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Abstract: This present work explores the performance of a thermal–magnetic engine of Otto type,
considering as a working substance an effective interacting spin model corresponding to the q− state
clock model. We obtain all the thermodynamic quantities for the q = 2, 4, 6, and 8 cases in a small
lattice size (3× 3 with free boundary conditions) by using the exact partition function calculated
from the energies of all the accessible microstates of the system. The extension to bigger lattices was
performed using the mean-field approximation. Our results indicate that the total work extraction
of the cycle is highest for the q = 4 case, while the performance for the Ising model (q = 2) is the
lowest of all cases studied. These results are strongly linked with the phase diagram of the working
substance and the location of the cycle in the different magnetic phases present, where we find
that the transition from a ferromagnetic to a paramagnetic phase extracts more work than one of
the Berezinskii–Kosterlitz–Thouless to paramagnetic type. Additionally, as the size of the lattice
increases, the extraction work is lower than smaller lattices for all values of q presented in this study.

Keywords: q-state clock model; entropy; Berezinskii–Kosterlitz–Thouless transition; Otto engine;
mean-field approximation

1. Introduction

The Otto cycle, widely used by the automotive industry, is today one of the most
studied cycles theoretically and experimentally in thermodynamics [1–22]. This is due to
two fundamental reasons: The first is that the efficiency depends on the properties of the
working substance, and the second is that its execution stages separate the contributions
of work and heat [23,24]. The standard Otto cycle consists of two isochoric trajectories
and two isentropic trajectories. In the case where the control parameter is the external
magnetic field, the isochoric paths are constant magnetic field processes. In this context,
the performance of various working substances operating under an Otto cycle where
the control parameter corresponds to an external magnetic field has been studied, where
we highlight quantum dots [25], graphene quantum dots [26], multiferroic chain [27,28],
twisted bilayer grapehene [29], and two-spin systems with the Dzyaloshinski–Moriya
interaction [30], among others.

On the other hand, the q-state clock model is the discrete version of the famous 2D
XY model [31–34], which is probably the most extensively studied example showing the
Berezinskii–Kosterlitz–Thouless (BKT) transition in the presence of a frustrated quenched
disordered phase [35–40]. The q-state clock model is one of many magnetic models to mimic
the thermodynamics of some materials, and it can be viewed as a classical Heisenberg
spins model with very strong planar anisotropy [31].

One way to characterize the phase transitions of the q-clock state model is through
the maxima obtained in the specific heat as a function of temperature. Each location of a
maximum of the specific heat on the temperature axis will represent a value for a so-called
critical temperature. It has been shown [35–40] (in the absence of an external magnetic
field) that for the q-clock state model, values q ≥ 5 (where q represents the number of
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possible orientations that the spins can take), the specific heat presents two maxima. The
first maximum corresponds to a transition from a ferromagnetic phase (FP) to a BKT
phase, while the second maximum corresponds to a transition from BKT to a paramagnetic
disordered phase (PP) [31].

In this research, we propose to study the work and efficiency of an Otto engine whose
working substance is an interacting spin system based on the well-known q-state clock
model. For this purpose, a complete analysis of the thermodynamics of small lattice systems
will be made by exact calculations, and the mean-field approximation will be used for large
lattice sizes. Phase diagrams will be calculated for a correct analysis to establish the cycle’s
operating range and what kind of transitions are involved. In addition, the effects of lattice
size on the cycle performance are studied. In particular, for our simulations, it is found
that the model with four spin degrees of freedom is the one with the best performance.

This article is organized in the following way: The next section describes the system.
Section 3 covers the calculations of thermodynamics. Section 4 explains the model of
the engine proposal. Section 5 is devoted to the presentation of the phase diagram of
the system. Section 6 is oriented to understand where the Otto engine simulations are
positioned in the phase diagram of the proposed working substance. Section 7 presents
the results and their discussion, and finally, Section 8 includes the main conclusions of
this paper.

2. Spin Model
q-State Clock Model

The working substance under study corresponds to the q-states clock model on a
two-dimensional (2D) square lattice of dimensions L× L = N, where the local magnetic
moment or “spin” Si at site i can point in any of q directions in a given plane. Then, Si is a
2D vector, i.e., Si = (cos( 2π

q k), sin( 2π
q k)), where k = 0, 1, . . . q− 1, with equal probability.

