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Introduction
Infectious keratitis (IK) is an ocular emergency 
and potentially sight-threatening condition 
caused by a variety of microorganisms, including 
bacteria, fungi, viruses, and parasites.1,2 It is 
essential for clinicians to find out the pathogen 

and perform targeted treatment as soon as possi-
ble to prevent destructive outcomes. Conventional 
laboratory examinations, including corneal scrap-
ing, Giemsa stain, and microbial culture, have 
been the gold standard for the diagnosis of IK, 
while the low positive rate of biopsy and long 
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Abstract
Background: Infectious keratitis (IK) is an ocular emergency caused by a variety of 
microorganisms, including bacteria, fungi, viruses, and parasites. Culture-based methods 
were the gold standard for diagnosing IK, but difficult biopsy, delaying report, and low positive 
rate limited their clinical application.
Objectives: This study aims to construct a deep-learning-based auxiliary diagnostic model for 
early IK diagnosis.
Design: A retrospective study.
Methods: IK patients with pathological diagnosis were enrolled and their slit-lamp photos 
were collected. Image augmentation, normalization, and histogram equalization were applied, 
and five image classification networks were implemented and compared. Model blending 
technique was used to combine the advantages of single model. The performance of combined 
model was validated by 10-fold cross-validation, receiver operating characteristic curves 
(ROC), confusion matrix, Gradient-wright class activation mapping (Grad-CAM) visualization, 
and t-distributed Stochastic Neighbor Embedding (t-SNE). Three experienced cornea 
specialists were invited and competed with the combined model on making clinical decisions.
Results: Overall, 4830 slit-lamp images were collected from patients diagnosed with IK 
between June 2010 and May 2021, including 1490 (30.8%) bacterial keratitis (BK), 1670 
(34.6%) fungal keratitis (FK), 600 (12.4%) herpes simplex keratitis (HSK), and 1070 (22.2%) 
Acanthamoeba keratitis (AK). KeratitisNet, the combination of ResNext101_32x16d and 
DenseNet169, reached the highest accuracy 77.08%. The accuracy of KeratitisNet for 
diagnosing BK, FK, AK, and HSK was 70.27%, 77.71%, 83.81%, and 79.31%, and AUC was 0.86, 
0.91, 0.96, and 0.98, respectively. KeratitisNet was mainly confused in distinguishing BK and 
FK. There were 20% of BK cases mispredicted into FK and 16% of FK cases mispredicted into 
BK. In diagnosing each type of IK, the accuracy of model was significantly higher than that of 
human ophthalmologists (p < 0.001).
Conclusion: KeratitisNet demonstrates a good performance on clinical IK diagnosis and 
classification. Deep learning could provide an auxiliary diagnostic method to help clinicians 
suspect IK using different corneal manifestations.

Keywords:  auxiliary diagnosis, deep learning, infectious keratitis, slit-lamp photos

Received: 15 June 2022; revised manuscript accepted: 14 October 2022.

Correspondence to: 
Qingfeng Liang 
Beijing Institute of 
Ophthalmology, Beijing 
Tongren Eye Center and 
Beijing Key Laboratory of 
Ophthalmology and Visual 
Sciences, Beijing Tongren 
Hospital, Capital Medical 
University, Beijing 100005, 
China. 
liangqingfeng@ccmu.
edu.cn

Zijun Zhang 
Zhenyu Wei 
Yang Zhang 
Zhiqun Wang 
Kexin Chen 
Beijing Institute of 
Ophthalmology, Beijing 
Tongren Eye Center and 
Beijing Key Laboratory of 
Ophthalmology and Visual 
Sciences, Beijing Tongren 
Hospital, Capital Medical 
University, Beijing, China

Haoyu Wang 
Shigeng Wang 
Zhonghong Ou 
Beijing University of Posts 
and Telecommunications, 
Beijing, China

1136071 TAJ0010.1177/20406223221136071Therapeutic Advances in Chronic DiseaseZ Zhang, H Wang
research-article20222022

Original Research

https://journals.sagepub.com/home/taj
https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
mailto:liangqingfeng@ccmu.edu.cn
mailto:liangqingfeng@ccmu.edu.cn


