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ABSTRACT
Transcription repression (TR) therapy of cancer has been widely discussed. 

Here, TR refers to global repression of transcription rather than specific targeting 
of cancer-causing genes such as MYC. TR drugs inhibit transcription by binding to 
the transcribed DNA or to RNA polymerase; for example, actinomycin D has been 
extensively used in research and therapy to shut down transcription globally [1–7].  
As proliferating cells demand a high rate of transcription, restricting transcript 
production could be effective in slowing down cell proliferation. However, TR also 
deprives other less proliferative cells of new transcripts, thus leading to substantial 
toxicity [1, 8, 9]. We now develop a mathematical theory to exploit the greater 
demand for transcription in highly proliferating cells. A new strategy, referred to as 
the TRR (transcript repression-recovery) model, would insert a recovery phase to 
allow the more slowly proliferating cells to recover. It is most effective to have strong 
blocking for a short period (a few hours) followed by a longer recovery phase in each 
cell cycle. Hence, TRR can potentially achieve selective killing of cells based on their 
global transcription needs but precise fine-tuning is necessary.

INTRODUCTION

There have been many proposals for using 
transcription repression (TR) therapy on cancers. While 
TR therapies often broadly include the repression of 
specific cancer driver genes, such as MYC, the underlying 
molecular bases for any cancer type are fairly heterogeneous 
as revealed by the cancer genomic and transcriptomic 
data [10–12]. Here, a more general mechanism of global 
transcription repression will be considered. In this 
mechanism, TR may target DNA, RNA, RNA polymerase I 
or II or various transcription complexes [13–21].

The efficacy of the TR treatment depends on how 
it affects transcript abundance across all genes. Growing 
cell mass needs more transcripts than non-dividing or 
slowly dividing cells. We ask how TR therapies can 
work against fast-dividing cells by either causing cell 
death or pushing cells out of active division without 
damaging other cells. TR falls into two major categories 

depending on whether the rate of transcription and 
transcript degradation are cell cycle-dependent. For most 
mRNAs, degradation and Pol II-directed transcription 
are not strongly influenced by cell cycles. In contrast, 
rRNA synthesis directed by Pol I increases greatly 
when cells enter the cell-division cycles [14, 22–25]. 
Treatment strategies should be very different for these 
two mechanisms. This analysis will focus on the simpler 
mRNA synthesis that is not affected by cell cycles. The 
more complex cell cycle-dependence of rRNA production 
will be addressed in a subsequent study. 

While TR could be applied to inhibit cell proliferation, 
it can be toxic to normal and less-rapidly dividing cells as 
well. Actinomycin D (or dactinomycin), which has been 
widely used in molecular biology laboratories to repress 
transcription, is one such example [1–9]. The mathematical 
theory developed below aims at removing the toxicity to 
slower-dividing cells while preserving the potency of TR 
drugs against the more rapidly-dividing ones.
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The TRR (transcription repression-recovery) 
model and analysis

Overview

The model of TR therapy analyzed here is an 
attempt at disrupting faster dividing cells while sparing 
slowly dividing or resting ones. It has two main features. 
First, the proliferation rate of mammalian cells is assumed 
to be limited by their transcription capacity. Second, 
transcription repression is followed by a short period of 
recovery within each cell cycle. The model is referred to 
as the TRR (transcription repression-recovery) model.

We now elaborate on the first feature. When cells 
divide every day for 10 days and increase in number 
by 1000 fold (~210), the demand for transcripts should 
be 1000 fold as well. This demand might be a limiting 
factor of mammalian cell proliferation. For example, the 
doubling-time in long term cell cultures often reaches 
a limit of ~ 20 hours, despite the advantage of faster 
divisions. This limit is not set by DNA replication since 
cells that divide without much transcription (as in early 
embryos) can proceed faster. Furthermore, the S phase 
in cell cycles generally accounts for less than 1/3 of the 
entire process, suggesting that transcription in the longer 
G1 + G2 phases are more likely to be the limiting factor. 
Given the average half-life of mammalian mRNAs (6–8 
hours) [26, 27], it would take >16 hours to synthesize the 
needed new transcripts. Hence, a cell cycle of 20 hours is 
probably close to the limit if we include the time needed 
for the S and M phases. If transcription of mRNAs is 
the rate-limiting step of cell division, TR may handicap 
rapidly proliferating cells more severely. 

The second feature of the TRR model is the 
inclusion of a recovery phase that may reduce, or even 
eliminate, the toxicity to slowly proliferating cells. The 
relative length of the repression vs. recovery phase will be 
a key parameter of the strategy.