The magnitude of Si is chosen to be the unity.
The isotropic Hamiltonian for such a system can be written as [31–34]:

H = −∑
〈i,j〉
J (~Si · ~Sj)−∑

i

~B · ~Si , (1)

where J > 0 is the ferromagnetic exchange interaction to nearest neighbors; the sum runs
over all pairs of nearest neighbors (i, j), which is indicated by the symbol 〈i, j〉 under the
summation symbol. ~B is an external field applied along one direction in the plane. In this
work, we used arbitrary units choosing J = 1, making all the calculated quantities be in
terms of the exchange energy constant. Figure 1 presents an example for a 3× 3 lattice of
this model.

Figure 1. Example of the q-state clock model for a 3× 3 lattice where the direction of a spin in the
lattice is displayed at an angle of θ = π

3 . The purple circles represent the free boundary conditions in
the model.

For the thermodynamic analysis of this model, we will perform two types of calcula-
tions to derive the partition function of the system. The first is an exact calculation of all
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the accessible microstates of the system for a 3× 3 lattice for q = 2, 4, 6, and 8. For the same
values of q studied, for lattices of size up to 256× 256, mean-field theory will be employed.
Both calculations will be detailed below.

3. Thermal Averages: Thermodynamics
3.1. Microstates

Let us start the thermodynamic discussion for the 3× 3 finite lattice with free boundary
conditions. We will use an approximation that we will call exact because it corresponds to
an exact diagonalization of the Hamiltonian given by Equation (1) and the corresponding
calculation of all the possible microstates that the system possesses.

The partition function is obtained as follows

Z(T,B) =
λ

∑
n=1
Cne−

En
T , (2)

where the coefficients Cn correspond to all possible spin configurations compatible with
an energy En coming from the Hamiltoninan of Equation (1) (basically representing the
degeneracy of the each energy level of the system) and λ is the number of different values
of energy levels. For all our calculations, we will use the Boltzmann constant kB = 1, which
means that temperature and energy are in the same units.

The number of microstates depends on the freedom of spin orientations, the size of
the lattice, and the external magnetic field, in other words, on q, L, and B. Each spin has q
potential states, and therefore, all the possible self-energies of the system are given by

Nstates = qL×L. (3)

An example of the number of microstates for finite lattice systems is presented in
Table 1. An example of the possible spin configurations for q = 8 in a 3× 3 and 16× 16
lattice size is shown in Figure 2. In Table 1, we note that for L = 3, the Ising model must
consider 512 lattice configurations to estimate the partition function. It is logical to think,
seeing the numbers presented in this table, that for large lattice sizes, the computational
cost of these calculations is not viable at present, and therefore, alternative methods such
as Monte Carlo simulations and the mean-field approximation are used. We will use the
latter for a larger lattice than the 3× 3 size.

Table 1. Table with number of microstates according to q and L.

L q Nstates L q Nstates

3 2 512 8 2 1.84467 × 1019

3 4 262,144 8 4 3.40282 × 1038

3 6 10,077,696 8 6 6.33403 × 1049

3 8 134,217,728 8 8 6.2771 × 1057

4 2 65,536 16 2 1.15792 × 1077

4 4 4,294,967,296 16 4 1.3408 × 10154

4 6 2.82111 × 1012 16 6 1.6096 × 10199

4 8 2.81475 × 1014 16 8 1.5525 × 10231
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Figure 2. Diagram of spin lattice with q = 8 for different lattice size (left L = 3 ordered, right L = 16
disordered).

3.2. Mean Field Approximation

The mean-field theory is based on the assumption that the fluctuations around the
average value of the order parameter (in this case, the magnetization ~m ) are so small that
they can be neglected. The first term of the Hamiltonian of Equation (1) that corresponds
to the interaction term between the spin of the lattice in different sites is modified by
performing the following approximations.

