial L Phase 3 SELECT trial ina )
(WellJr et al.) ,Q\ﬁ. (Schlumberger et al.) L Phase(\?vh-ltEEtRa-:_)ro trial
T T =N
1 1 N7
; . | o/ N
1 1 Wl ! Z’N
/”@ Cabozantinib (2012) o Sorafenib (2017) o =\,
oA o - \ 7
JeRes
hoRENe Phase 3 EXAM trial :qJCLNJLN " " Phase 3 DECISION trial
e (Schiumberger et al) T W R (Brose et al) "o /

Figure 1. Summary of FDA-approved RET inhibitors. Abbreviation: TKI, tyrosine kinase inhibitor; DTC, radioiodine-refractory differentiated
thyroid cancer; MTC, metastatic medullary thyroid cancer; NSCLC, nonsmall-cell lung cancer.

ChEMBL
BindingDB

3D-QSAR Model
(PLS-Regression)

RET Inhibitors
in Patent

) Dataset
Data Docking Selection
Collection to RET —/
(49 Cores)
Needs: MKI ->

Diverse Data of 5,6-

Selective Drug with IP Fused Bicyclic Rings

Figure 2. Overall workflow of this study.

Building &
Selection of 3D-

QSAR Models

RET Screening
Model Validation

- as an Off-Target

Patent Driven
Validation

Application to Off-
Target Screening

0
or

common core structure (scaffold) such as indolin-2-one’
pyrrolo[2,3-d]pyrimidine.'" However, the ideal design of
kinase inhibitors necessitates the replacement and variation
of both core structures and side chains to optimize the
synthetic method, drug efficacy, and ADMET."> Heterocycle
substitution, among several scaffold hopping strategies, offers a
direct means of modifying the core structure of a known
bioactive compound, which is especially beneficial for
molecules posing synthetic hurdles. This method entails the
replacement of carbon atoms with heteroatoms within the core
ring of drug molecules, with the goal of improving their
physicochemical properties and pharmacokinetic profile."?
Moreover, recently reported considerable RET inhibitors
commonly possess a S5,6-fused bicyclic ring that interacts
with the hinge region of RET kinase, and it is termed a hinge
binder."*"® Particularly, a 5,6-fused bicyclic ring was more
frequently used in RET-selective inhibitors than in multikinase
inhibitors.

Therefore, we believe that researchers involved in the
discovery of kinase inhibitors have a strong need to investigate
the sophisticated SAR between these $,6-fused bicyclic
derivatives. In other words, we are motivated to develop 3D-
QSAR models for explaining 5,6-fused bicyclic hinge binders,
which have increasingly entered nonclinical and clinical studies
for RET(+) patients. For this purpose, herein, we collected
RET inhibitors from public databases, classified them based on
the ring system of their hinge binders, and compiled a
comprehensive data set of 49 different 5,6-fused bicyclic
heteroaromatic rings with 952 inhibitors as a data set. In this
study, we elucidate the subtle SAR difference among 5,6-fused
bicyclic derivatives through molecular docking simulations for
the 3D alignment of the data set and 3D-QSAR modeling.
Furthermore, the evaluation of the best QSAR model is
presented to provide guidance on the rational design of
selective and potent RET inhibitors. In particular, RET
inhibitors filed in the patent were used as an out-of-set third
data, which never include either training or test data. In
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parallel, the RET model was applied for RET screening as an
off-target prediction of known kinase inhibitors. The workflow
of this study is illustrated in Figure 2.

2. MATERIALS AND METHODS

2.1. Data Collection and Preparation. Information on
RET kinase inhibitor activity was retrieved from the ChREMBL
(version 33),'° BindingDB,'” and Excape'® databases.
Information from 4763 RET inhibitor patents and other
sources was compiled and curated using the KNIME workflow.
All of the preprocessing steps, such as target selection and
bioactivity transformation, were performed using the KNIME
analytical platform.'””” The selection criteria included the
target protein, assay details, and activity value type. The
evaluation of activity data within the target category,
conducted using wild-type, noncell-based assays, employed
specific criteria to focus on data points related to target
proteins, such as Kinesin-1 heavy chain/tyrosine-protein kinase
receptor RET, proto-oncogene tyrosine-protein kinase recep-
tor RET, and tyrosine-protein kinase receptor RET, where
inhibitory concentration (ICS50) values were measured in
nanomolar (nM) units. Compounds with activity annotations
featuring blank fields or values containing “<” or “>” were
excluded. In order to standardize the data and facilitate
analysis, IC50 values were converted into their negative
logarithmic form using the formula pICS0 = 9 — log(ICS50).