Volume 13

2	 journals.sagepub.com/home/taj

Therapeutic Advances in 
Chronic Disease

turn-around time limited its clinical application.3 
Therefore, ophthalmologists often need to make 
proper clinical diagnosis based on patients’ ante-
rior segment characteristics. Different pathogens 
lead to various manifestations consisting of cor-
neal ulceration, stromal infiltration, anterior 
chamber reaction, etc. Some studies have shown 
that IK caused by specific pathogens presented 
unique signs.4,5 For example, a stromal ring infil-
trate usually becomes a hint for advanced 
Acanthamoeba keratitis (AK) with high sensitiv-
ity.6 A large purulent infiltrate is highly related to 
gram-negative bacterial keratitis (BK).7 Infiltrates 
with feathery, fluffy, or serrated margins are use-
ful features for diagnosing fungal keratitis 
(FK).8–10

Although ophthalmologists from areas with high 
incidence of IK had more diagnosis experience 
and higher accuracy in IK diagnosis,9 it still 
remains a problem for most ophthalmologists to 
distinguish IK. A multicenter study distributed 
80 photographs of culture-proven and smear-
proven BK and FK to 15 cornea specialists, and 
their diagnosis revealed that only 66% cornea 
specialists could distinguish BK from FK.9 
Another similar study with international ophthal-
mologists involved shown same dilemma as the 
area under the curve (AUC) for differentiating 
BK and FK was 0.72.11 These studies indicate 
that human experts have difficulty in making clin-
ical diagnosis with ocular manifestations IK pre-
sented. Therefore, there is an urgent need to 
develop an objective, rapid, and accurate clinical 
diagnostic system based on the clinic signs of IK.

Deep learning (DL)-based methods have been 
proved to have great potential dealing with com-
plicated medical images.12,13 Some researchers 
have made efforts to improve the diagnosis of IK 
based on DL technology and ophthalmic imaging 
equipment.14–17 Slit-lamp photos and smartphone 
photos were already used for screening keratitis 
with DL-based method and got AUC of 0.990.17 
In Taiwan, different DL networks were applied to 
differentiate BK and FK with slit-lamp photos 
and got accuracy for diagnosing BK ranged from 
79.6% to 95.9% and FK from 26.3% to 65.8%.14 
Another study focused on diagnosing BK using 
slit-lamp images and DL-based method, and 
retrieved 69%–72% accuracy.16 These DL-based 
studies mainly concerned diagnosing IK caused 
by one or two certain types of pathogens. Recently 
in Japan, researchers collected 4306 slit-lamp 

images from 669 consecutive cases and first dis-
tinguished four main types of IK were with 
DL-based method.15 Though they got accuracy 
above 85% for each label, they have mentioned 
their limited case numbers. In this study, we 
attempted to apply DL algorithms to current big-
gest IK slit-lamp image data set and distinguish 
four main types of IK, aiming to improve diag-
nostic accuracy of IK and provide a reference for 
clinics.

Materials and method
This was a retrospective study, and the research 
procedure was approved by the Medical Ethics 
Committee of Beijing Tongren Hospital 
(TRECKY2021-024). The study protocol fully 
adhered to the Declaration of Helsinki and the 
Association for Research in Vision and 
Ophthalmology (ARVO) statement on human 
subjects. All subjects or their guardians signed the 
written informed consent documents. The study 
was partitioned into four sections – data set build-
ing, image pre-processing, model training, and 
model validation. The code for training and 
assessing models was built with Python 3.10 and 
PyTorch framework. Figure 1 depicted the con-
struction and validation of this model.

Data set building
Study population.  Patients diagnosed with IK who 
presented to Beijing Tongren Hospital between 
June 2010 and May 2021 were recruited. The 
enrolled patients must meet one of the following 
criteria: (1) patients suspected with HSK should 
be diagnosed by three cornea specialists depend-
ing on their medical history, clinical manifesta-
tions, and effective response after empirical 
antiviral therapy; (2) FK, BK, or AK were defined 
as compatible clinical manifestations and at least 
one positive laboratory test (smear or microbial 
cultures). Patients were excluded if they had one 
of the following criteria: (1) patients with mixed 
ocular infections; (2) patients with a history of 
ocular inflammation, ocular trauma, or eye sur-
gery; (3) patients without slit-lamp images or 
images with poor quality including diffuse illumi-
nation, out-of-focus images, incomplete lesion 
displaying, etc.