We can write the spin term as follows

~Sj = ~m + δ~Sj, (4)

where ~m is the average thermodynamic spin, the same for all sites in the lattice. Therefore,
we have

δ~Sj = ~Sj − ~mj. (5)

Thus, the spin–spin interaction term can be written as

~Si · ~Sj = −m2 + ~m ·
(
~Si + ~Sj

)
, (6)

where we have neglected the square terms of the fluctuation (O(δ~S)2). Therefore, the
interaction term of the Hamiltonian of Equation (1) (that we callHJ) can take the form

HJ = −J ∑
〈i,j〉

(
−m2 + ~m ·

(
~Si + ~Sj

))
= ∑

i

(
z
2
Jm2 −J z~mi · ~Si

)
, (7)

where now, the sum runs for each site in the lattice and z are the effective nearest neighbors
of the model (see Figure 3 for an example). Consequently, we can define a Hamiltonian per
site given by the structure

hi =
z
2
Jm2 −J z~mi · ~Si − ~B · ~Si. (8)

Now, we can calculate the partition function per site, which will depend on q, B, m, and T
given by

Z(q,B, m, T) = ∑
q

e−
ξ(q,B,m)

T , (9)

where ξ(q,B, m) is the energy per site coming from the Hamiltonian of Equation (8).
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Figure 3. Example of near neighbors (demarcated in yellow) for a spin (1, 1) (marked with a circle of
red color) in a 3× 3 lattice with free boundary conditions.

We found that for mean field with a number of nearest neighbors z = 4, in the
framework of a small system with lattice L× L = 3× 3, that the internal energy behaves
differently from the one obtained in an exact approximation. It is proposed to find a
number of effective nearest neighbors that fits the approximation through an optimization.
By releasing the number of neighbors, ze f f ∈ <+, and minimizing the internal energy
difference (between the exact and approximate case via mean field), it was found that for
L = 3, the optimal number of neighbors was ze f f = 2.67 (for all values of q). This can be
seen in Figure 4 for the Ising model (q = 2, as an example) on a 3× 3 lattice where the
internal energy is shown for an external field B = 1 and B = 4 for different values of z
from z = 0.1 to z = 4.

Figure 4. Plots of internal energy for Ising model (q = 2), computed exactly (yellow-dotted line)
and approximately by mean-field theory distinguishing number of nearest neighbors. We note that
z = 2.67 fits best when B ≥ 1.

Amplifying the above qualitatively, we propose an expression for the number of near
neighbors effective that adjusts according to the weighting of the effect of non-interacting
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edges in the system when the lattice has a generic resolution L× L. For the square lattice
with up, down, left, and right near neighbors, the effective neighbors for a central spin for
the mean field is determined by the following expression (independent of q).

ze f f =
4× (L− 2)2 + 3× 4× (L− 2) + 2× 4

L2 . (10)

3.3. Thermodynamic Relations

Once the partition function of the system has been obtained by either of the two
approaches discussed above, it is possible to compute all the thermodynamical observables
in a general way through the expressions (with kB = 1)

F = −T ln Z, (11)

U = T2 ∂ ln Z
∂T

, (12)

and
C = ∂U

∂T
, (13)

where F is the Helmholtz free energy, U is the internal energy, and C is the specific heat
at constant magnetic field. In addition, with the differential expression of Helmholtz free
energy given by dF = −SdT−MdB, we can obtain the entropy and the magnetization of
the system given by

S = − ∂F
∂T

; M = − ∂F
∂B . (14)

4. Otto Engine
Description of Otto Engine

The standard Otto engine is a quasi-static cycle (which means there is always thermody-
namic equilibrium) that considers two isochoric and two adiabatic processes [14–17,25,26].
In our case, the isochoric stages are replaced by constant magnetic field processes. There-
fore, the entropy versus external magnetic field diagram is represented by a rectangle, as
shown in Figure 5. The Otto cycle processes are detailed below.

(1) Adiabatic compression (stage A→ B). The system, which is initially at a tempera-
ture Tl and an external field B1, is subjected to an increase in the external magnetic field
up to a value B2 without exchanging heat with its surroundings. From the first law of
thermodynamics, we will then have that the total work done in the process is given by:

WA→B = UB(TB,B2)−UA(Tl,B1), (15)

where U corresponds to the internal energy of the system given by Equation (12). When
the external magnetic field changes from B1 to B2, the evolution of the temperature in the
adiabatic process is not free and must be governed by the condition of entropy equality
given by

S(Tl ,B1) = S(TB,B2), (16)

where S it is defined by Equation (14).
(2) Isochoric heating stroke (stage B → C). The system is placed in contact with a

thermal reservoir at temperature T = Th until the working substance reaches thermal
equilibrium with the reservoir. This process is carried out at a constant magnetic field,
and there is no work done during its execution. There is only heat exchange between the
working substance and the reservoir given by