Dynamics of mRNA changes in resting vs. 
dividing cells 

Let X(t) be the number of transcripts of an average 
gene at time t within a single cell. The change in a time 
unit of X(t) is given by 
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where b is the transcription rate and d is the decay 
rate. Solving Eq. (1), we obtain
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When t approaches infinity, X(t) reaches the 

equilibrium, Xeq, when 0
X

t
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∂
. Thus,

Xeq = b/d
Xeq can be measured by RNAseq and d is obtained 

by the time-course measurements when all transcription 
is repressed, i.e., b = 0. With b = 0, Eq. (2) is reduced to 

0
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tX X e−=  Eq. (2.1)

where X(0) is usually equal to Xeq in the beginning 
of the measurement. 

In resting cells, X(t) approaches Xeq and remains 
unchanged unless perturbed. For dividing cells, X(t) 
repeatedly decreases as a result of cell division. If most of 
the transcription occurs in G1, then we may assume that 
X(0) ~ ½ Xeq = ½ b/d in the beginning of G1 and 
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 Eq. (2.2).

TRR effect on mRNA abundance in one cell 
cycle 

When the transcription in resting cells is repressed 
by a drug such as actinomycin D, we reset t = 0 at 
application. X(t) then follows Eq. (2.1) until it decreases 
below a threshold that triggers cell death. In this case, 
cell death may be caused by p53-dependent apoptosis or 
other mechanisms shown to be operative [4–6, 15]. The 
repression (or blocking) phase lasts t1 and the recovery 
phase lasts t2, as marked in Figure 1. It is necessary to 
block the transcription only briefly such that resting cells 
could rebound. We assume that X(t) = ½ Xeq is a safe low 
bound for resting cells since dividing cells permit X(t) to 
reach this level. The trajectory within one cell cycle is 
shown in Figure 1. (Although resting cells do not actually 
go through cell cycles, the time is marked the same way as 
if cells are cycling.) X(t) fluctuates between Xeq and ½ Xeq 
and returns to near Xeq in the time of one cell cycle. 

X(t) changes in dividing cells under the same TRR 
schedule as in resting cells is also given in Figure 1 which 
shows the X(t) dynamics in cells that are at the M-G1 transition 
when the blocking takes place. Immediately after the M-G1 
transition, untreated cells should be regaining transcripts that 
have been halved by cell division but, under drug treatment, 
X(t) would continue to decrease for the duration of t1. At the 
lowest point in this example, X(t) would be near ~ ¼ Xeq, much 
lower than that of the resting cells at ½ Xeq.

The recovery phase (t2) that follows is the main 
challenge of the TRR therapy. Starting from a lower 
transcript level at beginning of the treatment, dividing 
cells recover more rapidly than resting cells and continue 
to narrow the difference between the two types of cells. In 
the numerical calculation, the two types of cells will return 
to 95% and 93% of Xeq, respectively in only one cell cycle. 
The faster recovery in cells with a lower X(t) is dictated by 
the term of -dX(t) in Eq. (1). We shall present strategies to 
address this challenge.
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TRR effect on mRNA abundance after multiple 
cell cycles 

When the TRR treatment with the alternating 
blocking (t1) and recovery (t2) phases is applied through 
multiple cell cycles, the equilibrium dynamics can be 
modeled analytically. In each cell cycle, X(t) fluctuates 
between a high bound and a low bound, which quickly 
converge to the equilibrium, denoted XH and XL, 
respectively. For resting cells, 
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For dividing cells, the corresponding values, XH’ and 
XL’, are
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which shows that the ratio is independent of t1 and 
t2 as long as t1 + t2 is a constant. In this study, t1 + t2 is 
the cell cycle time. In Figure 2, X(t) at the beginning and 
end of each recovery phase through multiple cell cycles is 
given. Given the rapidity with which X(t) approaches XH 
and XL (See Figure 2), Eqs 3–6 are sufficient to capture 
most of the dynamics. Figure 2 shows that TR depresses 
transcript abundance to a much lower level in dividing 
cells than in resting cells. We also assume that some cells 
may divide at a moderate rate, for example, at 1/3 of the 
maximal rate. The red line in the inset of Figure 2 marks 
the X(t) dynamics of cells that divide once every 60 hours. 

