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Frontoparietal connectivity as a product of
convergent evolution in rodents and primates:
functional connectivity topologies in grey squirrels,
rats, and marmosets

David J. Schaeffer® "™ Kyle M. Gilbert® 2, Miranda Bellyou® 2, Afonso C. Silva® ' & Stefan Everling® 23

Robust frontoparietal connectivity is a defining feature of primate cortical organization.
Whether mammals outside the primate order, such as rodents, possess similar frontoparietal
functional connectivity organization is a controversial topic. Previous work has primarily
focused on comparing mice and rats to primates. However, as these rodents are nocturnal
and terrestrial, they rely much less on visual input than primates. Here, we investigated the
functional cortical organization of grey squirrels which are diurnal and arboreal, thereby
better resembling primate ecology. We used ultra-high field resting-state fMRI data to
compute and compare the functional connectivity patterns of frontal regions in grey squirrels
(Sciurus carolinensis), rats (Rattus norvegicus), and marmosets (Callithrix jacchus). We utilized a
fingerprinting analysis to compare interareal patterns of functional connectivity from seeds
across frontal cortex in all three species. The results show that grey squirrels, but not rats,
possess a frontoparietal connectivity organization that resembles the connectivity pattern of
marmoset lateral prefrontal cortical areas. Since grey squirrels and marmosets have
acquired an arboreal way of life but show no common arboreal ancestor, the expansion of the
visual system and the formation of a frontoparietal connectivity architecture might reflect
convergent evolution driven by similar ecological niches in primates and tree squirrels.
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involved in complex cognitive functions!2. Reciprocal

connectivity between PFC and the posterior parietal cortex
(PPC) is a defining feature of primate cortical organization3-.
Whether mammals outside of the primate order possess similar
organization of frontoparietal connectivity is a controversial and
still unresolved topic. The closest order to primates is Scandentia,
made entirely of tree shrews. Tree shrews have a small granular
PFC and form frontoparietal connectivity, but parietal visual
areas connect with secondary motor areas and not the granular
PFC’. Together with flying lemurs (order Dermoptera) and pri-
mates, Scandentia are members of the grand order Euarchonta,
which separated from the ancestor of rodents and lagomorphs
(together forming the grand order Glires) about 80 million years
ago® (see Fig. 1 for phylogenetic tree). Here, we set out to better
understand how frontoparietal functional connectivity in a
mammal outside of the primate order—the Eastern Gray Squirrel
(grand order Glires)—compares to both primates (grand order
Euarchonta) and rodents (grand order Glires). Specifically, by
comparing patterns of connectivity in an animal that has evolved
in a similar environmental niche to primates, we sought to gain
insight on how their brain adapted within the constraints of its
evolutionary history®19.

Despite their larger evolutionary distance from primates, rats
(Rattus norvegicus) and mice (Mus musculus) are—for practical
reasons—the most widely used experimental mammalian species
for neuroscientific inquiry. These two rodent species, however, do
not possess a granular PFC411, and although the so-called medial
PEC in these two species is often regarded as a functional
homolog to the primate PFC!?, the anterior medial wall of the
rodent PFC may better correspond to cingulate cortex than to
lateral PFC in primates!2. Most importantly, medial PFC areas in
rats do not form strong functional connectivity with posterior
parietal areas!!. Such disparities in cortical organization have
been interpreted as fundamental differences between primate and
rodent brains*.

Concomitant to a dissimilar cortical organization, rats and
mice have fundamentally different behaviors and lifestyle from
primates. Rats and mice are nocturnal, and their exploratory and
navigation behavior (whisking), diets, locomotion, and environ-
mental niche are profoundly distinctive from those of primates.
However, rats and mice represent only a small sample of the
entire order of rodents that comprises five suborders with 34
families, making up 40% of all mammalian species!3. Therefore, it
is prudent to investigate the functional cortical organization in a
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Fig. 1 Phylogenetic tree showing the timelines of divergence (MYA:
million years ago) and lineage of rats (Rattus norvegicus), squirrels
(Sciurus carolinensis) and marmosets (Callithrix jacchus). Based on ref. 49.

rodent species that has an ecological niche more like that of many
primate species (See Table 1 for comparison).