2.2. Molecular Docking Simulations. Every ligand for
molecular docking simulations was prepared using the Ligprep
package from Schrédinger.”’ 2D-to-3D conversion includes
ogtions for neutralizing compounds under the pH range of 7 &
2”* and not generating tautomers. The resulting structures of
the 4763 compounds were docked to the RET protein. The
crystal structure of the RET complex with inhibitors is
available in the Protein Data Bank (PDB ID: 7DUA),” and it
was arranged via protein preparation (at pH 7 and the OPLS3e
force field) in the Schrodinger Suite 2019-1.** The protein
preparation involves the process of adding hydrogen atoms
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Table 1. Filtering Criteria for Virtual Screening”
Num Num Num Num Num Num
SlogP LESAY ExactMiy LipinskiHBA | LipinskiHBD |RotatableBonds| AmideBonds | HeteroAtoms | HeavyAtoms

lower | 4 1883 | 28.68 | 191.0695 2 1 0 0 2 14

bound

UPPEr | ¢ 10482 | 170.23 | 550.2241 1 6 9 4 14 M

bound

T Nam Num Num
SUmRNGE AromaticRings | AliphaticRings U it
Heterocycles Heterocycles

lower

e 2 2 0 1 0

upper

it 8 6 4 5 4

“The criteria used for filtering were based on characteristics such as SlogP, TPSA, molecular weight, number of Lipinski hydrogen-bond acceptors
and donors, number of rotatable bonds, number of amide bonds, number of heteroatoms, number of rings, number of aromatic rings, number of
aliphatic rings, number of aromatic heterocycles, and number of aliphatic heterocycles.

(PROPKA) and removing unnecessary chains and water
molecules, and an OPLS3e force field was applied to minimize
the protein structure.”” >’ The protein molecule underwent a
controlled minimization process to refine its geometry,
achieving an RMSD of 0.3 A. The grid was positioned at the
core of the workspace ligand.”® The partial charge cutoff was
set to 0.25, the van der Waals radius scaling factor was set to
1.0, and the docking box of size 20 A X 20 A X 20 A was
defined around the centroid of the ligand. Two spherical areas
for the predicted binding site were determined through
hydrogen-bonding interactions: (1) the oxygen of the carbonyl
group of GLUS8OS as the H-bond donor and (2) the hydrogen
of the amine group of ALA807 as the H-bond acceptor.”*’
Using Maestro’s default docking settings, Glide was used for
docking with default values of partial charge cutoff and van der
Waal’s radius scaling factor of 0.15 and 0.8, respectively.”’
Ligand docking was run in the standard precision mode
matching all of the grid constraints set previously, and the
maximum number of poses per ligand was set to five. The
docking model was validated by the RMSD calculation (0.0162
A) between the X-ray ligand and the redocked ligand and their
pose comparison.

2.3. Substructure-Based Data-Set Selection. The
method for selecting the data set involved the similarity
analysis of docking poses based on the literature.” The
docking pose that formed hydrogen bonds with the hinge
residue ALA807 or GLUS0S was selected. A list of 49
substructure filters involving fused bicyclic heteroaromatic
rings, including pyrrole, pyrazole, pyrimidine, pyridine, and
indazole,”™*° was applied to remove molecules likely to be
nonreactive.