Qin = UC(Th,B2)−UB(TB,B2). (17)
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(3) Adiabatic expansion (stage C→ D). The system is disconnected from the thermal
reservoir and subjected to a change in the external magnetic field from B2 to B1 without
exchanging heat with its surroundings. There is only work done at this stage given by
the expression

WC→D = UD(TD,B1)−UC(Th,B2). (18)

Again, the temperature at this stage does not evolve freely and depends on the constant
entropy condition in this case given by

S(Th,B2) = S(TD,B1). (19)

(4) Isochoric cooling stroke (stage D→ A). Finally, the system is put in contact with
a thermal reservoir at temperature T = Tl until thermal equilibrium with the reservoir
is reached. The process is performed at constant magnetic field B = B1 and there is no
work done during this stage: only heat exchange between the working substance and the
reservoir. Then, the heat output is defined as

Qout = UA(Tl ,B1)−UD(TD,B1). (20)

The efficiency of a thermodynamic engine is defined by

η =
|Wtotal |

Qin
. (21)

In our case, Wtotal is given by

Wtotal = WA→B + WC→D, (22)

where WA→B and WC→D are given by Equation (15) and Equation (18), respectively.

Figure 5. Pictorial representation of the Otto cycle.

Simulations of the standard Otto engine are obtained by fixing the values of Tl , Th,
and Bl and infinitesimally moving the Bh field to an arbitrary physically possible value.
That is why the points of the A and C states in the cycle are well-determined values in the
calculations. As mentioned above, the q-state clock model has one phase transition for
q ≤ 4 and two-phase transitions for q ≥ 5. This is why it is essential to know where points
A and C are located in our simulations, as this will indicate whether we are operating
an engine through these phase transitions. In the following section, we will calculate
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the so-called phase diagrams to select and interpret correctly the region where our motor
operates for the different values of q that will be presented in the results.

5. Phase Diagram

The maximum values of the heat capacity define phases of magnetic order. Therefore,
a qualitative analysis of the behavior of the specific heat concerning temperature and the
external magnetic field is proposed. We can see an example of the maxima in specific heat
for a 3× 3 lattice for the exact evaluation in the cases of q = 2 and q = 4 in Figure 6a,b
and for q = 6 and q = 8 in Figure 6c,d, respectively. In these figures, it can be clearly seen
that for q ≥ 5, the specific heat has two maxima, which is indicative of a double phase
transition. However, this two peaks observed for q = 6 and q = 8 (Figure 6c,d, respectively)
shift to higher temperatures as the external magnetic field increases. This behavior is easily
explained by the external field favoring ordered phases (FM and BKT) over disordered
ones, and therefore, the transition temperatures increase with the strength of the external
field [31]. These results of thermodynamics observable are consistent with those reported
in previous work in the literature [31–34].

(a) (b)

(c) (d)

Figure 6. Specific heat as a function of temperature for different values of external magnetic field of
values B = 0 (blue), B = 1 (purple), B = 2 (lemon-green), and B = 4 (orange) for a 3× 3 lattice with
different values of q parameter. (a) Ising model, q = 2, (b) q = 4, (c) q = 6, and (d) q = 8.

Obtaining the curve representing the boundary between phases is based on maxi-
mizing the heat capacity for a given field and saving the pair of points (B f ix, Tcr) for each
model. In Figure 7a,b, we visualize the phase diagram for q = 2 and q = 4, while for
Figure 7c,d, we show the phase diagram for q = 6 and q = 8, respectively. Both figures
show calculations with exact approximation for a small 3× 3 lattice. Figure 7a,b represent
the specific heat maxima presented in Figure 6a,b showing its FP and PP phases as expected
for these values of q, whereas Figure 7c,d visualize the BKT phase for q = 6 and q = 8 in
accordance with the specific heat figures shown in Figure 6c,d.