Pathogen identification.  Corneal scraping for micro-
biological tests was performed under slit-lamp 
microscopy by an ophthalmologist. The samples 
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were then placed on the glass slides for staining with 
Giemsa, calcofluor white, KOH, gram staining, etc. 
Blood agar medium, chocolate agar medium, potato 
dextrose medium, and Page’s medium with Esche-
richia coli were used to culture the microorganism 
from cornea lesions, including bacteria, fungi, and 
Acanthamoeba individuals. The grown colonies were 
identified by mass spectrometry.

Image collection.  Corneal photography was per-
formed by three certified ophthalmic technicians 
using Topcon SL-D7 slit-lamp microscopy (since 
June 2010), and Topcon SL-D701 (since January 
2017). The resolution of captured photographs 
ranged from 1600 × 1200 to 2584 × 2000 pixels. 
The quality of image was assessed with following 
criterion – (1) image magnification was 10x or 
16x and contained bulbar conjunctiva and full 
cornea; (2) image was correctly exposed and 
focused on cornea; (3) fluorescein-staining images 

were excluded. Any privacy information of 
patients was deleted. Slit-lamp images with mul-
tiple visits of the same patient were included. The 
labels of these slit-lamp photos were defined by 
their final etiological diagnosis.

Data set establishment.  Overall, 5030 slit-lamp 
images were collected and 4830 slit-lamp images 
with etiological diagnosis label (AK, BK, FK, and 
HSK) were randomly divided into the training 
data set and the test data set with random split 
method provided by PyTorch, following the ratio 
9:1. When splitting data set, images of the same 
patient would not appear in training and testing 
set at the same time. The other 200 photos from 
200 patients (50 patients for each etiological diag-
nosis label) were randomly selected as the exter-
nal validation set to evaluate the performance of 
KeratitisNet comparing with that of ophthalmol-
ogists [Figure 1(a)].

Figure 1.  Deep learning framework for the diagnosis of IK based on slit-lamp images. (a) Data set 
establishment. Slit-lamp images were collected and annotated with etiological diagnosis label. Then labeled 
images were splitted into training, testing and external validation set, (b) Image pre-processing. After the 
original input images were resized to same height and width, image normalization, histogram equalization, 
and augmentation were applied to our data set successively, (c) Model training. Nine representative image 
classification networks were implemented with training data set. Models with high accuracy were combined 
using model blending technique to further improve the performance and (d) Model validation. Ten-fold cross-
validation, t-SNE, ROC curves, confusion matrix, Grad-CAM visualization as well as comparation to human 
experts were used to assess the application potential of final model.
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Power analysis.  A total sample size of 5030 
achieved 100% power to detect a change in sensi-
tivity from 0.5 to 0.7 using a two-sided binomial 
test and 100% power to detect a change in speci-
ficity from 0.5 to 0.87 using a two-sided binomial 
test. The target significance level is 0.05. The 
actual significance level achieved by the sensitivity 
test is 0.0459 and the specificity test is 0.0467. 
The prevalence of the disease is 0.308.

Model construction
Image pre-processing.  Image pre-processing is a 
critical stage for computer vision and convolu-
tional neural network (CNN). With this proce-
dure, unwanted distortions could be avoided and 
features of images would be enhanced. This mod-
ule was built with transform API in PyTorch. First, 
the original input images with different size would 
be resized to 244 × 244 pixels with bilinear inter-
polation. Then, image normalization, histogram 
equalization, and augmentation were applied suc-
cessively. For image normalization, the range of 
pixel intensity values was changed, so that every 
image had the same standard deviation [0.229, 
0.224, 0.225] and mean value [0.485, 0.456, 
0.406]. Histogram equalization, a method of dis-
tributing the frequency of pixel intensity to 0 and 
255, could improve the contrast of the image and 
assist the model to obtain more detailed informa-
tion from the training data set. The image aug-
mentation contained random crop and flip, which 
helped the model to get rid of the possible adverse 
influence from the image position [Figure 1(b)].