2.4. Developing 3D-QSAR Models. For QSAR modeling,
PHASE®® implemented in Maestro 11.9°" was used. While
receptor-guided alignment of data sets is commonly employed in
3D-QSAR modeling, PHASE is specifically designed for
pharmacophore-based 3D-QSAR modeling. Considerable
QSAR studies using PHASE reported the general method
consisting of (1) conformer generation with a reasonable
number of conformers within available computing resources,
(2) building pharmacophore hypothesis with different feature
sets and number of points, (3) selection of the best
pharmacophore model using scoring functions, and then (4)
final building of the 3D-QSAR model using the best
pharmacophore model.’”® However, the large and heteroge-
neous data set in this study prevented implementation of the
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above-mentioned typical process, mainly owing to (1)
constraints in conformer ensemble utilization with a large
enough number of conformers (e.g.,, more than 952 inhibitors
X 100 conformers) and (2) molecular superimposition
inconsistencies, which arise either between substituents when
bicyclic cores are fixed or between cores when substitution
positions are fixed. Therefore, receptor-guided alignment was
performed for building QSAR models using docking poses.
Using the alignment from the best docking poses, various
models were generated by varying the grid spacing (1.0, 1.5,
and 2.0 A), partial least-squares (PLS) factors (up to 10), and
different data splitting methods, such as LMO (leave many
out) or LOO (leave one out). The prepared data set was
randomly divided into a training set and a test set at a 9:1 ratio.
The PLS method was used for creating the QSAR model. For
model generation, the lt-valuel was set below 2.0, and the grid
spacing was 1.0 A. Model validation was conducted using 10-
fold cross-validation (10-CV), in which 306 compounds were
excluded from the training set. The models were selected based
on the criteria of low root-mean-square error (RMSE) and
standard deviation (SD) values; RMSE below 0.8 and SD 0.7.

2.5. Out-of-Set Validation of the Optimal QSAR
Model. The out-of-set molecules consisted of 190 inhibitors
and inhibitory activity (ICS0) against wild-type RET kinase,
which were collected from the patent (US 10,807,986 B2). In
Maestro, 2D ligands are neutralized and converted into 3D
structures through ligand preparation without considering
tautomerism. Ligand docking was performed using the
extraprecision mode without constraints, generating multiple
docking poses for each molecule. Activity was predicted using
QSAR, and the results were selected based on docking poses
and the residual difference between the experimental activity
and prediction.

2.6. Application of the Predictive QSAR Model into
Virtual Screening. The criteria used for filtering the kinase
inhibitors, excluding RET inhibitors, were based on character-
istics such as SlogP, TPSA, and molecular Wei%ht (Table 1).
Public databases including PKIDB*’ and MRC* were used as
screening libraries. Physicochemical data for the molecules
used in 3D-QSAR modeling were prevalidated using the
KNIME workflow and subsequently employed for filtering
purposes. A total of 459 compounds could be docked against
the RET protein following the same configuration as described
in Section 2.2. The 3D-QSAR model was then used as a three-
dimensional query to distinguish the hits with the highest
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DATABASE Number of data

BindingDB_USPatent | 3,031

Excape-DB_ChEMBL | 1,022

BindingDB_ChEMBL | 634

ChEMBL2041 58
Excape-DB_Pubchem |18
Total 4,763

Figure 3. Composition of the initial collected data.
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predicted RET inhibitory activity. Two methods were
employed to select the top 30 data sets including the structure
information, docking score, actual activity (pICS0), and
predicted activity (pIC50) most closely resembling a reference
molecule based on their interactions. First, a specific cutoft for
the predicted activity was applied, followed by an evaluation of
the interaction between docking poses and the target protein.
Second, prioritization was based on rankings derived from the
docking scores and predicted activity values.

3. RESULTS

3.1. Activity Prediction of a Broad Range of 5,6-Fused
Heteroaromatic Compounds. As mentioned in the histories
of RET inhibitors above, the selectivity between RET and
other receptor tyrosine kinases is important for clinical
development, especially in terms of drug resistance. However,
to our best knowledge, there are no reports providing the
design logic for discriminating between MKIs and RET-
selective inhibitors along with predicted potency. In this
situation, the features of the RET-selective inhibitors can be a
good clue to predict them. Notably, 5,6-fused heteroaromatic
rings are frequently observed in both selective RET inhibitors
and recently reported patents. Therefore, we expected that
QSAR modeling with these compounds containing $,6-fused
heteroaromatic cores could come closer to the drug design
logic (for selectivity and potency). When we collected RET
inhibitors with enzymatic IC50 values from five different data
sources (Figure 3), a considerable number of compounds out
of the 4763 inhibitors featured 5,6-fused heteroaromatic rings
in the substructure analysis using the KNIME workflow.
Furthermore, while typical QSAR models use around 100 data
sets with pICS0 values in the range of about 3 (1000-fold gap
between the best and worst data), we could acquire a data set
that is ten times larger and has an activity range a thousand
times wider than them (size: 4763; IC50: <10 mM to >0.1
nM; pICSO0 range: >6) as shown in the distribution of RET
inhibitory activities as pICS0 values (Figure 4).