In Figure 7a, for the Ising model (q = 2), we notice that under the dotted curve, we
are in an ordered FP region (blue zone). As the temperature increases, the spins start to
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disorder until reaching PP (red zone). For q = 4 (Figure 7b), we notice a similar transition,
with the difference of needing lower temperatures to achieve disorder. The phase diagram
for q = 6 and q = 8 presented in Figure 7c and Figure 7d, respectively, shows three clear
phases for q = 8, while for q = 6, all three phases are present only up to an external
magnetic field close to B = 1.5. For higher magnetic fields, in the case of q = 6, only a
transition from FP to PP is present. This last characteristic is in coherence with the specific
heat plots shown in Figure 6c where we see that for fields higher than B = 1, in this case,
B = 2, B = 3, and B = 4 shown in that figure (lemon-green, yellow, and orange line,
respectively), a peak in specific heat is lost compared to that shown for B = 0 (blue line)
and B = 1 (purple line). Consequently, we only have a transition from FP to PP type as the
temperature increases for this case studied.

(a) (b)

(c) (d)

Figure 7. Phase diagrams for (a) q = 2; (b) q = 4; (c) q = 6 and for (d) q = 8.

6. Cycle Reservoirs

Having two phase transitions for q ≥ 5 in the model, positioning the reservoirs
deserves a little analysis in favor of understanding how many transitions we will deal with
throughout the cycle. For this, it is useful to unify Figure 7a–d and plot the location of the
cold and hot reservoirs as a point and a horizontal line on that figure, respectively. This is
presented in Figure 8, where we observe that the selection of the cold (point A of the cycle)
and hot (point C of the cycle) reservoir for our simulations is given by the points

Point A ≡ (B1 = 1.0, Tl = 0.6) (23)

Point C ≡ (B2 = 1.1− 4.0, Th = 6). (24)
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Figure 8. Otto cycle reservoirs selected for the study. The point A with Tl = 0.6 and B1 = 1 shows
that q = 2 (blue), 4 (lemon-green), and 6 (yellow) is in FP, and for q = 8 (red), the cycle starts in BKT
phase. Point C is represented with a red line with Th = 6 given its moving character taking values of
Bh between 1.1 and 4.0 in 0.1 intervals.

The selection of these points is based on satisfying three criteria:
(i) The cold reservoir must have an entropy whose value is distinguishable to the

accuracy of numerical calculations in order to solve the first adiabatic condition given by
Equation (16).

(ii) At least one phase transition must be included in the cycle.
(iii) Although the study is initiated with the intention that all models, faced with the

same hot reservoir, transit between FP and PP, the FP region of q = 8 corresponds to a
zone with low entropy, which would generate problems associated with the first point of
the criteria under discussion. Consequently, we place the cold reservoir in a BKT phase
for this case. As we have discussed above, q = 6 may present a double phase transition
for magnetic field values B < 1.5, so we select a cold reservoir that considers dominant
only the region of a single maximum in the specific heat for that value of q. In this case,
it is a zone where only one kind of transition of type BKT to PP exists, which occurs for
B < 1.5. This is done to have two study cases with FP to PP transitions and two with BKT
to PP transitions. In summary, in the results shown in the following section, the proposed
magnetic Otto engine for q = 2 and q = 4 will transit between phases FP and PP, while for
q = 6 and q = 8, it will transit between phases BKT and PP.

Finally, it is essential to mention that as the lattice size increases, our results indicate
that the critical temperatures increase for all q values studied, which implies that the FP was
becoming more prominent. However, with the points selected for the cycle operation, we
conserve the types of transitions for each value of q that can occur in the engine’s execution.

7. Results and Discussion

We will first analyze the behavior of the work and motor efficiency (given by Equa-
tion (22) and Equation (21) respectively) in a 3× 3 lattice with the exact and mean-field
approximation for q = 2, 4, 6, and 8. This analysis is presented in Figure 9, wherein panel
(a), the total work is presented and (b) shows the system efficiency. Both plots are shown
as a function of the variable magnetic field in the system corresponding to B2 from value
1.1 to 4. For the total work extraction presented in Figure 9a, we note that the q = 2
curve (Ising model, blue-colored curves) has the worst performance. The q = 4, 6, and 8
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curves decrease the total work extraction obtained as q increases, with the q = 4 curve
(lemon-green-colored curves) having the highest work. It is important to note that we
noticed a similar result between the exact (solid lines) and mean-field methods (dashed
lines), which indicates the consistency of the presented calculations. These differences
between the approximations to obtain the thermodynamics of the system decrease as q
grows. For q = 2 and q = 4, the exact method performs better than the mean-field results.
The above mentioned is reversed for q = 6 and q = 8, obtaining higher total work than the
mean-field approximation. In the case of efficiency, Figure 9b shows that the q = 2 case
still presents the worst performance of the cases analyzed. It is also the one that present
the largest difference between the exact and mean-field calculations. From Figure 9b, we
observe that the efficiency for q = 8 is the highest of all cases, which is followed by that for
q = 4, then q = 6, and finally q = 2. It is important to note that the differences between the
efficiencies of the q = 4, 6, and 8 cases are relatively small. Consequently, if we think of the
best performance of the machine that can be intuited from W × η, this will correspond to
the q = 4 case.

