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ABSTRACT
Ensuring consistent high yields and product quality are key challenges in biomanufacturing. Even minor 
deviations in critical process parameters (CPPs) such as media and feed compositions can significantly 
affect product critical quality attributes (CQAs). To identify CPPs and their interdependencies with product 
yield and CQAs, design of experiments, and multivariate statistical approaches are typically used in 
industry. Although these models can predict the effect of CPPs on product yield, there is room to improve 
CQA prediction performance by capturing the complex relationships in high-dimensional data. In this 
regard, machine learning (ML) approaches offer immense potential in handling non-linear datasets and 
thus are able to identify new CPPs that could effectively predict the CQAs. ML techniques can also be 
synergized with mechanistic models as a ‘hybrid ML’ or ‘white box ML’ to identify how CPPs affect the 
product yield and quality mechanistically, thus enabling rational design and control of the bioprocess. In 
this review, we describe the role of statistical modeling in Quality by Design (QbD) for biomanufacturing, 
and provide a generic outline on how relevant ML can be used to meaningfully analyze bioprocessing 
datasets. We then offer our perspectives on how relevant use of ML can accelerate the implementation of 
systematic QbD within the biopharma 4.0 paradigm.
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Introduction

Biopharmaceuticals such as monoclonal antibodies (mAbs) 
and fusion proteins are currently the most lucrative drugs in 
the market: 7 of the top 10 drugs in 2019 are 
biopharmaceuticals.1 Unlike small molecules, biopharmaceu-
ticals are large, complex drugs that are typically produced using 
live mammalian cells.2 The biological activity of biopharma-
ceuticals is extremely sensitive to variations in their critical 
quality attributes (CQAs), such as the N-glycosylation, charge 
distribution and aggregation.3–6 The biopharmaceutical pro-
duct quality is also extremely sensitive to changes in the under-
lying biomanufacturing operating conditions and raw 
materials. Even a minor variation in bioreactor physicochem-
ical conditions such as pH, temperature, dissolved oxygen 
(dO2) and cell culture media can lead to significant alterations 
in different product quality attributes. For example, cell culture 
pH has been shown to greatly affect multiple quality attributes 
of the mAbs, including N-glycosylation,7–10 aggregation,10,11 

and charge variations.10,12 Therefore, biomanufacturing is 
highly regulated to ensure the safety and efficacy of biologic 
products.

In traditional biomanufacturing, product quality in bio-
pharmaceuticals is evaluated using a quality by testing 
approach.13 However, significantly higher wastage (more than 
50% in some cases) and the subsequent inability to understand 
the root cause of inefficient bioprocesses have prompted drug 

regulators such as US Food and Drug Administration (FDA) 
and European Medicines Agency (EMA) to recommend the 
adoption of the Quality by Design (QbD) approach.14 QbD 
approaches rely on the comprehensive understanding of the 
product and the associated manufacturing processes where the 
CQAs of the product and its yield would be viewed as 
a function of various critical process parameters (CPPs). 
Bioprocesses are now routinely designed following the QbD 
paradigm,15 whereby the CPPs that affect the product yield and 
CQAs are first identified and the manufacturing process is 
regulated and monitored accordingly. In QbD, design of 
experiments (DoE) is first used to conduct experiments in 
a structured manner with variations in CPPs such as pH, 
temperature, and cell culture media and to measure the corre-
sponding variations in product yield, CQAs and cell growth. 
Multi-variate data analysis (MVDA) techniques are then used 
to model the multivariate and multi-collinear relationships 
between the CPPs and CQAs from the datasets generated 
using DoE.15,16

In this review, we first summarize how mathematical mod-
eling, both statistical and mechanistic approaches, are used in 
QbD with respect to upstream mammalian cell culture design 
in biomanufacturing. Particularly, we analyze and report the 
various statistical modeling approaches used to examine exam-
ined the CQAs-CPPs relationships in biopharmaceutical man-
ufacturing from published studies. Next, we highlight the 
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advantage of ML algorithms and hybrid ML-mechanistic mod-
eling approaches in a bid to increase the accuracy of model 
predictions, explain the relationships between CPPs and CQAs 
and to reduce the number of experiments required during 
a change in process condition and/or product. Finally, we 
describe the challenges and provide our perspectives on estab-
lishing sophisticated ML and hybrid models to enhance 
upstream bioprocess designs.