The North American grey squirrel (Sciurus carolinensis)
resembles the small New World marmoset monkey (Callithrix
jacchus) in several major ways: they have a similar arboreal life-
style, they both have long tails that help them keep their balance,
their digits have sharp claws, and they have similar body sizes!*.
Like most primates, grey squirrels are diurnal. They have a much
better developed visual system than nocturnal rats'®, including
two-cone color vision!®17, larger visual cortical areas 17 and 1818,
a 5-layered geniculate nucleus!®, and a superior colliculus that is
about ten times bigger than would be expected for a rat of similar
sizel»15, Studies using histochemical tracing and electrical
microstimulation in squirrels suggest that connectivity of soma-
tosensory and motor cortex have an organization that may be
more similar to primates than that of rats or mice2?, Of particular
interest are the relatively large PPC in squirrels and the cortex in
front of the primary motor cortex, labeled area F2l. This fron-
topolar cortical region has a clearly defined layer 421, potentially
resembling the granular PFC in primates. Whether this region in
squirrels forms connectivity with posterior parietal regions
similar to that of the primate frontoparietal network is yet to be
established. To address this question, we leveraged our recent
developments in ultra-high field MRI hardware for small
animals?? to acquire high-quality resting-state (RS-fMRI) data in
grey squirrels under light anesthesia at 9.4 Tesla and compared it
to RS-fMRI data from rats and marmosets. RS-fMRI allowed us
to compute the functional connectivity (FC) between brain areas,
and the application of the fingerprinting technique2>24 provided
a method of comparing the similarity of interareal patterns of FC
across the three species.

Results

Whole-brain functional connectivity was calculated using
species-specific frontal seed regions for grey squirrels, rats, and
marmosets. The resultant group functional maps are shown in
Supplementary Fig. 1 (rats), Supplementary Fig. 2 (squirrels),
and Supplementary Fig. 3 (marmosets). For comparisons of
interareal FC patterns between the three species, we computed
the FC of these frontal seed regions with five cortical areas:
primary motor (M1), insular cortex (Ins), primary somatosen-
sory (S1), posterior cingulate cortex (PCC), and posterior par-
ietal cortex (PPC), and three subcortical regions: striatum (Str),
pulvinar (Pul), and superior colliculus (SC). Figure 2 shows the
location of these eight regions and the corresponding normalized
FC fingerprints for rats (Fig. 2a), grey squirrels (Fig. 2b), and
marmosets (Fig. 2c).

To compare the FC fingerprints between the three species, we
computed cosine similarities for pairs of fingerprints (Supple-
mentary Fig. 4 (rats vs. marmosets), Supplementary Fig. 5
(squirrels vs. marmosets), and Supplementary Fig. 6 (rats vs.
squirrels). As shown in Fig. 3a, the fingerprints of rats and
marmosets were different, as indicated by the cosine similarity
metrics that were below 0.75 for most fingerprint comparisons
(33/40). The only fingerprint comparisons that yielded sub-
stantially larger cosine similarities (>0.8) were for marmoset
ventral premotor area 6 VA with frontal rat brain regions. Most
of the comparisons of the fingerprints were significantly different
(25/40; p<0.05; white stars). This finding demonstrates that
frontal rat regions had different FC fingerprints from those of the
marmoset lateral prefrontal cortex.

The comparison of FC fingerprints between frontal regions in
grey squirrels and marmoset lateral frontal cortex (Fig. 3b)
revealed several region pairs (17/48) with cosine similarity
metrics higher than 0.75, indicating similar FC profiles between
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Table 1 Comparison of relevant features in each model species (similarities in bold).
Rat Grey squirrel Common marmoset
(Rattus norvegicus) (Sciurus carolinensis) (Callithrix jacchus)
Order Rodentia Rodentia Primates
Sleep/wake cycle Nocturnal Diurnal Diurnal
Navigation behavior Whisking and olfaction Vision Vision
Environment Terrestrial Arboreal Arboreal
Body mass 250-500 g 300-710g 250-650 g
Brain mass 1.8¢g 7.6¢g 78¢g

