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Abstract
Aim: Understanding diversity patterns and identifying the environmental factors that 
shape these patterns are essential for ecology and conservation. The Afro-Arabian 
region comprises one of the most important biogeographic areas connecting conti-
nents. Yet, little emphasis has been put on understanding its endemic fauna in rela-
tion to its biogeographic realms. Our objective is to fill the gaps in knowledge on 
diversity patterns and biogeography that are essential for prioritizing the overdue 
conservation efforts.
Location: The study area covers mostly the hot desert climate region in North Africa 
and Arabia, and includes the Mediterranean, Sahel, and Ethiopian highlands (hereaf-
ter “Afro-Arabian region”).
Methods: We used distribution maps developed by IUCN and BirdLife for species 
endemic to the Afro-Arabian region belonging to the four tetrapod classes, amphib-
ians, reptiles, birds, and mammals, to identify the endemic richness hotspots. We 
then used multivariate analyses to delineate biogeographic regions and evaluate their 
relationship with the environmental factors.
Results: Our study reveals a complex map of the richness hotspots for the endemic 
tetrapod classes. The main hotspots of endemism were concentrated at the margins 
of the study area, along the Mediterranean coast, Ethiopian highlands, and along the 
Red Sea Mountains. We propose classifying the Afro-Arabian region into three dis-
crete biogeographic realms for endemic amphibians, four for reptiles and birds, and 
five discrete biogeographic realms for endemic mammals. The identified realms are 
defined by their environmental conditions and the historical geological processes.
Main conclusions: Richness hotspots of endemic tetrapod classes were heterogene-
ously distributed in the Afro-Arabian region. Our results support the hypothesis that 
species diversity patterns and endemism have been shaped by the environmental 
conditions and the paleogeographic processes. Each of the identified bioregions is 
associated with a characteristic set of tetrapod species. Our results are a benchmark 
for assessing the effectiveness of the protected areas and for implementing conser-
vation plans for biodiversity.
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1  | INTRODUC TION

The largest warm desert—the Sahara and the Arabian Deserts—covers 
about 17% of the total landmass and harbors about one-quarter of the 
terrestrial vertebrate fauna, many endemic and uniquely adapted to 
harsh environmental conditions (Brito & Pleguezuelos, 2020; Davies 
et al., 2012; Durant et al., 2012, 2014; Mace, Masundire, & Baillie, 2005; 
Soultan, 2018). Yet, the desert has always been neglected receiving 
less attention, particularly from the conservation communities (Brito 
& Pleguezuelos, 2020; Durant et al., 2012, 2014; Soultan, Wikelski, & 
Safi, 2019). The desert biodiversity harbors the physiological and ge-
netic basis of species tolerance to extreme temperatures and water 
stress, which, in turn, could improve our understanding of adaptation 
to global change (Brito & Pleguezuelos, 2020; Durant et al., 2012).

The biodiversity patterns of the desert have been fundamen-
tally shaped by the long-term connectivity between Africa and Asia 
through the Bab-el-Mandeb strait and Sinai, which allowed the faunal 
interchange (Ficetola, Bonardi, Sindaco, & Padoa-Schioppa, 2013; 
Metallinou et al., 2012, 2015; Šmíd et al., 2013; Winney et al., 2004). 
Furthermore, the neighboring regions (e.g., the Mediterranean, 
Sahel, and Ethiopian highlands) have also defined the species 
composition and endemism of the Sahara and the Arabian Desert 
through the “Nearest Neighbor Effect” (Patiny & Michez, 2007). 
Therefore, biodiversity assessment and conservation efforts for the 
desert require considering the Sahara, the Arabian Desert, and their 
adjacent regions as one contiguous region (henceforth referred to as 
the “Afro-Arabian region”).

Biogeographic regionalization analysis has been successfully ap-
plied to identify biodiversity patterns and is considered a promising 
approach for prioritizing the conservation efforts (Brito et al., 2016; 
Kreft & Jetz, 2010; Vale et al., 2016). Biogeographic regionalization 
groups geographic regions into meaningful clusters (henceforth re-
ferred to as the “bioregion”) based on the dissimilarity of the spe-
cies assemblages (González-Orozco, Laffan, Knerr, & Miller, 2013; 
González-Orozco, Thornhill, Thornhill, Knerr, Laffan, & Miller, 2014; 
Rodrigues, Fig ueira, Vaz Pinto, Araújo, & Beja, 2015). Bioregions can 
yield important insights into the factors influencing the geographic 
distribution of species assemblages (Divíšek, Storch, Zelený, & 
Culek, 2016) beyond being an effective application of conservation 
practices.