Biomanufacturing QbD tour de force by multivariate 
analysis

Initially proposed by the FDA’s Office of Biotechnology 
Products in the 2000s,14 QbD was quickly adopted by the 
biopharmaceutical industry for designing and monitoring 
mammalian cell cultures. A wide array of CPPs, such as 

dO2, pH, temperature, and cell culture medium (i.e., the 
composition of various biochemical compounds in which 
the cells are cultured), were shown to influence the various 
performance indicators of the cell culture, i.e., cell growth, 
biopharmaceutical productivity and its quality (Figure 1a). 
The majority of such published mammalian QbD studies 
have used MVDA techniques to mathematically model the 
multi-factorial and multi-collinear relationships among and 
between the input (CPPs) and output (titer, cell growth and 
CQAs) variables (Figure 1b; Suppl. Table 1). MVDA methods 
are popular because of their simplicity and the ease of use: 
several software tools such as Minitab® (Minitab Inc., State 
College, PA), MODDOE® and SIMCA® (Umetrics AB, 
Kinnelon, NJ) are available and facilitate the systematic 
implementation of DoE and MVDA together for industrial 
processes.

Figure 1. Historical trends of QbD in biomanufacturing. A comprehensive literature survey was performed focussing on studies which employed QbD in upstream 
bioprocessing to analyze the CPP, titer and CQA inter-relationships. (a) Conventional QbD framework: Selected process parameters are varied within a range as guided 
by DoE and the corresponding variations in titer and CQAs are measured, and the CPP – titer/CQA interrelationship is analyzed using statistical approaches. (b) Historical 
trends in the focus of process outputs and the statistical methods used to establish mathematical models. (a) A flowchart visualizing the inflow of critical process 
parameters into bioprocesses that use statistical approaches and their effect on critical quality attributes/titer. (b) Bar charts summarizing trends of publications by areas 
of focus across four time intervals. Top bar chart shows publications by critical quality attributes examined, while the bottom one categorizes by computational method 
used.
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Among various MVDA approaches, principal component 
analysis (PCA) is a technique commonly used to understand 
the major trends and patterns from mammalian bioprocesses. 
In this method, the original dataset is orthogonally projected 
into a low-dimensional space of new uncorrelated variables, 
called principal components (PCs), to better describe the rela-
tionships among different variables in the original dataset. PCs 
corresponding to the variables that vary together tend to clus-
ter together in the transformed space. Various studies have 
used PCA to mine historical bioprocess datasets and identified 
the CQAs (N-glycan species, charge variants and aggregates) 
that are correlated with one another.17–22 Other studies used 
PCA to identify similar trends in specific amino acid consump-
tion profiles in mammalian cell culture,23–26 as well as meta-
bolites that vary together with the cell culture progression.27–30 

It should be noted that identification of such common trends 
within the CQAs (for example, N-glycans that always vary 
together) and CPPs (for example, amino acids that consistently 
show a similar consumption pattern) could be helpful in redu-
cing the resources spent on monitoring each of those CQA and 
CPP during biomanufacturing.

Partial least-squares regression (PLSR), which is also 
a commonly used technique, is very similar to PCA. In this 
method, the original dataset is first projected onto an orthogonal 
low-dimensional space and linear regression is performed to 
establish the relations and interactions among different variables. 
PLSR is extensively used to identify CQAs-CPPs correlation/rela-
tionship in biomanufacturing QbD: several studies have particu-
larly used PLSR to explore the effect of individual components in 
the cell culture medium (e.g., glucose, glutamine, glutamate, other 
amino acids) on various process outcomes such as viable cell 
density (VCD)/cell growth,23,31–33 titer,17,19,22,23,25,32–35 toxic by- 
product (lactate and ammonia) accumulation,23,31,34 and CQAs 
such as N-glycosylation,17,18,21,22,25,35,36 aggregation,17,18 and 
charge variants.17,18 Other studies have also associated the impact 
of cell culture pH19,34,37–39 and dO234,39 with process outcomes 
using this method. PLSR is the most popular technique used in 
process analytical technologies (PAT) for interpreting the real- 
time indirect measurements of media components, CQAs and cell 
density based on in situ spectra methods such as 2D fluorescence, 
dielectric capacitance, near-infrared, mid-infrared, and Raman. 
The most common PAT and associated data analysis techniques 
are discussed in several comprehensive reviews.16,40,41