In sequence, we could generate 3D conformations”' of the
S,6-fused heteroaromatic compounds and conduct their

Histogram of pIC50

[
© O

Number of the data(%)
(-]

4 5 6 7 8 9 10
Experimental pIC50(M)

Figure 4. Distribution of the pIC50 value of collected RET inhibitors.

molecular docking simulations.”’ The docking poses resulting
from the simulations are approximate to bioactive conforma-
tion and also provide the superimposition (3D alignment) of
the data set.”® After substructure filtering of the aligned
conformers was conducted through the docking simulations,
49 different 5,6-fused bicyclic heteroaromatic rings as
substructures could be observed in the RET inhibitors
(Supporting Information). Hierarchical clustering presented
structural relevance between these 49 substructures,”' and 10
representative structures were chosen as centroids from the 49
substructures (Figure S5). The substructure filtering process
resulted in 952 ligands remaining, corresponding to the 3399
poses identified for the docking simulation. A total of 3399
pairs of structures and pIC50 values were selected and used to
construct the 3D-QSAR model. The finalized data set of 3399
conformers was randomly divided into the training set and test
set at a 9:1 ratio. Then, the training set was fitted to a partial
linear square (PLS) regression equation, which was generated
based on the interaction features determined by the distance
from each atom of the data set. The test set validated each PLS
model.

The top five models were selected based on the statistical
metrics, particularly RMSE, which means the deviation
between the actual and predicted pICS0 values (Table 2). In
other words, the RMSE denotes the root-mean-square error
between the actual and predicted activities within a used data
set and has the same unit with an SD of actual pICS0 values.
The optimal model presented an RMSE of 0.670 (log nM), an
R? of 0.801, and a correlation coefficient of 0.891 between the
experimental and predicted pICS0. Hydrophobicity (H) is the
most contributing feature in every model, followed by the
electronic (E) feature and the hydrogen-bonding donor (D)
feature in that order.

3.2. Evaluation of the Optimal QSAR Model. This
accurate result also encouraged us to characterize individual
molecules in the out-of-set data. We selected the three most
active and three most inactive molecules (Table 3). Very
fortunately, the prediction of the subnanomolar (pICS0 < 9)
active compounds was highly precise up to 0.03 pICS0 gap,
demonstrating this model's capability for picomolar prediction.
Similarly, millimolar activity (pICSO close to 3—4) was also
precisely predicted to demonstrate the predictable potency
scope of the model. The reliable RMSE and R* encourage us to
further evaluate the optimal model. Thus, we needed another
out-of-set (third data set), neither training nor test data. For
this purpose, we recruited the primary patent of TAS/HMO06, a
clinical phase II drug (US 10,807,986 B2). When we
conducted docking simulations, 30 inhibitors out of 170
patent compounds satisfied the reliable docking poses with
hydrogen bonding to ALA807 of the RET hinge region. The
pICS0 values of the inhibitors were predicted using the optimal
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Figure S. Hierarchical clustering of RET inhibitors and 10 representative ring structures out of 49 substructures.

Table 2. Statistical Evaluation of QSAR Models”

model no. PLS factor” Q¥ R R? CV* S/
threshold” <0.7
1 7 0.794 0.801 0.742 0.656
2 7 0.780 0.799 0.774 0.660
3 7 0.773 0.801 0.744 0.658
4 7 0.764 0.805 0.746 0.651
s 7 0.763 0.799 0.744 0.661

F RMSE" Pearson-r fractions’
<0.8 D H* E
1760 0.670 0.891 0.117 0.463 0.284
3470 0.690 0.883 0.118 0.470 0.297
1750 0.700 0.880 0.121 0.463 0.287
1790 0.710 0.876 0.113 0.463 0.291
1740 0.720 0.874 0.117 0.480 0.281

“The finally selected optimal QSAR model is indicated in bold. “Number of potential variables used in the PLS regression analysis. “Cross-validated
coefficient. dSquare correlation coefficient. “Square correlation coefficient cross-validation. fStandard deviation. $Value of the F-test. "Root-mean-
square error. ‘Contribution fractions of the various fields. "H-bond donor. “Hydrophobic/nonpolar. ‘Electron-withdrawing, ”*SD and RMSE criteria

used for filtering the candidates.

