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Key points 

Question 

Is the risk of psychosis associated with brain morphometric changes that deviate significantly 

from healthy variation?    

Findings 

In this study of 1340 individuals high-risk for psychosis (CHR-P) and 1237 healthy 

participants, individual-level variation in macroscale neuromorphometric measures of the 

CHR-P group was largely nested within healthy variation and was not associated with the 

severity of positive psychotic symptoms or conversion to a psychotic disorder. 

Meaning 

The findings suggest the macroscale neuromorphometric measures have limited utility as 

diagnostic biomarkers of psychosis risk.  
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Abstract 

Importance 

The lack of robust neuroanatomical markers of psychosis risk has been traditionally 

attributed to heterogeneity. A complementary hypothesis is that variation in neuroanatomical 

measures in the majority of individuals at psychosis risk may be nested within the range 

observed in healthy individuals. 

Objective 

To quantify deviations from the normative range of neuroanatomical variation in individuals 

at clinical high-risk for psychosis (CHR-P) and evaluate their overlap with healthy variation 

and their association with positive symptoms, cognition, and conversion to a psychotic 

disorder. 

Design, Setting, and Participants 

Clinical, IQ and FreeSurfer-derived regional measures of cortical thickness (CT), cortical 

surface area (SA), and subcortical volume (SV) from 1,340 CHR-P individuals [47.09% 

female; mean age: 20.75 (4.74) years] and 1,237 healthy individuals [44.70% female; mean 

age: 22.32 (4.95) years] from 29 international sites participating in the ENIGMA Clinical High 

Risk for Psychosis Working Group.    

Main Outcomes and Measures 

For each regional morphometric measure, z-scores were computed that index the degree of 

deviation from the normative means of that measure in a healthy reference population 

(N=37,407).  Average deviation scores (ADS) for CT, SA, SV, and globally across all 

measures (G) were generated by averaging the respective regional z-scores. Regression 

analyses were used to quantify the association of deviation scores with clinical severity and 

cognition and two-proportion z-tests to identify case-control differences in the proportion of 

individuals with infranormal (z<-1.96) or supranormal (z>1.96) scores. 

Results 

CHR-P and healthy individuals overlapped in the distributions of the observed values, 

regional z-scores, and all ADS vales. The proportion of CHR-P individuals with infranormal 
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or supranormal values in any metric was low (<12%) and similar to that of healthy 

individuals. CHR-P individuals who converted to psychosis compared to those who did not 

convert had a higher percentage of infranormal values in temporal regions (5-7% vs 0.9-

1.4%). In the CHR-P group, only the ADSSA showed significant but weak associations 

(|β|<0.09; PFDR<0.05) with positive symptoms and IQ.    

Conclusions and Relevance  

The study findings challenge the usefulness of macroscale neuromorphometric measures as 

diagnostic biomarkers of psychosis risk and suggest that such measures do not provide an 

adequate explanation for psychosis risk.     
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Introduction 

Schizophrenia is a mental disorder characterized by psychotic and cognitive symptoms1 and 

significant psychosocial disability.2 Similar abnormalities are also present in individuals at 

clinical high-risk for psychosis (CHR-P) who typically experience attenuated or brief 

psychotic symptoms3 and cognitive difficulties, and an elevated risk of developing psychosis 

at rate of 20% at 2 years and 35% at 10 years.5 A better understanding of the neurobiology 

of CHR states holds the promise of improving early detection and preventive strategies.6  

 

Multiple magnetic resonance imaging (MRI) studies have focused on identifying 

neuroanatomical alterations in CHR-P compared to healthy individuals (HI). Two meta-

analyses of these studies have highlighted cortical thickness (CT) reductions of small effect 

size in the frontotemporal regions of CHR individuals7,8 while a mega-analysis of brain 

morphometric data from 1792 CHR-P and 1377 HI from the CHR-P Working Group of the 

Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium found that 

such CT reductions were widespread (Cohen d range of -0.17 to -0.09).9 

 

Recently psychiatric neuroimaging has turned to normative modeling, which quantifies 

individual-level deviation in brain-derived phenotypes relative to a normative reference 

population.10 The advantage of this approach is that it can test whether psychiatric disorders 

are associated with substantial deviation from healthy variation in measures of brain 

organization. Normative modeling has yet to be applied to CHR-P states, but there are two 

studies on patients with established schizophrenia that are of direct relevance.11,12 In both 

studies, brain morphometry measures with values below the 5th or above the 95th percentile 

of the normative range were respectively considered infranormal and supranormal. Lv et al. 