a " _ _ ) M1

Ins  str

Rat

(on

Squirrel

Marmoset

46D 46V
Fig. 2 Region of interest (ROI) locations and fingerprint plots. a ROI
locations for rats. Top, seed ROls (all in the right hemisphere) are shown in
red, and 8 ROIs for the fingerprint analysis are shown in blue and overlaid
on coronal slices of anatomical MR images. Bottom, fingerprint spider plots
for frontal seeds with the posterior cingulate cortex (PCC), posterior
parietal cortex (PPC), the primary somatosensory cortex (S1), the primary
motor cortex (M1), insular cortex (Ins), striatum (Str), pulvinar (Pul), and
superior colliculus (SC). b Same as (a), but for squirrels. ¢ Same as (a), but
for marmosets. Target region abbreviations: Frontal association cortex
(FrA); lateral orbital cortex (LO); medial orbital cortex (MO); frontal cortex,
area 3 (Fr3); secondary motor cortex (M2); frontal areas 1-6 (F1-F6); area
6 of cortex, ventral, part a (6 VA); area 6 of cortex, dorsorostral part (6DR);
area 8a or cortex, dorsal part (8AD); area 8a of cortex, ventral part (8AV);
area 45 of cortex;*® area 47 of cortex;#® area 46 of cortex, dorsal part
(46D); area 46 of cortex, ventral part (46 V).

frontal regions in squirrels and lateral frontal areas in marmosets.
Many comparisons were still significantly different between the
two species (29/48; p < 0.05). The largest similarities were found
between squirrel areas F3-F6 with lateral prefrontal marmoset
areas. This finding shows that the squirrel frontoparietal cortex
FC fingerprints resemble those of lateral prefrontal cortical areas
in the marmoset.

Comparisons of the FC fingerprints of frontal regions in
squirrels and rats confirmed overall low cosine similarities below
0.75 in 24/30 region pairs. The squirrel region F1 presented the
largest similarities with the rat frontal regions (p>0.05), while
region F3 presented the largest differences with rat frontal regions
FrA, LO, MO, and M2 (p <0.05).

Figure 4a shows the FC fingerprint comparison of squirrel area
F3 and marmoset area 47 L. Both regions show strong FC with
the PCC and PPC at the cortical level and FC with striatum (Str),
pulvinar (Pul), and superior colliculus (SC) at the subcortical
level. These frontal regions are located on the anterior lateral
surface (Fig. 4b). Figure 4c shows the FC map of squirrel region
F3 with the rest of the brain. FC was strong with parietal medial
area Pm and area L (limbic). FC of region F3 also extended into
temporal areas Tm and Tp. In addition, there was significant FC
with the striatum, pulvinar, and superior colliculus. The FC map
of marmoset area 47 L (Fig. 4d) showed similar findings, with
strong FC of area 47 L with PCC and PPC (mainly area LIP) as
well as FC with the temporal cortex (area TE2). The map also
shows some FC with the SC, Pul, and Str (caudate nucleus).

Discussion

A frontoparietal network in which parietal visual areas have
extensive reciprocal connections with the lateral prefrontal cortex
is a defining feature of primate cortical organization*°. Whether
mammals outside the primate order possess a similar well-
developed frontoparietal connectivity remains unanswered. We
compared the functional connectivity (FC) patterns of frontal
regions in grey squirrels, rats, and marmosets using RS-fMRI data
to address this question. Our results demonstrate that grey
squirrels have frontoparietal connectivity topologies that better
overlap with that of primates than to that of rats.

Previously, a default-mode network consisting of a parietal
subsystem clustered around the retrosplenial cortex and a
temporal-frontal subsystem that included the auditory and orbi-
tofrontal cortex has been described in rats?2. However, the con-
nectivity strength between these two subsystems was weak. Our
rat data, which also show FC of area LO and MO with the ret-
rosplenial cortex (Supplementary Fig. 1), is consistent with that
previous report?2, However, the FC of these frontal areas was
much stronger with the insular cortex, M1, and S1 (Fig. 2a).
These FC patterns are in stark contrast to the FC fingerprints of
lateral prefrontal areas in marmoset (Fig. 2c), which showed
strong FC with parietal areas.