Moving beyond conventional MVDA for 
implementing QbD

Toward building advanced ML models

As mentioned earlier, MVDA methods such as PCA and PLSR 
are commonly used to analyze cell culture data and to uncover 
the CQAs-CPPs inter-relationship. MVDA methods transform 
the data into a low-dimensional space and subsequently reduce 
the number of dimensions from the original dataset. This could 
result in loss of some information from the original dataset 
during transformation. Moreover, since biological processes 
are inherently complex, it is likely that the relationships 
between CCP and CQAs are non-linear in nature, especially 
as the number of CPPs grow larger with improved character-
ization of bioreactor read-outs. Consequently, the use of linear 
models such as PCA and PLSR could be insufficient to capture 
the underlying CQAs-CPPs relationships. In addition, the 
accuracy of MVDA methods in relating CPP and CQAs 
could also be significantly lower than the accepted norms.37 

Therefore, more sophisticated approaches based on advanced 
machine learning (ML) algorithms can be developed to over-
come these issues. For instance, with the emergence of new 
variables derived from more thorough analysis of media com-
ponents, feeding strategies and omics studies, advanced ML 
algorithms may increase QbD potential compared to classical 
statistics. A list of the advantages and disadvantages of MVDA 
and ML are provided in Table 1. In certain applications, 
MVDA could be the best approach, particularly when the 
number of input variables (CPPs) is small.

Despite the advantages of ML in certain applications, few 
articles describing ML-based prediction of attributes such as 
titer, viable cell density and glycosylation have been published. 
This suggests that ML is still in its infancy for QbD applica-
tions. In one such work, Artificial Neural Networks (ANNs) 
were combined with DOE to predict the percentage of cell 
doublings (i.e., cell growth) from cell seeding density, media 
supplement percentage, media exchange volume during rou-
tine feeding, and media exchange.42 The ANN-DOE model was 
shown to have significantly improved predictive accuracy com-
pared to models developed using standard linear regression. In 
another article, ANNs were again used to predict CQAs of 
etanercept, a recombinant protein, expressed in a mammalian 
cell culture.43 In particular, the mAb concentration was 

Table 1. The pros and cons of MVDA and machine learning.

Method Pros Cons

MVDA ● Simple to set up; excellent computational tools with graphical user interface readily 
available

● Fast to optimize
● Models are often understandable linear equations
● Suitable when number of CPPs are small
● Useful for data visualization (2D and 3D)

● Linear equations-based algorithms like PCA/ PLSR can lose 
information

● Cannot model complex relationships between CPP and CQA 
when the data is noisy and involves non-linear relationships

ML ● Can capture complex relationships/functions including non-linear relationships that 
may model the underlying process more effectively

● Can handle very large datasets obtained from different sources e.g., multi-omics, in- 
situ spectra, conventional analytical methods such as HPLC, LC-MS and MALDI-TOF

● ML feature selection algorithms can find novel levers/CPPs in high-dimensional data

● Large amounts of data are usually required for efficient model 
training

● Often slow to optimize – may need high computational 
power.

● Complicated to set up and therefore can often be incorrectly 
designed
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predicted using inputs consisting of daily data points of fluor-
escence excitation-emission matrices. Again, the ANN was 
shown to be superior to PLS due to its non-linear modeling 
capabilities. Schmidberger et al. developed a forecasting model 
based on PLSR and multiple ML methods such as random 
forests (RF), radial basis function neural network (RBF- 
ANN) and support vector machines (SVM) to predict product 
titer, charge variants and glycoforms using physiochemical 
CPP inputs from several days before harvesting of the cells 
from the bioreactor.35 Interestingly, in this case, it was found 
that both ML (SVM, RF and ANNs) and PLSR performed 
equally well for predicting VCD and titer, suggesting that 
MVDA can be sufficient for these variables. However, the 
PLSR model showed decreased performance compared with 
ML models while predicting N-glycosylation. Another study 
compared the predictive performance of PLSR with ML models 
such as SVM, Gaussian process regression (GPR), regression 
trees (RT) and ensemble trees (ET) for predicting the titer from 
various CPPs, and noted the performance PLSR and GPR were 
better than ML models.44 Finally, we anticipate the number of 
ML applications to grow in the coming years due to ongoing 
interest from the biopharmaceutical industry.45 To help 
explain how ML can be applied to QbD and to stimulate 

discussion, we have provided an example case showing the 
construction and use of a model to simulate CQAs based on 
different feeding and physiochemical variables (Figure 2).