(2020)11 calculated normative models of CT from 195 HI and applied them to 322 individuals 

with schizophrenia; 10-15% of patients showed infranormal CT values in temporal and 

ventromedial frontal regions and 3% of patients had supranormal values mainly in the 

paracentral lobule. Wolfers and colleagues (2021)12 developed normative models from 
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voxel-based morphometry data from three samples of HI (N1=400, N2=312, N3=256) and 

applied them to data from corresponding samples of patients with schizophrenia (N1=94, 

N2=105, N3=163); only a low percentage of voxels (<2%) had extreme values in patients 

across samples; voxels with infranormal values were mostly located within temporal, medial 

frontal, and posterior cingulate regions.     

 

It is currently unknown whether regional deviations from healthy neuroanatomical variation in 

brain morphometry might be present in CHR-P individuals and whether they explain 

substantial variance in positive symptoms or cognition. At least one study has suggested 

that normative deviation is better than raw volumes in predicting psychotic symptoms.13 

Addressing these questions is important for two reasons. First, vulnerabilities during brain 

development, as inferred from the presence of deviations from normative neuroanatomical 

trajectories, may set the scene for the brain changes observed in established cases of 

schizophrenia. Second, deviation from healthy variation in brain neuroanatomy may prove 

informative in identifying those CHR-P individuals that convert or experience more severe 

clinical presentations. To test these hypotheses, the current study derived age- and sex-

specific normative models of regional morphometry from an independent dataset of HI and 

applied them to the ENIGMA CHR-P Working Group sample which represents the largest 

available dataset of individual-level morphometric measures from CHR-P individuals.9  

 

 Methods 

Study Sample 

The study sample was derived from the pooled dataset of CHR-P and HI held by the 

ENIGMA CHR-P Working Group (eMethods and eTable 1). At each site, CHR-P status was 

ascertained using either the Structured Interview for Prodromal Syndromes (SIPS) or the 

Comprehensive Assessment of At-Risk Mental States (CAARMS) (eMethods and eTable 2). 

Additional site-specific eligibility criteria are shown in eTable 1. At each site, whole-brain T1-

weighted MRI data obtained from each participant (eMethods and eTable 3) were 
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parcellated and segmented using standard FreeSurfer pipelines 

(https://surfer.nmr.mgh.harvard.edu/) to yield estimates of total intracranial volume (ICV), 

regional measures of CT (N=68), surface area (SA) (N=68), and subcortical volume (SV) 

(N=14) (eTable 4). These measures were then assessed using the ENIGMA consortium 

quality assessment pipeline.14-17 Ethical approval for data collection and sharing was 

obtained by the Institutional Review Board at each site. Participant data were shared after all 

identifying information was removed. 

 

The current study sample comprises participants who had both high-quality brain 

morphometric data and complete SIPS or CAARMS ratings at the time of their scan 

(eMethods and eFigure 1). Based on these criteria we included 1,340 CHR-P individuals 

[47.09% female; age range: 9.5 to 39 years; mean (SD) age: 20.75 (4.74) years] and 1,237 

HI [44.70% female; age range: 12 to 39.87 years; mean (SD) age: 22.32 (4.95) years] (Table 

1, eTables 5 and 6). Conversion status at a mean follow-up time of 19.71 (13.97) months 

was available for 1,097 CHR-P individuals (Table 1 and eTable 6). Individuals that converted 

to a psychotic disorder (CHR-PC) (n=157) had significantly higher positive symptoms at the 

time of scanning (mean z-score [SD] = 0.21 [1.08]) than those who did not convert (CHR-

PNC) (N=940) (mean z-score [SD] = -0.05 [1.01]; T = 2.99; P = 0.003), but the two groups 

did not differ in age, sex, or IQ (all P > 0.07).  

 

Clinical Data 

The ratings of CAARMS and SIPS converge only for positive symptoms (eMethods and 

eTable 2); these ratings were converted to z-scores to enable cross-site harmonization. 