We shall use XL as a gauge of how strongly cells are 
perturbed by the TRR treatment. Whereas rapidly dividing 
cells may die or stop dividing, the more moderately 
proliferative cells may be able to tolerate the TRR 
perturbation better since XL in such cells dips low less 
frequently. It is important to note that Figure 2 presents 
the “average dynamics” of all mRNAs. Among thousands 
of genes involved in this process, a small fraction of them 

Figure 1: Change in transcript abundance per cell, X(t), in a single cell cycle. At time 0, dividing cells enter the G1 phase and 
X(0) = ½ Xeq. Cells are either untreated or treated with a transcription-blocking agent for a period of t1, followed by a recovery phase that 
lasts for a period of t2 until the end of the cell cycle. At the end of t1, X(t) of the resting cells is ½ Xeq. The dynamics is described in Eqs. 
2 – 2.2. Dividing cells are assumed to have a cell cycle time of 20 hours close to the limit of most cell lines.
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may exert a fitness effect on the dividing cells and the 
large fluctuations in X(t) are unlikely to persist for long. 
Actual cancer cells may either stop dividing or, if they 
continue to divide, trigger apoptosis. The decision may 
depend on the mutations they carry. For example, in RB- 
and p53- cells, cell cycle progression may not be stopped 
at the check point and unhealthy cells may continue to 
divide leading to cell death [28]. 

Efficacy of TRR as a function of blocking time 
(t1) in each cell cycle

At the end of t1, cells are allowed to recover until 
the beginning of the next cell cycle. Figure 3 shows that 
XL decreases as t1 increases for both proliferating and 
resting cells. By TRR, as by other cancer treatments, the 
treatment against proliferating cells also exerts a price 
on the resting ones. We assume that X(t) cannot sustain 
cell divisions if it deviates too far from Xeq. In Figure 
3, this is shown by the threshold (the upper red line). 
It also seems reasonable to suggest a lower threshold 
for the viability of resting cells (the lower red line). 
Between the two thresholds, there exists a time interval 
for t1 (between the two red arrows, corresponding to 2–8 
hrs in this example) which would stop cell proliferation 

but would leave resting cells to recover. It may also be 
possible to find a smaller interval for t1which would kill 
proliferating cells without killing resting cells (the green 
double-headed arrow of Figure 3).

Highly proliferative cells are stressed by low X(t)’s 
more frequently than moderately proliferative ones. Figure 2 
inset gives an example of cells that are stressed only 1/3 as 
frequently as the fastest proliferating cells. It may therefore 
be possible that slowly-dividing may be able to tolerate 
lower XL’s (as they occur less frequently). In Figure 3 
inset, the interval between the two red arrows indicates the 
window of t1 in which blocking transcription can disrupt 
the more proliferative cells and spare the less proliferative 
ones. In contrast with TRR, drugs targeting DNA replication 
usually kill all cells that enter the cell cycle. 

Efficacy of TRR as a function of repression 
strength

For the TRR therapy to discriminate against the 
proliferating cells, relatively short blocking time with 
strong repression is recommended. We may ask if the 
complementary strategy of long blocking time with weak 
repression might also work. For this analysis, we introduce 
a new parameter α  to designate the residual transcription 

Figure 2: Change in transcript abundance per cell, X(t), through multiple cell cycles. Both dividing and resting cells are 
treated with a transcription blocking agent as in Figure 1. X(t) oscillates between a high and low value in each cycle which quickly 
converges to XH and XL defined by Eqs (3–6). Black and blue lines trace X(t) for resting and dividing cells respectively. In the inset, the red 
line trace cells that divide at 1/3 of the maximal rate.
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under blocking, which ranges from the complete block of 
α  = 0 to no blocking at α  = 1. 
For rest cells,
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For cancer cells,
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When 0α = , Eqs. 8 -11 are reduced to Eqs. 3–6. 
Figure 4 presents the contour lines of XL/Xeq for 

resting cells (black lines) and proliferating cells (blue 
lines) as the function of t1 and α . The bottom portion of 
Figure 4 presents the dynamics under α  ~ 0, equivalent 
to Figures 1–3. The lower left corner shows that black 
lines of high XL/Xeq ratios (often > 0.5 for resting cells) 
and blue lines with low XL/Xeq ratios (< 0.5) interleaf. 
In other words, intense blocking and short t1 can lead to 

low X(t)’s in proliferating cells and high X(t)’s for resting 
ones. The upper right corner is of particular interest where 
blocking is weak but blocking time is long. This corner 
yields very different results from the lower left corner. 
Here, both blue and black lines of about 0.3–0.5 interleaf 
and there is no discrimination between proliferating and 
resting cells. In general, long blocking time (t1) blurs the 
differences between these two types of cells. This trend 
has been shown for strong blocking in Figures 1–3 and it 
is shown here for weak blocking. 