Image classification.  After image pre-processing, 
training data set was fed into nine popular repre-
sentative image classification networks with dif-
ferent parameters (ResNet18, ResNet50,18 
DenseNet121, DenseNet169,19 EfficientNet-b0, 
EfficientNet-b5, EfficientNet-b7,20 ResNext 
101_32x8d, and ResNext101_32x16d).21 Pre-
trained model on ImageNet was conducted to 
avoid too much training epochs on small data set 
leading overfit. The learning rate was dynamically 
adjusted and set to grow linearly from 0 to target 
value, and then gradually transit to a cosine decay 
schedule. During the training period, model 
learned how to distinguish the type of infection 
from the training data set and then evaluated its 
performance including accuracy and AUC on the 
test data set. Models with high performance were 
combined using model blending technique to 

improve the performance and to fit as more fea-
tures of slit-lamp images as possible [Figure 1(c)].

Model assessment
The application potential of the blending model 
was further assessed after model construction. 
However, 10-fold cross-validation was performed 
to reduce the influence of random factors during 
the calculation of accuracy, sensitivity, specific-
ity, positive predictive value (PPV) and negative 
predictive value (NPV) of each model. Receiver 
operating characteristic curves (ROC), AUC, 
and confusion matrix were calculated to quantify 
the performance of the model. Three experi-
enced cornea specialists were invited to make 
clinical diagnosis for each image in external vali-
dation set and competed with the prediction of 
model. Confusion matrix was calculated to meas-
ure differences. For more intuitive evaluation, 
gradient-wright class activation mapping (Grad-
CAM) visualization and t-SNE were performed 
[Figure 1(d)].

10-fold cross-validation.  The 10-fold cross-vali-
dation22 was performed as follows. (1) After exter-
nal validation set was picked out, the left data set 
was randomly divided into 10 groups. (2) Model 
was trained separately for 10 times. In each time, 
nine groups were chosen and used for training 
model, and the remaining group was used for 
testing. (3) For each iteration, accuracy, sensitiv-
ity, specificity, PPV, and NPV for each label would 
be calculated. After 10 times, all performance 
parameters would be averaged, so that they could 
assess the model on the whole data set rather than 
randomly selected onefold data. With the final 
averaged performance parameter, the confusion 
matrix and the ROC curves were calculated.

T-distributed stochastic neighbor embed-
ding.  T-distributed stochastic neighbor embed-
ding (t-SNE)23 was applied to group eyes with 
similar corneal characteristics together and to 
separate eyes with dissimilar characteristics as far 
away as possible. R program with Rtsne package 
was used for this procedure. t-SNE was well 
suited for visualization and monitoring the per-
formance of a classifier by clinicians since it pro-
vided a user-friendly visualization, and it allowed 
subjective validation of clustering because one 
can see how the clusters are distributed and over-
lapped in two-dimensional space.
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ROC curves.  ROC24 plotted true positive rate and 
false positive rate at every possible cut-off for each 
model. AUC was the entire two-dimensional area 
underneath ROC curve and was used to assess 
the performance of each model to distinguish 
among each type of IK.

Confusion matrix.  Confusion matrix25 demon-
strated the misclassification similarity of a classi-
fier. Element (i, j) of each confusion matrix 
represents the empirical probability of predicting 
class j given that the ground truth was class i. In 
this study, confusion matrix was used to measure 
the possibility of misclassification for models and 
ophthalmologists.

Comparation with ophthalmologists.  Three expe-
rienced cornea specialists were invited to view the 
external validation set and make clinical diagnosis 
for each image. Confusion matrix was calculated 
and the accuracy for IK diagnosis was analyzed 
between the models and ophthalmologists.

Grad-CAM visualization.  A thermal map with the 
same size as the original images was obtained 
through Grad-CAM visualization26 to better 
explain the neural network. Red area on the ther-
mal map represented greater contribution to the 
prediction, which could tell whether the predic-
tion was made based on the lesion area.