Similarly, IQ estimates were converted to z-scores to accommodate the different instruments 

used across sites (eTable 1). Information was also available on medication exposure at the 

time of scanning.  
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Normative models of brain morphometry 

The normative models for each of the regional CT, SA, and SV measures (eTable 4) were 

generated using CentileBrain, an empirically validated framework for normative models of 

brain morphometry developed using data from an independent multi-site sample of 37,407 

HI (53.3% female; aged 3-90 years) (https://centilebrain.org/).18 Details of the sample, 

procedures, model performance, and code are presented in the eMethods. Fractional 

polynomial regression was used to generate sex-specific models for each measure while 

accounting for site using ComBat-GAM harmonization.19 The ICV, mean CT, and mean SA 

were included in the models of the regional measures of SV, CT, and SA respectively.  

 

Computing deviation scores of regional morphometric measures 

The CentileBrain model parameters were then applied to each regional CT, SA, and SV 

measure of the CHR-P and HI of the ENIGMA sample. For each measure in each 

participant, we estimated the degree of normative deviation from the reference population 

mean as a z‐score computed by subtracting the predicted (Ŷ) from the raw value (Yo) of that 

measure and then dividing the difference by the root mean square error of the model 

(eFigure 2).20,21 A positive/negative z-score indicates that the value of the corresponding 

morphometric measure is higher/lower than the normative mean. As per previous 

literature,15,16 we defined regional z-scores as infranormal when below z=-1.96 or 

supranormal when above z=1.96, corresponding to the 5th and 95th percentile respectively. 

Intermediate values (i.e., between z=-1.96 and z=1.96) were designated as “within normal 

range”.   

 

Computation of average deviation scores 

We averaged the regional z-scores in each participant to generate an “average deviation 

score” for CT (ADSCT), SA (ADSSA), and SV (ADSSV). ADS were not weighted for the size of 

the region to enhance reproducibility. Positive or negative ADS values indicate a general 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.17.523348doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.523348
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Normative modeling in CHR for psychosis 
 

11 

 

pattern of deviations that are above or below the normative reference values. ADS scores 

were further averaged to generate a “global average deviation score” (ADSG). Using the 

same criteria as for the z-scores, each ADS was also designated as infranormal, 

supranormal, or within the normal range. In supplemental analyses, we also explored 

alternate definitions of ADS, by averaging positive and negative z-scores separately for each 

neuroimaging phenotype (eMethods).      

 

Statistical Analyses 

Statistical significance across all tests performed was set at PFDR<0.05 as per the Benjamini-

Hochberg false discovery rate (FDR) correction for multiple comparisons. The robustness of 

the results was confirmed using a leave-one-site-out approach.  

 

The following analyses were conducted: (i) we calculated the percentage of CHR-P and HI 

from the ENIGMA sample that had supranormal or infra-normal z-scores in any regional 

measure and in any of ADSCT, ADSSA, ADSSV, and ADSG (eMethods); group differences in 

the proportion of individuals with supra- or infranormal z-scores were examined using the 

two-proportions z-test implemented in R version 4.1.2; (ii) within the CHR-P group, linear 

regression (implemented with the “lm” function in R version 4.1.2) was used to assess 

associations between positive symptoms and IQ with each regional z-score, the observed 

value of each regional morphometric measure, and each ADS; age was included as 

predictor in all aforementioned regression models due to its significant association with 

positive symptoms and IQ (PFDR<0.05), while sex was included only in the models with 

observed data as the z-scores and ADSs were derived from sex-specific models; (iii) we 

repeated the above analyses separately for CHR-PC and CHR-PNC individuals; and (iv) in 

HI, we conducted regression analyses to assess associations between IQ and the brain 

regional z-scores, observed values, and ADS. 
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Supplemental testing involved group comparisons of mean regional and ADS scores, the 

use of an alternate parcellation template, and repeating the aforementioned analyses in 

subsamples of CHR-P sub-syndromes (i.e., attenuated psychotic symptoms syndrome, brief 

intermittent psychotic symptoms syndrome, and genetic risk and functional deterioration 

syndrome); additional analyses focused on medication status and alternate ADS definitions 

(eMethods). 

  

Results 

Infra- and supranormal deviations in brain morphometry in CHR-P and HI 

The distributions of the z-scores and observed values of all regional brain morphometric 

measures of CHR-P and HI showed complete overlap. The left and right hippocampus are 

used as exemplars in Figure 1 while the corresponding figures for all other regions are 

included in the eVideo. Moreover, the distribution overlap was independent of parcellation 

used to define subregions (eFigure 3 and 4).  