CONCLUSIONS AND DISCUSSION

The TRR strategy differs from the oncogene 
and transcription “addiction” hypotheses [29, 30]. The 
“addiction” hypotheses posit cancer-specific expressions 
that can be targeted for treatment. Nevertheless, the 
TCGA data show cancers to be highly heterogeneous at 
the molecular level and recent publications also report the 
low reproducibility of gene-based cancer findings [31–33]. 
We therefore assume a more general mechanism of global 
transcription repression. 

TR agents such as actinomycin D are often potent 
against cancer cells [1–7, 9, 34]. For that reason, the 
success of TR therapy lies in the modulation of dose 

Figure 3: XL value (Eq. 4 and 6) as a function of the length of the blocking phase (t1). Two thresholds are assumed below which cells 
either do not divide or cannot survive. The two thresholds can be the same without affecting the qualitative conclusion. When XL drops 
below the threshold, cells are assumed to be unable to divide, or survive. The interval between the two red arrows indicates possible t1 
values that permit resting cells to survive but prevent non-resting cells to divide. The green arrow indicates a smaller interval for t1 which 
would not permit dividing cells to survive (see text). In the inset, the comparison is between fast and slowly dividing cells. It is assumed 
that slowly dividing cells have a lower threshold for X(t) for cell survival since they are stressed much less often.
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and duration that would spare normal cells but maintain 
the efficacy against cancer cells. To factor in toxicity 
reduction, we suggest TR be accompanied by a recovery 
phase in the same cell cycle as part of an expanded TRR 
strategy. Figure 4, incorporating intermediate repression, 
shows that the simple model can capture the general 
patterns of more complex interactions.

In realistic scenarios, the complex dynamics will 
depend on how the drug is systemically distributed and 
how it gets in the transcription complex. The mathematical 
theory suggests that the most effective strategy would be 
to administer the drug strongly but briefly, thus permitting 
a longer recovery time in the remainder of the same cell 
cycle. Given that the recovery phase demands rapid decline 
in drug concentration, local administration that permits 
diffusion to dissipate the drug may be a simple and effective 
strategy. The theory also provides the mathematical 
justification for the strategy of one single large dose over 
several smaller ones [2]. The theory is also relevant to the 
low-dose metronomic (LDM) chemotherapy [35], which 
administers drugs continuously but uses a reduced dose 
in each administration. In the absence of a quantitative 
framework, LDM studies often choose parameter values 
arbitrarily. The theory presented here will help to delineate 
the parameter space for the optimization of LDM. 

TRR introduces a recovery phase (t2) that alternates 
with the blocking phase (t1) in the same cell cycle. The 
strategy may also be applicable to chemo-therapy that 
blocks DNA replication. In the DNA-based therapy, 
toxicity imposes a hefty cost on patients’ health such that 
long term and repeated applications often cause severe 
problems. The theory of alternating the two phases in 
DNA-based therapies is beyond the scope of this study 
but it is conceivable that both phases would be somewhat 
longer than those for the transcription-based therapy. 

Overall, transcription repression against mRNA 
transcripts can be effective but only when the application 
is carefully fine-tuned. Because the synthesis and 
degradation of mRNA transcripts are usually not affected 
by cell divisions, the separation between fast and slow 
cell divisions is narrow. In that regard, transcripts that 
are made at an accelerated rate in dividing cells would be 
much better targets. Hence, repression of rRNA synthesis 
may be a much more effective strategy. This topic will be 
addressed in a follow-up study. 

Cancer therapy may be as much about the strategy of 
using existing drugs as developing new ones. TR and TRR 
therapies illustrate this point. With the delicate balancing 
of transcription repression and recovery, TRR may be able 
to discriminate among cells that have different needs for 

Figure 4: Contour lines of X(t)/Xeq in resting and dividing cells. X(t) is a function of both block time (t1) and blocking strength, 
expressed as the residual transcription rate (α) after blocking. Each point on the two-dimensional plane is associated with a pair of X(t) 
values. For example, point A, corresponding to a blocking time of t1 = 2.5 hours and α = 0.05, is associated with (0.7, 0.35). In this case, 
resting cells are much less stressed by the treatment than dividing cells. In contrast, point B with t1 = 12 hours and α ~ 0.35 is associated 
with X(t)’s of (0.4, 035), meaning both resting and dividing cells are comparably stressed. In general, lower left corners with short t1 and 
low α values represent better treatment parameters.
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transcription. While highly proliferative cells generally 
have stronger needs, cancer and normal cells may also 
differ in their transcription dependence [29] irrespective 
of their rates of cell division. In conclusion, we suggest 
the TRR strategy as a first line of defense against the most 
highly proliferative cells. By stalling the rapid tumor 
growth, other therapies can be more carefully planned.
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