Toward mechanistic-ML hybrid modeling approaches

One of the major limitations when using purely statistical 
modeling approaches for QbD is that such methods merely 
correlate the CPPs and CQAs in an empirical manner and 
do not provide information on the causal relationships 
between them. As such, this approach has to be exhaus-
tively repeated for each bioprocess campaign to account for 
even a minor variation in media, feed, pH, and similar class 
of products, such as biosimilars with identical manufactur-
ing conditions. This will inevitably inflate the costs of 
bioprocess development and biomanufacturing. Developing 
a QbD framework that relies on the mechanistic under-
standing of the underlying processes could allow it to be 
applied across different bioprocessing campaigns and would 
be a major step toward enabling real-time, adaptive control 
of CQAs during the biomanufacturing process. In this 
regard, although various comprehensive mechanistic mod-
els exist for some of the cellular processes associated with 

Figure 2. Example ML application for simulating CQAs using different feeding and physiochemical variables. (a) The training and testing strategy to develop the 
final feeding and physiochemical model. From the full dataset of M fed-batch cultures, split it into a training set used for model optimization and a testing set used to 
evaluate the performance of the model. The final model is the one that performs best on the test set; (b) If the model performance is acceptable in (A), then it can be 
used to simulate what media components and physiochemical variables can be used for a desired CQA prediction. In this example, “s” simulations are performance with 
the ith showing closest match to the desired CQA. A final validation of the model can be done by using the ith CPPs in the fed batch process to confirm experimentally 
that the desired CQA was achieved. (a) Schematic representation of how to deploy ML to model bioprocesses. First, a dataset is split into training and test sets, after 
which the training set goes through multiple iterations of tuning model parameters and calculating training error until minimum error is achieved. The model is then 
applied to the test set and evaluated if it is a good or bad model. (b) Demonstration of simulated critical process parameters being input into the final model derived in 
(a) until the set of critical process parameters that produce a desired critical quality attribute can be simulated and subsequently experimental evaluation.
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protein synthesis in mammalian cells (see refs.46–49 for 
available mechanistic models on metabolism and 
N-glycosylation), the integration of these models is quite 
challenging due to the varying mathematical approaches 
(e.g., kinetic, constraint-based and Bayesian modeling 
approaches), incomplete parameterization and the different 
units/scales used to model each of the cellular process.

In order to address the above-mentioned challenges, the 
development of hybridized ML or white box ML models 
could be an useful alternative, as these models can adopt the 
known underlying mechanisms to model certain cellular pro-
cesses such as metabolism while relying on the ML-based 
approaches to model other less investigated processes.50 Here, 
it should be highlighted that while the concept of hybrid 
models in bioprocessing existed from the 1990s and has been 
implemented for bacteria and yeast cell-based systems, studies 
that hybridized MVDA or ML approach with mechanistic 
models to investigate mammalian cell cultures started to 
appear only around 2010. Comprehensive reviews on mamma-
lian cell culture hybrid models and their genesis are 
available.50–52 In one such study, Zalai and colleagues built 
a hybrid model by combining metabolic flux analysis and 
PLSR to identify the key intracellular fluxes that are associated 
with lactate accumulation and recombinant product 
synthesis.53 Recently, Kotidis and Kontravadi developed 
a hybrid model whereby ANNs and kinetic model were merged 
to link the key CQA, N-glycosylation, with cellular 
metabolism.54 This hybrid model was able to successfully pre-
dict the variations in N-glycosylation of two fusion proteins 
(Fc-DAO and EPO-Fc) and two IgG mAbs upon changes in 
nucleotide sugar and trace metal supplementation in cell cul-
ture media more accurately with a smaller number of para-
meters than a fully mechanistic model.55 Moreover, this model 
provides mechanistic insights on how various intracellular 
pathways are affected by media additives, which in turn affect 
the N-glycosylation. Similarly, another study recently reported 
a hybrid model that combining ANNs and material balance- 
based process models to predict the cell growth and titer from 
various process variables, and the performance of this model 
was shown to be superior to PLSR models.56 The authors used 
ANNs to approximate the unknown uptake/secretion rates of 
cell culture metabolites from various process measurements 
such as pH, pO2, pCO2, osmolality, glutamine, and glutamate 
concentrations, which were then used in the process models to 
predict the final titer of the product.