 

The percentage of CHR-P and HI with supra- or infranormal z-scores in each morphometric 

measure are shown in Figure 2. Infranormal regional CT z-scores were noted in 0.52-5.67% 

of CHR-P individuals and 0.49-5.01% of HI; the corresponding range for supranormal z-

scores were 0.37-5.15% and 0.32-5.50%. Infranormal regional SA z-scores were noted in 

0.30-3.66% of CHR-P individuals and 0.65-3.88% of HI; the corresponding range for 

supranormal z-scores were 1.12-7.01% and 1.21-6.95%. Infranormal regional SV z-scores 

were noted in 3.73-11.42% of CHR-P individuals and 2.67-9.30% of HI; the corresponding 

range for supranormal z-scores were 0.07-2.01% and 0.08-1.37%. Infranormal z-scores in 

any regional CT, SA, and SV were observed in 74.63%, 62.76%, and 40.00% across CHR-

P, respectively; the corresponding infranormal z-scores of HI were 71.71%, 62.25%, and 

34.93% (Figure 3). Supranormal z-scores in any regional CT, SA, and SV were observed in 

70.37%, 79.70%, and 6.64% across CHR-P, respectively; the corresponding supranormal z-

scores in HI is 66.61%, 79.22%, and 5.58% (Figure 3). There were no significant group 
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differences in the percentage of individuals with supra- or infranormal regional values 

(PFDR>0.05; eTable 7). Compared to unmedicated CHR-individuals, those medicated had a 

greater proportion with supranormal regional z-scores for the surface area of the left lateral 

occipital lobe (χ2 = 13.92, PFDR = 0.03) but no other differences (eTable 8).  

 

Supra- and infranormal average deviation scores 

The percentage of CHR-P and HI with supra- or infranormal ADS values are shown in Figure 

4A. The distributions in both groups showed a near complete overlap (Figure 4B). 

Infranormal ADSCT, ADSSA, ADSSV, and ADSG were respectively observed in 3.21%, 3.51%, 

3.13%, and 4.18% of CHR-P individuals; the corresponding percentages in HI were 1.94%, 

1.05%, 1.62%, and 1.70%. Supranormal ADSCT, ADSSA, ADSSV, and ADSG were respectively 

observed in 2.31%, 2.69%, 2.69%, and 2.01% of CHR-P individuals; the corresponding 

percentages in HI were 2.67%, 2.83%, 2.59%, and 2.18%. A significantly higher percentage 

of CHR-P individuals had infranormal ADSG (χ
2 = 12.82, PFDR = 6.85E-4), ADSSV (χ

2 = 5.68, 

PFDR = 0.02), and ADSSA (χ2 = 16.01, PFDR = 2.53E-4) (eTable 9). There were no differences 

in the percentage of CHR-P individuals with infra- or supranormal ADS depending on their 

medication status (PFDR>0.05; eTable 10).  

 

Associations of regional z-scores and observed values with positive symptoms and 

IQ   

Within the CHR-P group, positive associations were noted only between IQ and the z-scores 

of the left caudate volume (left: β= 0.11, PFDR = 0.05), and surface area of the left cuneus (β= 

0.11, PFDR = 0.05) (eFigure 5A and B; eTable 11). When analyses were repeated using the 

observed regional morphometric values, there were no significant associations with IQ or 

positive symptoms (eTable 12). The same pattern of results for z-scores and observed 

values was observed when CHR-P individuals exposed to medication were excluded. In HI, 

no significant associations were noted either between IQ and z-scores or between IQ and 

the observed values (PFDR > 0.05) (eTable 13). 
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Associations of average deviation scores with positive symptoms and IQ      

Within the CHR-P group, positive symptoms were negatively associated with ADSSA (β = -

0.08, PFDR = 0.02; eFigure 5C), while IQ was positively associated with ADSSA (β = 0.09, 

PFDR = 0.02) and ADSG (β = 0.10, PFDR = 0.01) (eFigure 5D and E; eTable 14). This pattern 

of associations was robust to medication status and leave-one-out analysis (eFigure 6). In 

HI, positive associations were also present between IQ and ADSSA, and ADSG  (eTable 14). 