(a)

(b)

Figure 9. (a) Total work and efficiency (b) for a 3× 3 lattice for q = 2 (blue), q = 4 (lemon-green),
q = 6 (yellow), and q = 8 (red) for exact calculations (solid line) and mean-field approximation
(dashed line) as a function of external magnetic field B2.

The behavior of the efficiency for the exact case in the 3× 3 lattice can be understood
if we analyze the difference between the heat input (Qin given by Equation (17)) and the
heat output (Qout given by Equation (20)) divided by Qin due to the fact that the efficiency
can be written as

η =
Qin −Qout

Qin
= 1− Qout

Qin
. (25)
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In Figure 10, it can be seen that the ratio between Qout and Qin is not as significant
for q = 2 as it is for the other values of q studied, with the largest differences between Qin
and Qout being q = 4 and q = 8. Consequently, a lower efficiency is expected for the Ising
model (q = 2) with the parameters selected in the study.

Figure 10. Heat input (Qin, dotted line) and heat output (Qout, dashed line) for a small lattice of 3× 3
for exact calculations of q = 2 (blue lines), 4 (lemon-green lines), 6 (yellow lines), and 8 (red lines).

In order to see the effects of lattice size on total work and efficiency, we propose to
study with the mean-field approximation the case of a lattice of size 256× 256 (for all
values of q), where the number of effective neighbors, ze f f is already close to the value four
and the approximation is more robust. These results are shown in Figure 11a,b, wherein
(a) we show the total work and (b) the efficiency of the system in comparison in a 3× 3
lattice. For the results to be comparable in Figure 11a, we must speak of work per spin,
i.e., divide the total work obtained by the number of spins in the lattice. The first result
we can appreciate in work per spin is that the larger the lattice, the smaller the amount of
extraction work obtained from the cycle for any value of q. The q = 2 case is still the lowest
total work and the most significant difference between the lattice sizes studied. In addition,
q = 4 continues to show the highest work extraction. In addition, for a large 256× 256
lattice, we observe that there are no significant differences at low magnetic fields (up to
about B2 = 1.7 ) in the efficiency of the q = 4, 6, and 8 cases.

We can establish a quantitative relationship between the results obtained for the total
work and the location of the operating zone of the cycle by looking at the phase diagrams
in Figure 7. If we first analyze the FP–PP-type transitions, corresponding to the q = 2
and q = 4 cases (panels (a) and (b) of Figure 7), we observe that the ferromagnetic phase
involved in the cycle will be larger than that of the q = 4 case, where the preponderant
phase will be the PP. Comparing the work of q = 2 and q = 4, it is already known that
q = 4 presents a higher work than the case of q = 2. If we focus on the BKT–PP-type
transitions from Figure 7, we notice that the BKT zone of q = 6 (panel (c) of Figure 7)
involved in the cycle will be smaller than that of q = 8 (panel (d) of Figure 7). If we now
compare only the work of q = 6 and q = 8, the case of q = 6 extracts more work than
q = 8. This simple comparison of results is an indication that the total work will be more
significant (with the same operating parameters) when we have a smaller portion of the
cycle in a sorted zone. In addition, our results indicate that a FP–PP-type transition is more
beneficial than a BKT–PP-type transition for the performance of the proposed magnetic
motor when a small portion of the cycle is positioned in an FP zone.
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(a) (b)

Figure 11. (a) Work per spin and efficiency (b) for a 3× 3 lattice and a 256× 256 lattice for different
values of q: 2 (blue), 4 (lemon-green), 6 (yellow), and 8 (red).