The art of developing a successful ML model to 
advance QbD

Presently, with the readily available open-source ML program-
ming libraries such as Scikit-learn,57 an efficient ML model to 
advance QbD can be developed. However, implementing an 
ML algorithm correctly for a biomanufacturing process is not 
as simple as downloading a library and optimizing it using 
a bioprocessing dataset. There are various challenges in the 
development of the model and in testing its performance. Here, 
we describe two of the most common ML approaches used, the 
types of input and output for QbD ML, and the most critical 
factors when developing correct ML algorithms.

Selection of supervised vs unsupervised ML:

In what is known as supervised ML, models are presented with 
the input and output variables and learning proceeds by opti-
mizing parameters so that the model predictions are as close as 
possible to the output variables. That is, the output variable is 
used to supervise the model optimization. On the other hand, if 
the output target variable is unknown, and the input variables 
are solely used to find clusters or patterns in the data that may 
correspond to the underlying process, then it is classified as 
unsupervised ML. The selection of supervised versus unsuper-
vised methods depends on the nature of the question being 
addressed. Supervised ML is the most suitable approach to 
identify the non-linear relationship between CPPs and CQAs, 
whereas unsupervised ML can be used to identify CQAs that 
are correlated with each other. Discussion of the most common 
ML algorithms can be found in ref.58

ML input and output in QbD:

Figure 2 shows an example of a supervised ML model in which 
CQAs (output target variables) are to be predicted using dif-
ferent measurements available from cell culture media and 
physicochemical parameters such as pH and temperature as 
input variables. Note that a wide range of input variables, such 
as direct measurements of cell density, titer, and other basic 
metabolites, and in situ measurements using spectroscopy or 
other soft sensor measurements, physicochemical parameters 
(e.g., pH, dO2, pO2, pCO2 or temperature) and even intra and 
extracellular omics data (e.g., transcriptome, proteome, meta-
bolome), can also be used in any combination. In brief, the goal 
of any ML algorithm is to identify a model (or function) that 
uses a specific combination of the input variables (CPPs) to 
predict a CQA value that is as close as possible to the experi-
mentally determined CQA target.

Developing ML algorithms that are useful in QbD:

It is straightforward to develop ML algorithms incorrectly, 
resulting in models that do not perform accurately on new 
data. A complete set of community-wide recommendations 
that aim to establish requirements for ML validation in biology 
was published recently by Walsh et al.59 The recommendations 
are split into four core areas of ML: data, optimization, the 
model, and evaluation of the final model. Topics relevant to 
QbD ML modeling include splitting datasets correctly, avoid-
ing overfitting when optimizing, and how to evaluate the 
performance of the ML algorithm using appropriate metrics. 
To ensure correctness and reproducibility of ML methods, 
summary table of how the ML algorithm was constructed 
should be provided in the supporting information of any ML 
QbD study, as per previously established guidelines.59

One of the most influential factors in deciding the type of 
ML algorithm to use is the number of data points available 
from the cell culture vs. the number of parameters to tune in 
the ML algorithm. A data point is an experiment at a particular 
time in the culture that determines an input and output vari-
able (Figure 2). For example, metabolite quantities (input) 
at day 5 and titer (output in mg/L) at day 5 is a single data 
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point. A parameter is internal to the model and is 
a configurable variable that is estimated from the data points. 
If the number of data points is extremely large, then deep 
learning approaches that need tuning of large amounts of 
parameters60 could be used – a rough estimate for such 
approaches would be more than 1000 data points. Algorithms 
with a smaller number of parameters are more suitable for 
datasets with lesser data points. Multi-layer perceptron61 and/ 
or RF62 are examples of algorithms with typically fewer para-
meters to optimize compared to deep learning methods such as 
ANNs. In the example ML problem considered here (Figure 2), 
the use of random forests would be appropriate for such 
medium-size data.

In supervised ML, data should be divided into independent 
parts before training. This usually involves creating a training 
set for parameter optimization and a test set for measuring the 
predictive performance. In the example ML considered here 
(Figure 2), independent train/test splits could be training data 
from five separate culture experiments and test data from 
additional two different culture experiments. A third set 
could be also used, called a validation set, to tune hyper- 
parameters (e.g., the number of layers in a neural network). 
The best option, if the size of the data permits, is to do N-fold 
cross validation where there are N repeats of N-1 partitions for 
training and the other for testing.63 When N equals the number 
of data points, N-fold cross validation is known as leave one 
out validation because there is a single test point in each of the 
N repeated trainings.