 

CHR-P individuals who converted to a psychotic disorder   

The percentage of CHR-PC and CHR-PNC individuals with infranormal and supranormal 

regional z-scores and ADS are shown in Figure 3 and eTable 15). There was a significantly 

greater percentage of CHR-PC (5.10%) than HI (0.89%) with infranormal z-scores for the 

thickness of the right inferior temporal lobe (χ2 = 15.34, PFDR = 0.01) and a significantly 

greater percentage of CHR-PC (7.01%) than CHR-PNC (1.38%) with infranormal z-scores 

for the surface area of the right banks of the superior temporal sulcus (χ2 = 17.34, PFDR = 

4.69E-3). No further differences were identified. As for the entire CHR-P sample, IQ was 

positively associated with ADSSA (β = 0.26, PFDR = 0.02) and ADSG (β = 0.21, PFDR = 0.05) in 

CHR-PC individuals. Because of the smaller sample size, associations between positive 

symptoms and ADSSA were no longer significant within the CHR-PC group but retained the 

same direction (β = -0.12, PFDR = 0.20). No other significant associations were found 

between regional z-scores or ADS and IQ or positive symptoms in the CHR-PC or CHR-

PNC subsamples (eTable 16).  

 

Supplemental Analyses 

Group differences in regional z-scores and ADS between HI and the entire CHR-P or the 

CHR-PC group were of small effect sizes (Cohen’s |d| <0.26) (eTable 17). Similarly, the 
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effect size differences in the above metrics in CHR-P exposed or not exposed to 

antipsychotics were also negligible (Cohen’s |d| <0.24) (eTable 17). Analyses of CHR 

syndromes (eResults) and alternate ADS did not provide additional insights (eTable 18).  

 

Discussion 

This study found that variation in regional neuromorphometric measures in CHR-P 

individuals was nested within the healthy distribution while extreme deviations were present 

in a minority of CHR-P individuals and at proportions similar to those observed in healthy 

individuals. However, a greater proportion of CHR-P individuals had infranormal ADSCT, 

ADSSA, and ASDSV values. Additionally, a higher percentage of CHR-PC individuals had 

infranormal values in temporal regions but none of the regional z-scores had meaningful 

associations with the severity of positive symptoms.   

 

Prior case-control studies, including a study by Jalbrzikowski and colleagues who also used 

the ENIGMA CHR-P Working Group dataset, have reported subtle decrements in regional 

brain morphometry in CHR-P individuals.7-9 These findings are aligned with the observation 

of a higher proportion of CHR-P individuals had infranormal values for ADS. In the same 

dataset, Baldwin and colleagues,22 showed that individual-level heterogeneity was similar in 

CHR-P and healthy individuals and was not predictive of increased clinical severity. The 

current study extends our understanding of the role of brain morphometry for psychosis by 

showing that regional neuroanatomical variation in CHR-P individuals is nested within 

normative variation. A small minority of CHR-PC patients had pronounced decrements in the 

cortical thickness and surface area of temporal regions reinforcing the relevance of these 

regions for psychosis risk 7-9 and syndromal schizophrenia. 11,12,23 

 

Regional deviation from normative patterns in the CHR-P individuals did not show 

meaningful associations with the severity of positive symptoms. The only exception was that 

higher ADSSA, indicating an overall pattern of positive regional deviations in cortical surface 
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area, was associated with less severe positive symptoms in the CHR-P group (regardless of 

conversion status). The ADSSA was also positively associated with IQ both in CHR-P and 

healthy individuals. The strength of these associations was low (|β|<0.20). Nevertheless, 

these findings resonate with prior reports of higher IQ being associated with greater cortical 

surface area expansion24,25 and may reflect the integrity of cellular processes relating to 

neurite remodelling and intra-cortical myelination that play a key role in cortical surface area 

expansion during early adulthood. 26, 27  

 

Limitations 

The study includes the largest neuroimaging dataset of CHR-P individuals and robust 

normative models derived from an independent reference sample. As is common with large-

scale studies, the data were collected at multiple sites using different scanners and 

protocols. Although we accounted for site effects using MRI data harmonization and tested 

the robustness of the results using leave-one-site-out analyses, residual effects cannot be 

fully excluded but are unlikely to have influenced the overall pattern of the results. The 

neuroimaging data of the CHR individuals are cross-sectional and do not capture potential 

longitudinal changes that may be more informative28.  