Statistical analysis
The performance indices, including sensitivity, spec-
ificity, PPV, NPV, and diagnostic accuracy of each 
label, were calculated using Jupyter Notebook with 
Python version 3.10. Chi-square test and Fisher’s 
exact test were used for comparing the accuracy of 
distinguishing IK between ophthalmologists and 
model via R program (V.4.0, R Foundation for 
Statistical Computing, Vienna, Austria).

Results

Data set characteristics
Overall, 5030 slit-lamp images from 4283 patients 
were collected from patients confirmed IK 
between June 2007 and May 2018. However, 200 
images from 200 patients (50 patients for each 
etiological diagnosis label) were picked out as the 
external validation set. The remaining data set 
containing 4830 images from 4083 patients con-
sisted of 1490 (30.8%) BK, 1670 (34.6%) FK, 
600 (12.4%) HSK, and 1070 (22.2%) AK. 
Meanwhile, 323 AK patients had multiple visits 
and their follow-up slit-lamp images were 
included in data set. After randomly splitting with 
the ratio 9:1, 1341 BK, 1503 FK, 540 HSK, and 
963 AK were included in the training data set, 
and the testing data set contained 149 BK, 167 
FK, 60 HSK, and 107 AK.

Table 1.  Performance of different models in classification of four common types of IK.

Model Average 
accuracy (%)

BK FK AK HSK

Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC

ResNet18 68.33 60.81 0.82 71.69 0.88 69.52 0.95 74.14 0.96

ResNet50 72.29 62.84 0.84 75.90 0.89 73.33 0.95 82.76 0.98

DenseNet121 70.00 59.46 0.82 76.51 0.87 74.29 0.95 70.69 0.96

DenseNet169 73.96 62.84 0.85 77.11 0.90 80.00 0.95 81.03 0.98

ResNext101_32x8d 74.17 70.27 0.85 69.88 0.89 83.81 0.96 77.59 0.98

ResNext101_32x16d 75.83 69.59 0.84 75.30 0.90 84.76 0.96 75.86 0.98

EfficientNet-b0 72.92 66.22 0.85 72.29 0.88 79.05 0.95 79.31 0.97

EfficientNet-b5 72.08 60.14 0.82 72.89 0.87 82.86 0.96 79.31 0.97

EfficientNet-b7 74.38 64.19 0.83 71.69 0.89 87.62 0.97 82.76 0.98

AK, Acanthamoeba keratitis; AUC, area under the curve; BK, bacterial keratitis; FK, fungal keratitis; HSK, herpes simplex keratitis.
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Performance of different models
In this study, nine methods for model develop-
ment (ResNet18, ResNet50, DenseNet121, Den 
seNet169, EfficientNet-b0, EfficientNet-b5, Effi 
cientNet-b7, ResNext101_32x8d, and ResNext 
101_32x16d) were first conducted and evaluated 
with 10-fold cross-validation. The performance 
of these models was shown in Table 1, and the 
ROC curve and AUC for diagnosing each type of 
IK were shown in Figure 2. ResNext101_32x16d 
presented the highest average accuracy (75.83%) 
in the classification of four common types of IK 
and showed 69.59% accuracy in diagnosing BK 
(AUC = 0.84), 75.30% in FK (AUC = 0.90), 
84.76% in AK (AUC = 0.96), and 75.86% in 
HSK (AUC = 0.98). Model blending technology 
was applied on ResNext101_32x16d with other 
models. Eight blending models were constructed 
and assessed with 10-fold cross-validation. Their 

accuracy of distinguishing IK was shown in Figure 3, 
and the ROC curve and AUC were shown in 
Figure 4. There were no significant differences 
between blending models (all ps > 0.05).

Assessment of KeratitisNet
The combination of ResNext101_32x16d and 
DenseNet169 further improved the performance 
of diagnosing BK, FK, and HSK and was chosen 
to be the final modeling method, namely 
KeratitisNet, which demonstrated the highest 
average accuracy 77.08%. The accuracy for diag-
nosing BK, FK, AK and HSK of KeratitisNet 
was 70.27%, 77.71%, 83.81%, and 79.31%, and 
AUC was 0.86, 0.91, 0.96, and 0.98, respectively. 
The classification ability of KeratitisNet was fur-
ther visualized via t-SNE. Slit-lamp images of IK 
were mainly divided into four clusters (Figure 5).