A commonly held assumption is that the medial frontal cortex
(mPFC) in rodents is homologous to the dorsolateral PFC in
primates!2. Our recent analysis of interareal fingerprints from
RS-fMRI data in anesthetized marmosets, anesthetized rats, and
awake humans did not support this idea?’. Interareal fingerprints
of medial frontal areas in rats resembled those of medial frontal
areas, i.e., cingulate cortical areas in marmosets, but not dorso-
lateral PFC areas. Consistent with our previous report, we also
found here that the connectivity pattern of frontal rat areas
resembles those of area 6 VA in the ventral premotor cortex in
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Fig. 3 Similarity of interareal functional connectivity patterns between
the species. a Comparison of interareal functional connectivity patterns
between rats and marmosets. For each species, cosine similarity values are
plotted in matrix form. A high cosine similarity value suggests that the
connectivity values are more comparable than a lower cosine similarity
value. Significant differences are marked by a white asterisk within the
similarity matrix. b Same as (a), but for comparing squirrels with
marmosets. ¢ Same as (a), but for comparing rats with squirrels. Seed
region abbreviations: Frontal association cortex (FrA); lateral orbital cortex
(LO); medial orbital cortex (MO); frontal cortex, area 3 (Fr3); secondary
motor cortex (M2); frontal areas 1-6 (F1-F6); area 6 of cortex, ventral, part
a (6 VA); area 6 of cortex, dorsorostral part (6DR); area 8a or cortex,
dorsal part (8AD); area 8a of cortex, ventral part (8AV); area 45 of cortex;
area 47 of cortex; area 46 of cortex, dorsal part (46D); area 46 of cortex,
ventral part (46 V).

awake marmoset. This finding supports the notion that frontal
areas in rats resemble primate premotor but not the prefrontal
cortex (Fig. 3a; also see ref. 25).

Rodent: Eastern Grey Squirrel

Primate: Common Marmoset

s
", == Squirrel, F3

Fig. 4 Similarities in interareal functional connectivity of squirrel region
F3 and marmoset area 47L. a Fingerprint for squirrel region F3 and
marmoset area 47 L shows a similar interareal functional connectivity
pattern. Note that for each species, the fingerprints are normalized between
0 and 1 to allow for pattern comparability: A O value does not necessarily
mean that there was no activation in a region, but just that the region had
the lowest relative value within that fingerprint. b Photograph of ex vivo
squirrel and marmoset brains and the location of squirrel region F3 and
marmoset area 47 L. ¢ Anatomically annotated surface rendering and
functional connectivity map of squirrel region F3 with the rest of the brain
and overlaid on coronal slices of anatomical MR images. d Anatomically
annotated surface rendering and functional connectivity map of marmoset
area 47 L with the rest of the brain overlaid on coronal MR atlas slices.

The pattern, however, was entirely different for the comparison
of connectivity profiles between squirrels and marmosets. We
found that frontopolar regions in the squirrel showed high cosine
similarities values that, unlike rats, did not significantly differ
from patters of lateral frontal cortex areas 6DR, 8aD, 8aV, and 47
in marmosets. A prominent interareal connectivity feature of
these PFC areas is a strong FC profile with posterior parietal
cortex and posterior cingulate cortex. This connectivity profile
was also present for frontopolar cortical sites in the squirrels. In
contrast to rats and mice, the frontal cortex in squirrels has so far
only been coarsely parcellated. The original report labeled the
squirrel frontal cortex as a single area F16. More recently, Wong
and Kaas (2008) divided the frontal cortex in squirrels into an
agranular primary motor field (area M) but left the remaining
cortex rostral and medial to area M as area F20. They noted that
this region was not sharply distinguished from area M based on
immunohistochemical and histochemical procedures. Interest-
ingly, the frontopolar cortex in squirrels clearly shows a layer 4
that is lacking in rats and mice. Based on this cytoarchitectural
feature and the strong FC with posterior parietal and posterior
cingulate cortex, we propose that these frontal regions in squirrels
could be considered analogous to some PFC regions in primates.
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Eastern grey squirrels rely greatly on vision for climbing and
jumping between tree branches and identifying potential pre-
dators. It is therefore not surprising that squirrels have a well-
developed visual system. Hall and Diamond (1969) previously
concluded that the visual system in grey squirrels exhibits a
similar expansion as in tree shrews?’, an order closely related to
primates. Squirrels have a retina with a 2:3 ratio of rods to
cones!®, two types of cones with peak sensitivities in the green
and blue color range?8, a lateral geniculate nucleus with five
distinct layers??, a larger pulvinar3?-32, a proportionally very large
superior colliculus (SC)!7, and extensive visual cortical areas 17
and 1813, In contrast to the SC in rats, the squirrel SC receives
abundant inputs from visual areas and cingulate cortex but not
from the motor and somatosensory cortex, resembling the cor-
ticotectal pattern found in tree shrews and primates33. In fact, it
has been proposed that diurnal squirrels may be the ideal rodent
model for examining the visual cortex!>.

The frontoparietal connectivity that we identified here could
provide the neural basis for the cognitive abilities found in
squirrels. Under experimental conditions, squirrels exhibit key
components of complex cognition, including behavioral flexibility
in discrimination-reversal tasks3435, spatial cue use3®, and
problem-solving strategies®’. A fascinating natural example of
inhibitory control in grey squirrels is that they stop digging and
increase the latency to start caching when conspecifics are
present38.