QSAR model to evaluate the practical utility of the model (see
also the values in the Supporting Information). Clearly, their
inhibitory activities presented a reasonable difference between
actual and predicted activity values in the scatter plot of
Figure6.

Moreover, we conducted residual analysis using the
experimental and predicted values as shown in the following
equation:

r,=¢/s(e;) = ¢,/RSE,J1 —
¢; = the ith residual

RSE = the residual standard error of the model
h;; = the leverage of the ith observation

In general, even if a high correlation along with a high
accuracy (high R?) is observed between the predicted and
actual values, it is difficult to trust the prediction results if the
residuals follow any patterns. The analyzed residuals of Figure
7 did not show any pattern of consistent increase or decrease
for every data point, thereby proving their reliability.
Furthermore, the residual plot demonstrated rare outliers
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beyond the cutoff range (—2.0 ~ +2.0) of acceptable
prediction.*”

3.3. Feature Analysis and 3D Visualization of RET—
Inhibitor Interaction. In machine learning-based prediction
models, model interpretation, which explains how well the
predictions are performed, is just as important as prediction
accuracy. For this purpose, it is crucial to explain the important
features involved in making predictions in a way that is
understandable to researchers. Therefore, we tried to analyze
the 3D molecular interaction features through the visualization
of three representative inhibitors chosen from both the active
(pICSO < 9) and inactive (pICSO close to 3—4) groups in
Table 4. The feature distinctions between active and inactive
compounds were analyzed using contour maps (a form of a 3D
feature map) of the optimal QSAR model. The unit of the
contour maps is a cube (1 A%), which indicates whether the
space is favorable or unfavorable areas for respective features
such as H-bond acceptors and donors, hydrophobic groups,
and electron-withdrawing (EW) elements.

First of all, the critical hydrogen bond of RET inhibitors
with the hinge region (Glu80S and Ala807) was perfectly
matched between the 3D location of the H-donor feature with
a positive coefficient (blue box) and the docking pose of the
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Table 3. Representative Compounds among the Data Set”
Data Experimental Predicted
No. | CGroup Structure activity activity
591 Active 10.770 9.224
377 Active 10.398 10.183
NN
» rK:)() = {oH
371 Active 10.155 10.126
NH 7 ~NH
ol
N
N R
Qo
44 Inactive 4.000 5.209
O
H
NN
Qo
46 | Inactive ) Q 4.000 4.840
Q-
N R
Qo o
83 | mactive . Q 4.000 5.005
Qv
“The experimental activity and predicted activity are both expressed in the form of pIC50 values.
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Figure 6. Scatter plot of the experimental activity and predicted activity of the training set, test set, and out-of-set molecules.

most potent compound (Figure 8a). Even if both the most
potent and the least potent compounds commonly have
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hydrogen bonds (H-bond), the H-donor feature discriminated
between their subtle locations, leading to a mismatch between
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Figure 7. Residual analysis of patent-filed RET inhibitors as out-of-set
data. 28 out-of-set molecules showed standardized residuals within
the range of —2.0 ~+2.0 (“normal”’). “Outlier” molecules had
standardized residuals lower than —2.0.

the H-donor feature and the H-bond in the least potent
compound (Figure 8b). Meanwhile, the difference in the H-
donor feature was transformed into the design logic. The
presence of a H-donor at the C4 position, such as an amino
group, which forms a H-bond with Glu805S, is critical for the
design. The presence of the H-donor feature, highlighted by an
amino group at the C4 position, characterized the active
molecules (molecules 591, 377, and 371). Despite the presence
of aromatic amino groups in the inactive compound (44, 46,
and 83), they did not align with the H-donor feature at the
same location (Figure 8b). Moreover, the H-donor feature
with a negative coefficient (red box) was near the aromatic
amino group. This subtle difference in the location of the H-
donor suggests a conducive principle in the design of highly
active RET inhibitors. In feature analysis, the functional group

at the C3 position was another important feature to
discriminate between active and inactive compounds. There
are several H-donor cubes near the C3 position. Notably, the
N-substituted amide group at the C3 position in the active
molecules was surrounded by several blue boxes of the positive
coefficient (Figure 8a).