Figure 2.  Performance of distinguishing IK-embodied ROC curve in different classification models.
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The correct prediction rate and misclassification rate 
of KeratitisNet to these four types of IK were evalu-
ated with confusion matrix [Figure 6(a)]. The recall 
rate of diagnosing BK, FK, AK, and HSK was 70%, 
78%, 84%, and 80%, respectively. KeratitisNet was 
mainly confused in distinguishing BK and FK. 
There were 20% BK cases mispredicted into FK 
and 16% FK cases mispredicted into BK.

Confusion matrix for the three ophthalmologists 
making clinical diagnosis among external 

validation set was showed in Figure 6(b). The 
recall rate of diagnosing BK, FK, AK, and HSK 
was significantly lower than those of KeratitisNet 
on external validation set (BK 47% versus 98%; 
FK 63% versus 92%; AK 31% versus 94%; HSK 
59% versus 96%, all ps < 0.001). Heatmaps (Figure 
7) produced by Grad-CAM algorithm could pro-
vide clinicians with visual explanations for 
KeratitisNet. In most IK images, the model could 
focus prediction weights on most infiltration and 
ulceration, which made results more convincing.

Figure 3.  Accuracy of distinguishing IK with different blending models.

https://journals.sagepub.com/home/taj
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Figure 4.  Performance of distinguishing IK-embodied ROC curve in different blending models.
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Discussion
In this study, an auxiliary diagnostic system was 
established with DL algorithm to improve the 
speed and accuracy of IK diagnosis. Nine differ-
ent modeling methods were conducted with a 
total of 4830 slit-lamp images. ResNext 
101_32x16d reached the highest average 

accuracy in the classification of four common 
types of IK. To further improve the accuracy, 
eight blending methods between ResNext 
101_32x16d and other models were conducted. 
KeratitisNet, the combination of ResNext 
101_32x16d and DenseNet169, retrieved the 
highest average accuracy 77.08%, with no  

Figure 5.  The t-SNE visualization of the pooling layer of KeratitisNet.

Figure 6.  Confusion matrix of KeratitisNet and ophthalmologists in distinguishing IK. (a) Confusion matrix for 
prediction of KeratitisNet in test data set and (b) Confusion matrix for three ophthalmologists making clinical 
diagnosis among external validation set.
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significant difference compared with other com-
binations. Xu et al.27 developed a sequential-level 
deep model to distinguish BK, FK, HSK, and 
other cornea diseases, and the model received 
78.73% accuracy, slightly higher than mean accu-
racy of our KeratitisNet in distinguishing BK, 
FK, AK, and HSK. Their research presented par-
tition sampling was beneficial for model to extract 
feature of cornea in slit-lamp images. However, 
their data set consisted only 2284 images from 
867 patients, which was smaller than data set in 
this research. Moreover, they did not collect AK, 
a destructive infectious cornea disease with rising 
incidence.28 The accuracy of KeratitisNet for 
diagnosing BK, FK, AK and HSK was 70.27%, 
77.71%, 83.81%, and 79.31%, and AUC was 
0.86, 0.91, 0.96, and 0.98, respectively. Koyama 
et al.15 built a similar computer-assisted diagnosis 

system based on InceptionResNetV2 with 4306 
slit-lamp images from 362 consecutive cases. The 
AUC in their study for diagnosing BK, FK, HSK, 
and AK was 0.963, 0.975, 0.946, and 0.995. The 
reason for lower AUC in this study may be the 
difference between data sets. In their study, data 
set contained 4306 slit-lamp images from only 
669 consecutive IK cases, which meant there 
were multiple images from the same patient in 
their training data set. Training on multiple pho-
tos of the same eye may allow model to better 
learn the characteristics of each type of IK. In our 
study, larger patient numbers lead to more com-
plicated image data set and thus our model per-
formed relatively poorly but more robust.