Feature selection:

The number of input variables can be large in bioprocessing 
operations, especially when considering in situ measurements 
and multi-omics data.10 Finding and using the most relevant 
factors and ignoring the redundant ones is the goal of feature 
selection (FS) algorithms.64 FS has numerous advantages in ML 
such as reducing the chance of over-fitting, reducing computa-
tional cost and in some cases improving prediction perfor-
mance. In QbD approaches, FS is very important, as the 
identification of the important variables/features may provide 
new knowledge on the key levers to control the bioreactor. An 
example of a FS method known as nonparametric regression 
with Gaussian kernel (NRGK) was previously used to improve 
product titer.65 In this work, the authors also proved that the 
NRGK selection (an ML approach) of the CPPs was superior to 
PLSR.

Types of prediction:

There are two useful prediction types when modeling QbD of 
biologics expressed in a cell culture: real-time prediction (“at 
the moment” the data arrive from the bioreactor via an instru-
ment) or the prediction of future CQA values using data 
currently collected from the bioreactor, which are labeled 
“same day” and “forecasting” in Figure 3, respectively. For 
truly real-time prediction, the models used would need instan-
taneous input from real-time bioreactor assays and data 

Figure 3. Hypothetical ML model and their multiple applications in QbD. The tables show all CPPs and CQAs found in the literature, whether the CQAs are 
a regression or classification ML problem. Real-time models are trained to predict the output variables on the same day (or same moment) the input variables are 
collected. Forecasting involves using data from the current day and previously to predict a future days CQA. Schematic representation of a hypothetical bioprocess ML 
model, with existing sensors, raw material characteristics, and omics data used as inputs and VCD, titer, glycosylation, aggregation, and charge variants as outputs. 
A table showcasing potential inputs for bioprocessing ML model and each data source is linked to another table listing example critical quality attribute outputs and 
whether the ML applications to derive them are regression tasks or classification tasks. The link is demonstrated as either real-time (or same day), or as forecasting 
a future day’s critical quality attribute using current day inputs.
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extracted from instruments (e.g., peak picking, identification, 
and quantitation of bioreactor molecules using LC-MS). 
Forecasting has received little attention to date, perhaps 
because of its difficulty, yet it is very important for manufactur-
ing because it enables preemptive action to be taken when the 
forecast outlook is undesirable. Further, prediction can be 
divided into two types of output: regression, where the models 
produce a real numbered CQA value (e.g., titer in mg/L) and 
classification, where events or labels can be assigned to 
a bioreactor state (e.g., desired vs. undesired N-glycosylation).

Challenges in building an accurate and reproducible 
ML-based QbD framework

While ML models offer potential over conventional MVDA in 
identifying significant CPPs within an allowable range that 
affect CQAs with good accuracy, one notable limitation is the 
large data requirement for a model to be well-trained and able 
to produce desirable predictions on unseen data. Generation of 
large amounts of biomanufacturing data is highly challenging, 
as each bioprocessing campaign is quite expensive. Companies 
must invest in automated samplers, digitization, and high- 
throughput technologies to generate large amounts of data 
with minimal human effort. Moreover, substantial resources 
and investment are required to store the historical data in an 
organized manner so that it can be both expanded and con-
tinuously used to improve the model predictions successively. 
In order to achieve this goal, pharmaceutical companies are 
now investing in both digitization technologies and big data 
management services such as cloud data storage and Internet 
of Things (IoT).66 While investing in data accumulation over 
a period of time can reap benefits for individual players, estab-
lishing a consortium among both public and private biomanu-
facturing data generators could accelerate the pace at which 
data are generated and could benefit the wider community. 
Such efforts require the pharmaceutical companies to work 
together while still protecting their sensitive information. 
Academia must also play a role to release datasets for the public 
to use freely.

Adding to the data availability problem is the large diversity 
of data used in current QbD modeling. For instance, there may 
be multiple datasets with different cell expression systems, 
products, culture CPP variables, culture durations and time 
point intervals analyzed. This makes the cross comparison of 
models almost impossible. A solution that is also gaining trac-
tion in other ML fields is to have a consensus from the QbD 
modeling community on a standard data format, an ontology 
or minimum information67,68 required for a QbD modeling 
experiment. This will greatly enhance the reproducibility of 
models, and laboratories with the capabilities to develop 
sophisticated models can use the standardized datasets to 
compare their performance against current baselines.