Second, we analyzed the 3D location of the hydrophobic
feature, which is the most contributing feature in the QSAR
model. As is well-known in data science, contour map
visualization relies on coeflicients, depicting how features
affect activity in the QSAR model. In other words, the chosen
coefficient cutoff determines which cube boxes are visualized
on a contour map. Surely, the hydrophobic feature cube boxes
were more dispersed than those of the H-donor. As shown in
Figure 9, numerous cube boxes are present at the same
coeflicient level in the contour map for the hydrophobic
feature. The clustered hydrophobic favored boxes (green
boxes) led us to assign them as N1, C2, C3, and C4
substituents. The alkynyl group at the C2 position and the N-
alkyl group at the N1 position matched well with the location
of hydrophobic boxes (Figure 9a). This implies that the
incorporation of a hydrophobic group at the N1 and C2
positions is recommended in the RET inhibitor design. Clearly,
while the most inactive molecules lacked substituents to the
NI or C2 positions (Figure 9b), the most potent RET
inhibitors have isopropyl (molecules $91 and 371) or 1-
methylcyclopropyl (molecule 377) along with the alkynyl
group at the C2 position (Figure 9a). Additionally,
incorporating an amino group at the C4 position is
recommended for highly potent RET inhibitors in terms of
hydrophobic feature (negative coefficient) as well as the above
H-donor (positive coefficient). Meanwhile, the C3 position
was occupied by a mix of green and purple boxes more than
any other position in Figure 9. In other words, the C3 position
tended to favor hydrophilic substituents in some specific
locations. However, although both the active and inactive
molecules commonly possessed a hydrophilic group at the -
position of C3 carbon, there was a clear difference in how the

Table 4. Analysis of Best-Performing and Outlier Compounds in Out-of-Set Patent-Filed Data”

1?()”::] Structure Docking | Experimental Predicted Standardized Grou
y Score Activity Activity Residuals P
Patent
133 -5.807 9.155 5.855 -2.622 Outlier
104 -8.547 9.699 6.402 -2.070 Outlier
14 -5.768 8.357 7.038 1.319 Normal
106 -6.825 8.420 7.671 0.749 Normal

“Docking score, experimental activity, and predicted activity from the atom-based QSAR model and the standardized residuals of four ligands from
the model validation. The ligand numbering corresponds to that in the data source. Ligands 133 and 104, exhibiting standardized residuals below
—2.000, were classified as “outliers.” Ligands 14 and 106, categorized as “normal,” were further analyzed for comparative purposes.
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(A) (B)

Figure 8. 3D feature map of hydrogen-bond interactions in the optimal QSAR model. (A) Representative active compound 377 (cyan) and (B)
inactive compound 44 (red). Legend: positive coefficient (favored for H-donor), light-blue cube; negative coefficient (disfavored for H-donor):
light-orange cube; hydrogen bond, yellow dashed line; aromatic hydrogen bond, blue dashed line.

) | ®)

Figure 9. 3D feature map of hydrophobic/nonpolar interaction in the optimal QSAR model. (A) Representative active compound 377 (cyan) and
(B) inactive compound 44 (red). Legend: positive coefficient (favored for hydrophobic), green cube; negative coefficient (disfavored for
hydrophobic), purple cube; hydrogen bond, yellow dashed line; aromatic hydrogen bond, blue dashed line.

(A) (B)

GLU 805

Figure 10. 3D feature map of EW interaction in the optimal QSAR model. (A) Representative active compound 377 (cyan) and (B) inactive
compound 44 (red). Legend: positive coefficient (favored for EW), pale-red cube; negative coefficient (disfavored for EW), green cube; hydrogen
bond, yellow dashed line; aromatic hydrogen bond, blue dashed line.