Through the t-SNE algorithm, the dimension of 
input data was reduced,29 and images with similar 

Figure 7.  Heatmaps of cornea images of IK produced by Grad-CAM algorithm.
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characteristics in the t-SNE space were clustered. 
Clear boundaries between each type of cluster 
may suggest that different types of corneal infec-
tion result in characteristic corneal manifesta-
tions, with which it was possible to make rapid 
and accurate clinical diagnosis. However, there 
were still some slit-lamp photos mixed with other 
clusters in the t-SNE space. The points repre-
sented for BK and FK were closed. This may 
indeed result from the similar clinical features 
between them and explained the high mispredic-
tion rate of KeratitisNet in distinguishing BK and 
FK. Some points of AK were clustered close to 
BK, which may also result from the same reason.

Confusion matrix revealed that the recall rate of 
KeratitisNet in diagnosing BK, FK, AK, and 
HSK was 70%, 78%, 84%, and 80%, respec-
tively. The most easily mispredicted IK was BK 
and FK. However, 20% cases of BK were mis-
classified into FK and 16% FK cases were into 
BK. As some researches reported,5,8 accurate dis-
tinguishing of BK and FK was a difficult task for 
both DL-based models and even human ophthal-
mologists. Hung et  al.14 designed a DL-based 
model based on DenseNet161 for the identifica-
tion of BK and FK and 1330 images from 580 
patients, and the accuracy for diagnosing FK was 
65.8%, which meant 34.2% cases of FK were 
misclassified into BK. Kuo et  al.16 developed a 
DL-based slit-lamp photo diagnostic model con-
centrating on distinguishing FK and non-FK, 
based on DenseNet, and they got 69.4% accuracy 
in diagnosing FK. In this study, a larger data set 
was prepared, and our KeratitisNet could identify 
IK with higher accuracy.

Three corneal specialty ophthalmologists were 
invited to view the external validation set and 
make clinical diagnosis. Their recall rate of diag-
nosing BK, FK, AK, and HSK was 47%, 63%, 
31%, and 59%, respectively. KeratitisNet had 
significantly higher diagnostic ability than experts 
for each type of infection (all ps < 0.001). 
Compared to expert diagnosis conducted by Kuo 
et al.,16 the accuracy to identify FK of our experts 
was lower. This may result from more IK type 
options to exclude.

There were still some limitations in our study. 
First, due to the variable incidence of BK, FK, 
AK, and HSK, we were unable to obtain a larger 
and more homogeneous data set, which limited 
the accuracy of KeratitisNet. Considering the 

lower incidence of AK and to avoid unbalanced 
data sets affecting the validity of the model, follow-
up slit-lamp photos of AK patients were added 
into our data sets. Large public IK database of slit-
lamp images is necessary to further improve the 
accuracy of DL-based diagnostic models. More 
importantly, models from different studies could 
be compared on public data set. Second, since we 
developed IK models from specialized hospital-
based data, the aspect of generalizability (external 
validity) of our models for use in other populations 
of IK patients should be concerned although 
10-fold cross-validation was performed. We were 
looking forward to improving the robustness of 
KeratitisNet via collecting IK patients from other 
centers and feeding models with more data. Third, 
KeratitisNet was trained by feeding images directly. 
Some studies4,30–33 have already proved that using 
characteristic clinical signs could improve the 
accuracy of diagnosing FK. More detailed annota-
tion was beneficial for the model to learn more 
meaningful features for IK diagnosis.

In conclusion, we constructed a DL-based model 
named KeratitisNet, which retrieved 77.08% 
average accuracy for distinguishing BK, FK, AK, 
and HSK, and was significantly more precise than 
corneal specialty ophthalmologists. These results 
further demonstrated that DL could provide an 
auxiliary diagnostic method to help clinicians sus-
pect IK using different corneal manifestations 
caused by different pathogens.

Conclusion
Based on the world biggest IK slit-lamp data-
bases, KeratitisNet demonstrated a good perfor-
mance on clinical IK diagnosis and classification. 
DL could provide an auxiliary diagnostic method 
to help clinicians suspect IK using different cor-
neal manifestations.
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