Grey squirrels and marmosets have arrived at similar semi-
arboreal lifestyles. However, they show no common arboreal
ancestor, indicating that the expansion of the visual system and
the formation of frontoparietal connectivity architecture might
have evolved along similar lines driven by comparable ecological
niches as an example of convergent evolution?’. A diurnal activity
pattern and an arboreal habitat may have favored color vision,
high visual acuity, and depth perception for navigation in both
species. At present, it cannot be ruled out that a frontoparietal
network organization is typical in many rodent species and that
the subfamily Muridae, which includes Old World rats and mice,
lost this organization due to their adaptation to a terrestrial and
mainly nocturnal lifestyle. It has been recently posited that evo-
lution of the dorsal and ventral visual processing streams in both
primates and squirrels was the result of occupying new, diurnal
environments after the extinction of dinosaurs!“.

Rats and mice are powerful animal models for neuroscience.
They are easy to breed, and powerful genetic tools have been
developed that allow targeted probing and dissection of circuit
functions in mice. Our findings, however, do not support the idea
that rats have an organization of frontoparietal connectivity
similar to primates. Based on the results presented here—that
strong frontoparietal connectivity is present in Sciurus car-
olinensis, but is lacking in their Muridae counterparts, Rattus
norvegicus (at least to the extent that it overlaps with primate
connectivity patterns)—we highlight the importance of environ-
mental niche in neuroscientific modelling species despite the
constraints of evolutionary history. Indeed, evolutionary proxi-
mity is critically important, but evolutionary convergence may
also be leveraged, perhaps improving the potential translatability
of results yielded from preclinical modelling species. This rings
especially true for inquiries in visual neuroscience. Indeed, even
though squirrels and primates have been evolving independently
for nearly 100 million vyears (Fig. 1) from ancestral
insectivores3%40 we found that grey squirrels show a frontopar-
ietal architecture with comparable patterns to the marmoset
brain, opening the possibility of using squirrels as a rodent model
for vision and comparative explorations of frontoparietal network
organization and function.

Methods

Subjects

Grey squirrels and rats. Data were collected from five (1 female, 4 melanistic) adult
wild-caught Eastern grey squirrels (Sciurus carolinensis) of unknown age weighing
590-700 g under a wildlife scientific collector’s authorization from the Ontario
Ministry of Natural Resources. Once a squirrel was caught inside a commercial trap
(Havahart Squirrel & Chipmunk Live Trap), the trap was placed in a large plastic
storage box and immediately transported to the Centre for Functional and Meta-
bolic Mapping at the University of Western Ontario (5-min transport time).
Squirrel anesthesia was induced by administering 4-5% isoflurane and oxygen with
a flow rate between 1 and 1.51/min using a precision vaporizer attached to the
plastic storage box, which served as an induction chamber. Data were collected
from five adult male Wistar rats aged 8-12 weeks and weighing from 250-350 g.
Rat anesthesia was induced by placing the animals in an induction chamber with
4-5% isoflurane and oxygen with a flow rate between 1 and 1.51/min.

Both species were lightly anesthetized via spontaneous inhalation of 1.5-2%
isoflurane mixed with oxygen flowing between 1.5 and 2 L/min throughout the
scan. Respiration, SpO2, and heart rate were continuously monitored using a pulse
oximeter and were observed to be within the normal range throughout the scans
(squirrels: respiration = 35-80 (mean 57) bpm, SpO2 = 95-100%, heart
rate = 230-318 (mean 274) bpm). Body temperature was also measured and
recorded throughout, maintained using warm-water circulating blankets, thermal
insulation, and warmed air. All animals were head-fixed in stereotactic position
using a custom-built MRI bed with ear bars and a species-specific palate bar as part
of the anesthesia mask?2. Upon completion of imaging, 3-5 ml of warmed NaCl
was administered subcutaneously. A small ear punch was made in squirrels to
mark the animal and avoid repeated study of the same squirrel. A blanket and
supplemental heat were provided for recovery. After recovery, squirrels were
transported in the plastic storage/induction box back to the capture location and
released. One squirrel died during recovery. Its brain was removed, fixed by
submersion in formalin, and subsequently imaged for ultra-high resolution
structural MRI at the University of Pittsburgh Brain Institute. All experimental
procedures were in accordance with the Canadian Council of Animal Care policy
and protocols approved by the Animal Care Committee of the University of
Western Ontario Council on Animal Care.