3D location was occupied by rigid amides (of active
molecules) and rotatable aromatic amines (of inactive
molecules) respectively.

Finally, the 3D location of the EW feature was analyzed.
Rather than those of other features, the EW location was more
shared between active and inactive molecules (Figure 10).
Particularly, considerable green cube boxes were commonly
occupied by both the active and inactive molecules. It indicates
that the EW feature in the hinge binder region has a weak
ability to discriminate the RET inhibitory activity. Meanwhile,
C2 and C3 positions presented different aspects. When we

integrate every feature, any small substituent or functional
group can possess EW and hydrophilic features. Therefore, we
derived another design logic from the feature analysis: the
introduction of a hydrophilic substituent that attracts electrons
at the C3 position becomes necessary when these two distinct
features are considered together.

4. DISCUSSION

4.1. 3D-QSAR Model for RET Inhibitors Elucidates the
Interaction Mechanisms and Logic of Drug Design in
the Out-of-Set Data. In general, an ideal QSAR model
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Figure 11. Pose comparison of out-of-set molecules from patent-filed RET inhibitors. Outlier group molecules include (A) compound 104p and
(B) compound 133p and normal group molecules include (C) compound 14p and (D) compound 106p.

(B)

Figure 12. Whole feature analysis of representative out-of-set from patent-filed RET inhibitors. (A) EW interaction feature of compound 104p, (B)
hydrophobic/nonpolar interaction feature of compound 104p, (C) EW interaction feature of compound 14p, and (D) hydrophobic/nonpolar
interaction feature of compound 14p. Legend: positive coefficient, pale-red cube (for EW) and green cube (for hydrophobic); negative: green cube
(for EW) and purple cube (for hydrophobic).
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Figure 13. Summarized and simplified feature analysis for designing
RET inhibitors.

corresponds to the noncovalent bonding interactions within
the respective ligand-target docking complex. This means that
the features in QSAR and the interactions observed in the
docking complex are closely aligned with each other.
Therefore, we also tried to match the RET docking poses
with our optimal QSAR model. For this purpose, we examined
docking poses of patent-filed RET inhibitors as out-of-set. The
docking poses of both the outlier and normal groups
commonly exhibited proximity to the hinge region
(ALA807) and the nearby ligand—protein interactions. The
reverse orientation of the core structure (5,6-fused bicyclic
heteroaromatic ring) in compounds 104 and 133 (outlier
group) compared to compounds 14 and 106 (normal group)
significantly influenced the positioning of substituents at C2,
C3, C4, and N1 (Figure 11).

Therefore, 3D-QSAR models, which rely on the alignment
of the inhibitors from docking results, can explain the
conflicting behaviors of QSAR feature cubes surrounding
active and inactive compounds despite identical substituents.
While key interactions with ALA807 at the hinge are common
in both groups, our optimal QSAR model accounts for the
variation in residual size between the experimental and
predicted activities. This variance is primarily due to structural
differences, particularly the introduction of substituents at the
C2 position in the outlier group (Figure 12). For instance, in

the contour map of compound 104, the alkynyl group was
matched with the negative EWG feature (electron donating)
and the hydroxyl group was well matched with the positive
EWG features. In addition to the structural disparities at the
C2 position, substituents can be compared. Notably, the
presence of an isopropyl group at N1 in compound 104 was
regarded as unfavorable (depicted by the negative hydro-
phobic), in contrast to its favorable depiction in compound 14
(Figure 12).

The overall view in Figure 13 simplifies the SAR for
designing RET inhibitors based on the comparative analysis of
every contour map. The N-substituted amide at the C3
position was commonly observed in active compounds, and
hence we named the C3 substituent as a linker, such as
reported in another study.*

4.2. The QSAR Model Applied to the Off-Target
Screening of Clinical and Nonclinical Kinase Inhibitors.
The reliable evaluation and interpretation of the optimal
QSAR model encouraged us to apply the QSAR model to an
off-target screening for RET alteration in known clinical and
nonclinical kinase inhibitors. Among 633 drug candidates
collected from PKIDB*® and MRC,” 459 kinase inhibitors
were docked to RET kinase to produce 3D conformation for
QSAR prediction. After achieving both docking scores and
predicted pICSO values, the top 30 inhibitors were selected
under two different ranking methods. The first method
involved assigning ranks to the docking scores and the
predicted pICS0 values separately, with the top 30 selected
based on the lowest sum of these ranks. The second method
used the cutoff (>7.5) of the predicted pICS0 along with the
evaluation of the interaction between docking poses and the
target protein.