Apart from the technical issues in adopting ML models for 
QbD, concerns related to regulatory approval also exist. Even if 
a newly designed process that integrate the models is shown to 
improve its efficiency compared to the previously designed 
ones based on MVDA, the lack of prior knowledge in obtaining 
regulatory approvals using the ML models could still prohibit 
its successful adoption. Another challenge in revising an 

existing bioprocess is the requirement of multiple filings across 
different regulators, such as FDA and EMA. In this regard, 
while obtaining post-approval regulatory changes could be 
a substantial challenge for improving an existing originator 
drug biomanufacturing process, it could be easier to adopt ML- 
based models in the innovator or new biosimilar/biobetter 
process design campaigns.

Future perspectives

With the accumulation of large-scale data in biomanufacturing 
and PAT, the adoption of ML models in place of MVDA 
methods is increasing. Apart from increasing the accuracy 
and capturing non-linearity between CPPs and CQAs, ML 
models can expand the scope further. This has been achieved 
in other areas such as proteomics where sophisticated ML 
models already exist for predicting protein structure from 
their sequence.69 However, to achieve the same ML perfor-
mance for CQA prediction of a protein therapeutic from their 
sequence, measurements from bioreactor should also be con-
sidered. For instance, both the intrinsic sequence/structure 
properties and experimental conditions (extrinsic factors) 
need to be considered for predicting protein aggregation. Yet 
most current models for aggregation, only use information 
from sequence-based input and in some cases protein 
structure,70 but ignore the extrinsic factors such as cell culture 
pH, dO2, temperature, salt content and final formulation (to 
name a few), which also must be considered in the develop-
ment of future QbD models predicting aggregation. 
Furthermore, existing models are mainly developed for amy-
loid-type aggregation in disease and they often assume the 
presence of hydrogen bonding, hydrophobicity, electrostatic, 
and solvation energetics,71,72 whereas aggregation of biologics 
is heavily influenced by charge variants.73,74 Again, this empha-
sizes the current need for newer aggregation models specifi-
cally tuned for biologics in bioprocessing operations.

The biological activity of protein biologics is often affected 
by a multitude of post-translational modifications that can 
influence charge distribution. Similar to aggregation, ML mod-
els can also play a role in predicting charge variants. Nikita 
et al. described a reinforcement ML algorithm where they 
formulated a maximization problem using cation exchange 
chromatography for separation of charge variants by optimiza-
tion of the process flowrate.75 Mechanistic models such as 
general rate models were shown to predict elution peaks in ion- 
exchange process chromatography.76 The proposed model can 
be used to predict the separation of charge variants, allowing 
optimization and control of preparative scale chromatography. 
However, literature on models for charge variant characteriza-
tion is limited and further work is required in this space, 
particularly to incorporate ML into the characterization.

Apart from the full ML models, we also earlier highlighted 
the useful nature of hybrid ML models. The establishment of 
a hybrid ML model is advantageous, as it enables a paradigm 
shift in QbD, which is currently product centric, into 
a knowledge centric one. In one of the hybrid ML model 
described previously,54 the changes in product yield and the 
nucleotide sugar precursors are systematically predicted from 
the mechanistic model of metabolism, while the changes in 
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N-glycosylation are then predicted as a function of mechanistic 
model elements. Since this model already captures the meta-
bolic pathways that influence the product synthesis and cell 
growth, a change in product will not require it to be retrained 
as long as the biosynthetic machinery of the host cell line 
remains the same. Complex hybrid models can also be estab-
lished with the help of ML techniques whereby multiple 
mechanistic models of various cellular processes are combined 
that otherwise cannot be integrated directly due to the differ-
ences in units/scales used to model each process. For instance, 
the mechanistic models of metabolism77–80 and 
N-glycosylation81–84 can be combined via ML techniques to 
systematically predict the variations in CQAs upon changes in 
CPPs. Moreover, since hybrid ML models provide mechanistic 
insights on the CQA–CPP interrelationships, it can facilitate 
efficient real-time prediction and control by leveraging on 
appropriate bioprocess levers, rapidly evaluate clone perfor-
mances and guide rational cell-line engineering by targeting 
the relevant/sensitive pathways.

Overall, we believe that the recent developments in the PAT 
and bioprocess data digitization are poised to accelerate the 
systematic QbD with the help of sophisticated ML models, 
which will ultimately result in a more sustainable and econom-
ical way of biomanufacturing.
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