 

Conclusions 

In this study, regional variation in the neuroanatomy of CHR-P individuals was nested within 

the normal variation. The degree of neuroanatomical normative deviation showed minimal 

associations with positive symptoms and conversion status. These findings question the 

usefulness of neuromorphometry as a diagnostic biomarker of CHR-states.  
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Table 1. Characteristics of the Sample at Clinical High-Risk for Psychosis 
(CHR-P)  
All CHR-P individuals  
Age, years, mean (SD) 20.75 (4.74) 
Female Sex, number (%) 631 (47.09%) 
SIPS Positive Symptoms Score, mean (SD)a 10.93 (4.66) 
CAARMS Positive Symptoms Scores, mean (SD)b 10.37 (4.03) 
IQ, mean z-score (SD)c -0.21 (1.00) 
Prescribed Antipsychotic Medication, number (%)d 243 (18.63%) 
Months of follow-up, mean (SD)e 19.71 (13.97) 
Converters, N (%)e 157 (14.31%) 
CHR-P individuals that converted to a psychotic disorder 
Age, years, mean (SD) 20.09 (4.68) 
Female Sex, number (%) 64 (40.76%) 
SIPS Positive Symptoms Score, mean (SD)f 12.12 (5.06) 
CAARMS Positive Symptoms Scores, mean (SD)f 10.71 (4.24) 
IQ, mean z-score (SD)g -0.29 (1.03) 
Prescribed Antipsychotic Medication, number (%)h 32 (20.38%) 
CAARMS = Comprehensive Assessment of At-Risk Mental States; SIPS = Structured Interview for Psychosis-risk 
Syndromes; SD = standard Deviation. Positive symptom ratings at the time of scanning were available for the entire 
sample (N = 1340), assessed either with SIPS or CAARMS; 
a SIPS was used to assess CHR-P status in 806 CHR-P participants; b CAARMS was used to assess CHR-P status in 
534 CHR-P participants; c Estimates of IQ were available in 924 CHR-P participants; z-scores were used to 
accommodate site differences in the instruments used (eTable 1); d Medication status at the time of scanning was 
available in 1304 CHR-P individuals; e Conversion status was known for 1097 CHR-P participants but information 
about the length of the follow-up period was available for 975 CHR-P individuals; f SIPS and CAARMS were 
respectively used to assess 115 and 42 individuals who converted; g IQ estimates were available in 109 CHR-P 
individuals that converted; h Medication status was available in 157 CHR-P individuals that converted 
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Figure 1. Distribution of hippocampal subcortical volume normative z-scores in the 

study sample. 

 

The figure presents the distribution of the left and right hippocampus regional normative z-

scores in healthy individuals (HI), individuals at clinical high-risk for psychosis (CHR-P) and 

CHR-P that converted to full-blown psychosis (CHR-PC). The results for the remaining 

regional normative z-score are presented in the eVideo. The dotted lines represent the 

cutoffs for infranormal and supranormal values at z = |1.96|.  
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Figure 2. Percentage of subjects with infra- or supranormal regional normative z-

scores.  

 

The proportion of healthy individuals, clinical high-risk for psychosis (CHR-P), and cinical 

high-risk for psychosis converters with infranormal (left) and supranormal deviations (right) 

are presented for each hemisphere for cortical thickness, cortical surface area, and 

subcortical volume.   
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Figure 3. Distribution of the total number of regions with infra- or supranormal 

regional normative z-scores.  

 
Bar plots show the distribution of the total number of regions per individual with infra-normal 

(top row) and supra-normal (bottom row) deviations from the normative model for A) cortical 

thickness, B) cortical surface area, and C) subcortical volume separately in healthy 

individuals, clinical high-risk for psychosis (CHR-P) individuals, and clinical high-risk for 

psychosis converters (CHR-PC).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.17.523348doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.523348
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Normative modeling in CHR for psychosis 
 

Figure 4. Distributions of average deviation scores and percentage of subjects with 

infra- or supranormal regional normative z-scores.  

 

A) Percentage of healthy, clinical high-risk for psychosis (CHR-P), and clinical high-risk for 

psychosis converters (CHR-PC) with supra- or infranormal global average deviation score 

(ADSG), the average deviation score for cortical thickness (ADSCT), average deviation score 

for cortical surface area (ADSSA), and average deviation score for subcortical volumes 

(ADSSV). B) The distributions of the average deviation scores in CHR-P (magenta color), 

CHR-PC (purple color), and healthy individuals (yellow color) for ADSG, ADSCT, ADSSA, and 

ADSSV. The dotted lines represent the cutoffs for infranormal and supranormal values at z = 

|1.96|. 
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