Surprisingly, seven compounds in the chosen top 30 list
were acknowledged for their inhibitory efficacy against RET in
the literature (Table 5). In the first announced patent,
Edralbrutinib, Evobrutinib, and Pirtobrutinib are patented as
BTK inhibitors;** Sapanisertib functions as an mTOR
inhibitor;*> Abivertinib serves as an EGEFR inhibitor;*°
Atinvicitinib acts as a JAK inhibitor;"” and Laduviglusib (also

Table 5. RET Off-Target Screening of Known Clinical and Nonclinical Kinase Inhibitors®

Edralbrutinib Sapanisertib Abivertinib Atinvicitinib Laduviglusib Evobrutinib Pirtobrutinib
O NH, o.
NN R H NH, Fan ©
k . @ . O (\F@N\,\@ o N<> N " B‘( NéNX_NO © FF7>5N9 NH, é
- o N H < N_N_~
Structure | o NQ}%‘ N NXQN) N NS o N /@ NNYOL YN PO
g - s z cl cl N N F
o) b @ q Fon=id |oN gf )
Predicted
activity(pIC 7.915 7.784 7.822 7.924 8.225 7.611 7.306
50)
LEU 730 Aromatic-HB(A) Aromatic-HB(A)
LYS 758 cation-mt HB(A)
GLU 775 HB(D) Aromatic-HB(A)
GLU 805 HB(D) HB(D) HB(D) HB(D) HB(D) HB(D)
TYR 806 Aromatic-HB(D) Aromatic-HB(D)
HB(D)
HB(D) HB(A) HB(D) HB(A)
ALA 807 HB(A) Aromatic-HB(A) Arom}igiﬁ;B(A) HB(A) Aromatic-HB(A) Aromatic-HB(A) HB(4)
SER 811 HB(A)
SER 891 Aromatic-HB(A)
ASP 892 HB(A) HB(A) HB(A)

“Key ligand—protein interactions and docking score of ligands. Aromatic-HB(A), aromatic HB acceptor; HB(A), HB acceptor; HB(D), HB donor.
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known as CHIR-99021) is an inhibitor of GSK3/ signaling.**
Despite the absence of a core structure commonly found in
active molecules, according to the QSAR model, the molecule
contained an imidazole moiety. In the docking pose, the
imidazole group was positioned in proximity to GLU80S and
ALA807, forming a hydrogen bond, as evidenced by the light-
blue cubes near the nitrogen atom in the imidazole ring,
indicating the presence of a favorable hydrogen-bond donor
feature. The predicted value can also be rationalized by the
QSAR cubes near other substituents, such as amino and cyano
groups. The presence of an amino group, including N24 in
Laduviglusib, is favorable, as indicated by the light-blue cube
representing hydrogen-bond donor features. Furthermore, the
addition of a cyano group to the pyridine ring improved
activity because of its EW features, as shown by the pale-red
cube in the QSAR model.

5. CONCLUSIONS

In conclusion, the primary objective of this study was to
examine the relationship between ligand structures and
inhibitory activity using 3D-QSAR modeling. The optimal
3D-QSAR model was developed using RET kinase inhibitors
with 49 different substructures to demonstrate a high
predictive performance (R value of 0.801 and Q value of
0.794). Furthermore, the out-of-set validation using patent
molecules indicated the practical ability to detect active
molecules. Moreover, the 3D spatial feature analysis high-
lighted the characteristic substituent patterns of the 5,6-fused
bicyclic heteroaromatic core structures. Finally, the model was
applied to screen kinase inhibitors to evaluate their potential
applications. Future work will extend this study by validating
outcomes through experimental studies and assessing the drug

developability of the identified compounds.
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