Marmosets. To compare the squirrel and rat data to marmoset data, we used fMRI
data from our open-access resource (https://marmosetbrainconnectome.org)*l.
This database contains resting-state fMRI data from 31 awake marmosets (Calli-
thrix jacchus, 8 females; age: 14-115 months; weight: 240-625 g) that were acquired
at the University of Western Ontario (5 animals) and the National Institutes of
Health (26 animals).

Imaging

Image acquisition. For both rats and grey squirrels, data were acquired on a 9.4 T
31 cm horizontal bore MRI scanner (Varian/Agilent, Yarnton, UK) and Bruker
BioSpec Avance III console with the software package Paravision-6 (Bruker
BioSpin Corp, Billerica, MA) and a custom-built, high-performance 15-cm-
diameter gradient coil with 400-mT/m maximum gradient strength*? at the Centre
for Functional and Metabolic Mapping at the University of Western Ontario. The
animal holders and radiofrequency receive arrays were built in-house, and design
files for these stereotactic holders have been made available?? with geometrically
optimized phased array receive coil designs for the two species. The rat coil was
made up of 6 channels, while a larger marmoset coil with 8 channels was used for
the squirrels. Both coils have a similar signal-to-noise ratio (SNR). Preamplifiers
were located behind the animals, and the receive coil was placed inside a quad-
rature birdcage coil (12-cm inner diameter) used for transmission.

For the rats, functional imaging was acquired during one session for each
animal, with 6 functional runs (at 600 volumes each) with the following
parameters: TR = 1,500 ms, TE = 15 ms, field of view = 38.4 x 38.4 mm, matrix
size = 96 x 96, voxel size = 0.4 x 0.4 x 0.4 mm, slices = 35, bandwidth = 280 kHz,
GRAPPA acceleration factor: 2 (anterior-posterior). T2-weighted structural scans
were acquired for each animal with the following parameters: TR = 7,000 ms,

TE = 44 ms, field of view = 38 x 38 mm, matrix size = 192 x 192, voxel
size = 0.2 X 0.2 x 0.4 mm, slices = 35.

The squirrel imaging was similar to rat imaging with functional imaging data
acquired from one session for each animal with 3-4 functional runs (at 600
volumes each) with the following parameters: TR = 1500 ms, TE = 15 ms, flip
angle = 40 degrees, field of view = 64 x 64 mm, matrix size = 128 x 128, voxel
size = 0.5 x 0.5 x 0.5 mm, slices = 42, bandwidth = 400 kHz, GRAPPA acceleration
factor: 2 (anterior-posterior). T2-weighted structural scans were acquired for each
animal with the following parameters: TR = 7000 ms, TE = 55 ms, field of
view = 64 x 64 mm, matrix size = 384 x 384, voxel size = 0.133 x 0.133 x 0.5 mm,
slices =45. As an in vivo registration template, we also acquired a structural T2-
weighted image from squirrel #5 with an isotropic voxel resolution with the
following parameters: TR = 15,000 ms, TE = 48 ms, field of view =51 x 51 mm,
matrix size = 256 x 256, voxel size = 0.2 x 0.2 x 0.2 mm, bandwidth = 50 kHz,
slices = 100, number of averages = 3.

For the squirrels, an ultra-high-resolution ex vivo template was also generated
from squirrel #5 — the same brain used as the in vivo registration template. The
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sample was fixed by submersion in 10% formalin for one week, then imaged at the
University of Pittsburgh Brain Institute on a 9.4 T 30 cm horizontal bore MRI
scanner (Bruker BioSpin Corp, Billerica, MA) equipped with a Bruker BioSpec
Avance Neo console and the software package Paravision-360 (version 3.2; Bruker
BioSpin Corp, Billerica, MA) and a custom high performance 17 cm gradient coil
(Resonance Research Inc, Billerica, MA) performing at 450 mT/m gradient
strength. To maximize sensitivity, a custom 30 mm inner diameter millipede
quadrature coil (ExendMR LLC, Milpitas, CA) was used. The sample was placed in
a 50 ml conical centrifuge tube, filled with Fomblin oil (Solvay Solexis, West
Deptford, NJ), and placed under vacuum (—27 inHg) for 30 min to remove air
bubbles. A T2*-weighted structural scan was acquired with the following
parameters: TR = 100 ms, TE = 8 ms, field of view = 35 x 30 x 20 mm, matrix
size = 700 x 600 x 400, voxel size = 0.05 x 0.05 x 0.05 mm, bandwidth = 50 kHz,
number of averages = 2, total scan time = 14 h, 48 min. The T1 relaxation time of
the tissue was measured (mean T1 = 1047 ms), and an optimum flip angle (Ernst
angle) of 24.7 degrees was set for a TR of 100 ms.