The result of why q = 4 in the selected parameter region is the best performing can be
analyzed through the W in each of the adiabatic stages of the cycle. We notice in Figure 12a,
which presents the work WA→B as a function of B2, that the differences between each of
the curves for the different values of q are minor being the smallest the case of q = 2 (blue
line) and q = 4 (lemon-green line). This is mainly because, according to the phase diagram
in Figure 7a,b, the process takes place almost entirely in an FP. While in the case of q = 6
and q = 8, there is a mixture between the FP and BKT phases. However, when we analyze
the work WC→D presented in panel (b) of Figure 12, we realize that almost all work values
for different values of q are the same except for q = 2, which shows (in absolute value) a
more significant difference concerning the previous ones. The C → D process is always
carried out in a paramagnetic zone for all q, as in the case q = 2, where point D of the cycle
is closer to the transition between the phases. In energetic terms, for the q-clock model,
being located close to the transition represents higher internal energy (in absolute value).
Therefore, the energy difference will be more considerable between points C and D. As
the work at this stage is negative, if WC→D is large, the smaller the total work of the cycle
will be.

(a) (b)

Figure 12. (a) Work in the first adiabatic trajectory WA→B and (b) in the second adiabatic trajectory
WC→D for a 3× 3 lattice size.

Finally, we would like to mention that the effect of the J parameter on the cycle is not
trivial. J plays a transcendental role in the critical temperatures and, therefore, in the phase
diagram. In the extreme case of J = 0 (a free spin system), the work substance for cases
with spin degrees of freedom q = 4, 6, and 8 reduces the total work, while for q = 2, the
opposite is true (see Figure 13). This is because in the region of operation we selected for
our study, it is more difficult (energetically) to change the spin orientation for an Ising-type
model than for models with more degrees of freedom. However, when we increase the
value of q in the selected region of temperature and field, the exchange favors the visitation
of the different states of the q- clock model, thus reducing the amount of work required to
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perform the adiabatic process from C to D. Additionally, we note that for the case J = 0,
q = 6 and q = 8 show the same extraction work. This is since for larger values of q, the
difference between the internal energies (only for J = 0) are smaller and smaller; therefore,
a convergence in the calculation of the total work in the cycle is expected.

Figure 13. Total work for a 3× 3 lattice as a function of external magnetic field B2 for different values
of q for J = 0 and J = 1 (inset).

8. Conclusions

In this work, we have addressed the possibility of operating an Otto engine whose
working substance is an interacting spin system corresponding to the q-state clock model.
For small lattice systems, we have calculated and analyzed the thermodynamics of the
system exactly by obtaining all the accessible microstates of the system, while for larger
lattices, we have performed the calculations through the mean-field approximation. The
working substance used presents one or two phase transitions depending on the degree of
freedom of the spin; therefore, the selection of the operating range of the motor cannot be
arbitrarily selected, and in our study, we have placed it for the Ising model (q = 2) and
q = 4 from an ordered phase (ferromagnetic phase) to a disordered phase (paramagnetic
phase), while for q = 6 and q = 8, it is from a vortex phase (BKT phase) to a disordered
phase. The results for small-size lattices indicate that for the selected operating range,
q = 4 presents the best performance based on the extraction work and efficiency that can be
obtained in the cycle, while the Ising model is the worst performer of all the cases analyzed.
When the lattice size is increased, both the efficiency and spin work decrease, but the q = 4
case is still the best-performing case. These reported results can be interpreted from the
phase diagram of the working substance, which indicates that a smaller portion of the cycle
in a ferromagnetic phase would allow a better total work output.

Our result of the optimal work and efficiency for the system with q = 4 does not
have a general reason. As the energies grow with temperature, it is convenient that the
work window (T,B) used in the Otto cycle includes a low entropy ordered zone, i.e.,
ferromagnetic phase and high entropy in a high-temperature, paramagnetic disordered
phase, so that the energy differences make Qin − Qout to be maximal. In our case, this
occurs for q = 4, but if the (T, B) window of the Otto cycle is varied, we can find that the
work is maximized for another value of q.

This work is currently undergoing an extension in the context of an endoreversible
scenario in order to obtain the finite power output of the proposal machine [41] considering,
in addition, the anisotropy and dipolar interaction terms, both of which are fundamental
in the accurate description of authentic materials.
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