For the marmosets, functional imaging was acquired from two sites. The University of
Western Ontario data were acquired using the same 9.4 T scanner as the rat and squirrel
data. A custom 5-channel receive coil was used, which was rigidly fixed to the head
implant*3. Radiofrequency transmission was accomplished with a quadrature birdcage coil
(12-cm inner diameter) built in-house. Functional imaging was performed over multiple
sessions (days) for each animal, with 4-6 functional runs (at 600 volumes each) per animal
with the following parameters: TR = 1500 ms, TE = 15 ms, flip angle = 35 degrees, field of
view = 64 X 64 mm, matrix size = 128 x 128, voxel size = 0.5 x 0.5 x 0.5 mm, slices = 42,
bandwidth = 500 kHz, GRAPPA acceleration factor: 2 (anterior-posterior). T2-weighted
structural scans were acquired for each animal during one of the awake sessions with the
following parameters: TR = 5,500 ms, TE = 53 ms, field of view = 51.2 x 51.2 mm, matrix
size = 384 x 384, voxel size = 0.133 x 0.133 x 0.5 mm, slices = 42, bandwidth = 50 kHz,
GRAPPA acceleration factor: 2.

The NIH marmoset data were acquired using at 7 T 30 cm horizontal bore magnet
(Bruker BioSpin Corp, Billerica, MA, USA) with the software package Paravision
(Bruker BioSpin Corp, Billerica, MA, USA), a 15-cm-diameter gradient coil with 450-
mT/m maximum gradient strength (Resonance Research Corp, Billerica, MA, USA)
and custom 10-channel phased-array receive coil which conformed to the 3D printed
head holder. Radiofrequency transmission was accomplished with a 16-rung high-
pass birdcage coil. Functional imaging was performed in a single session with 4-8
functional runs (at 512 volumes each) with the following parameters: TR = 2000 ms,
TE = 22.2 ms, flip angle = 70.4, field of view = 28 x 36 mm, matrix size = 56 x 72,
voxel size = 0.5 % 0.5 x 0.5 mm, slices = 38. Two sets of spin-echo EPI with an
opposite phase-encoding direction (left-right and right-left) were collected for the
EPI-distortion correction (TR = 3000 ms, TE = 0.44 ms, flip angle = 90 degrees,
FOV = 28 x 36 mm, matrix size = 56 x 72, voxel size = 0.5 x 0.5 x 0.5 mm, axial
slices = 38). T2-weighted structural image scans were acquired for each animal
during one of the awake sessions with the following parameters: TR = 6000 ms,

TE = 9 ms, flip angle = 90°, FOV = 28 x 36 mm, matrix size = 112 x 144, slices = 38,
voxel size = 0.25 x 0.25 x 0.5 mm, number of averages = 8.

Image preprocessing. For squirrels, rats, and marmosets, data were similarly pro-
cessed with custom preprocessing pipelines using the Analysis of Functional Neu-
rolmages (AFNI)** and FMRIB Software Library (FSL)#° software packages. Raw
functional images were converted to NifTI format using dem2niix*® and reoriented
from the sphinx position using FSL. The images were then despiked (AFNI’s
3dDespike), and volume registered to the middle volume (AFNI’s 3dvolreg). The
motion parameters from volume registration were stored for later use with nuisance
regression. For the rats, images were smoothed by a 1 mm full-width at half-
maximum Gaussian kernel to reduce noise (AFNI’s 3dmerge); for the larger squirrel
and marmoset brains, a 1.5 mm kernel was used. An average functional image was
then calculated for each run and registered (FSL’s FLIRT) to each animal’s T2-
weighted image—the 4D time-series data was transformed using this matrix. T2-
weighted images were manually skull-stripped (including the olfactory bulb in all
three species), and this mask was applied to the functional images.

Each individual animal’s T2-weighted images were non-linearly registered to
high-resolution anatomical templates: for squirrels, images were registered to the
higher-resolution anatomical image from squirrel 5 (voxel size = 0.2 x 0.2 x 0.2 mm).
For rats, images were registered to the anatomical image provided in template space
(voxel size = 0.05 x 0.05 x 0.05 mm)*’. For marmosets, images were registered to the
NIH marmoset brain atlas (voxel size = 0.2 x 0.2 x 0.2 mm)*8. Functional images
from all three species were bandpass filtered between 0.01 and 0.1 Hz.

Fingerprinting. For frontal regions, seed analyses were conducted between the mean
time course within each seed region and every other voxel in the brain (with the
nuisance regressors described above). Group functional connectivity maps (Z score
maps) were then calculated for each of the frontal seeds in the three species. For
rats, seeds (0.9 mm isotropic cubes) were placed in frontal areas Fr3, FrA, M2, LO,
and MO based on the atlas (see Fig. 2, red squares). For squirrels, no atlas is

available; therefore, 6 seeds (1.6 mm isotropic cubes) were placed in the frontopolar
cortex (see Fig. 2, red squares) across area F based on a paper from the Kaas lab°.
For marmosets, seeds (single voxels) were placed in frontal area 6 VA, 6DR, 8AD,
8AV, 45, 47 L, 46D, and 46 V (see Fig. 2, red squares) using our open-access

resource (https://marmosetbrainconnectome.org)*! —given the high statistical

power of this functional connectivity dataset, averaging across multiple voxels was
not necessary.

We then specified eight common regions extrinsic to the frontal cortex in all
three species (placement shown in Fig. 2 as blue squares). For each species, regions
of interest were manually drawn in the posterior parietal cortex (PPC), posterior
cingulate cortex (PCC), S1, M1, insula (Ins), striatum, superior colliculus (SC), and
pulvinar (Pul). For the rats, these regions of interest were 0.9 mm isotropic cubes;
in the squirrels and marmosets, 1.5 mm isotropic cubes. The placement of the
cubes was based on definitions of these areas in the rat and marmoset atlas and the
squirrel cortical parcellation by Wong and Kaas?3. We also systematically
translated the seed regions about the original anatomically defined centroid in each
species and found that the placement had minimal impact on the overall
fingerprint pattern (Supplementary Figs. 7, 8 and 9 for rats, squirrels, and
marmosets respectively).

With the eight regions of interest defined in each respective species, we then
extracted the mean connectivity values within these regions (with variance shown
in Supplementary Fig. 10)—these values constituted the fingerprints, with a
separate fingerprint for each seed region, for each species. To compare across the
species, we normalized the fingerprint to a range between 0 (weakest connection
with any of the target regions) and 1 (strongest connection with any of the target
regions). We thus compare a connectivity pattern with target areas rather than
absolute strength in any given species?. For the comparisons, we calculated the
multidimensional cosine similarity across the matrix of functional connectivity
fingerprints>3>—intuitively similar to a correlation value. The cosine similarity
analysis provided an index of how similar or different the interareal fingerprint
patterns were. By comparing the cosine of the angle between vectors (i.e.,
fingerprints), the cosine similarity metric indexes how similar the orientation of a
set of vectors are in normalized space, with high similarity values indicating similar
fingerprints (i.e., vectors in the same direction) and low scores indicating dissimilar
fingerprints (i.e., vectors of diverging direction). By plotting the fingerprints in
spider plots, we show the specific regions where the fingerprints differ. We applied
this technique to compare squirrel, rat, and marmoset frontal FC patterns with the
eight extrinsic regions.

Statistics and reproducibility. Permutation testing was used to test for statistical
differences between fingerprints across the species. Permutation tests were per-
formed via in-house code written in Matlab. Pair-wise comparisons of fingerprints
were performed for each seed region of interest by first randomly dividing indi-
vidual (i.e., scan-level) fingerprints into two groups (with fingerprints from each of
two species randomly forming the comparison distributions), group-wise aver-
aging, then normalization of the fingerprints to a range of 0 (weakest connection
with any of the target regions) and 1 (strongest connection with any of the target
regions). Cosine similarity was then calculated across species. This process was
iterated 10,000 times, yielding a distribution of cosine similarity values that trended
towards 1. A cosine similarity value smaller than the lowest 1 percentile of per-
muted cosine similarity values was defined as a significantly different fingerprint
comparison.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data available upon reasonable request from the authors.

Code availability

Code available upon reasonable request from the authors.
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