Most often, bioregionalizations have been developed at broad 
spatial scales, global or continental, and/or for high taxonomic levels, 
genus, or above (El-Hawagry & Gilbert, 2014; Kreft & Jetz, 2010; 
Wallace, 1876). Bioregions identified at broad spatial scales most 
often neglect sub-bioregions and areas of species endemism (Linder 
et al., 2012; Rodrigues et al., 2015). Therefore, accurate identifica-
tion of these sub-bioregions requires conducting bioregion analysis 
at smaller spatial scales (Rodrigues et al., 2015). Bioregions identified 

at smaller spatial scale allow to (a) validate other bioregions iden-
tified at broader spatial scales, and (b) ensure the identification of 
important conservation areas that might not be identified at broad 
scales (Brown, Cameron, Yoder, Vences, & Jarvis, 2014; Rodrigues 
et al., 2015).

Very few studies have attempted to identify the bioregions of 
the warm desert (specifically at small spatial scale); however, these 
studies were focused either on a small region (Delany, 1989; Vale 
et al., 2016) or limited to particular taxa (Cowie, 1989; Ficetola, 
Falaschi, Bonardi, Padoa-Schioppa, & Sindaco, 2018; Patiny & 
Michez, 2007). Brito et al. (2016) carried out a comprehensive anal-
ysis to identify the bioregions for the Sahara–Sahel region using en-
demic and nonendemic species. However, their work was limited to 
Africa and excluded the Arabian Desert and the adjacent regions. In 
their study, Brito et al. (2016) proposed five bioregions for endemic 
species and found an association between these bioregions and the 
climatic conditions.

In this study, we analyzed the distribution data for the endemic 
tetrapod species to perform a comprehensive evaluation of biore-
gions and diversity patterns of the Sahara and the Arabian Desert 
and their adjacent regions. Our aims were (a) to identify the richness 
hotspots for endemic tetrapod classes, amphibians, reptiles, birds, 
and mammals, in the Afro-Arabian region; (b) to identify the biore-
gions for each class; (c) to identify a set of indicator species for each 
bioregion; and (d) to assess the relationships of the bioregions and 
the environment.

2  | METHOD

2.1 | Study area

Our study area, the Afro-Arabian region, covers the desert in North 
Africa and the Arabian Desert, and their adjacent regions, the 
Mediterranean, Sahel, and Ethiopian highlands. The Afro-Arabian 
region emerges from the Mediterranean Sea coast in the North 
and is limited by the political borders of the Sahel countries in the 
South, and extends from the Persian Gulf westward to the Atlantic 
Ocean (Figure 1). The Afro-Arabian region encompasses mainly 
three distinct biomes, Deserts & Xeric Shrublands, Mediterranean 
Forests, Woodlands & Scrub, and Tropical & Subtropical Grasslands 
(Dinerstein et al., 2017).

2.2 | Species data

We based our analysis on four tetrapod classes (amphibians, rep-
tiles, birds, and mammals) included in the IUCN red list of threatened 
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species and BirdLife (BirdLife International & Handbook of the Birds 
of the World, 2016; IUCN, 2017) endemic to the Afro-Arabian region. 
We considered a species endemic when >70% of its native distribution 
range was enclosed in the Afro-Arabian region (Vale & Brito, 2015). We 
retrieved the digitized geographic range polygons for amphibians, rep-
tiles, and mammals from IUCN (IUCN, 2017), and for birds from BirdLife 
(BirdLife International & Handbook of the Birds of the World, 2016). 
These spatial polygons represent the extent of occurrence of the spe-
cies (Montesino Pouzols et al., 2014; Roll et al., 2017). To fill the gap in 
reptile distribution, we updated reptile range polygons with additional 
distributional data from atlases and literature (Baha El Din, 2006; Bar 
& Haimovitch, 2012; Gonçalves et al., 2018; Metallinou et al., 2012; 
Sindaco, Jeremčenko, Venchi, & Grieco, 2008, 2013). Overall, 504 spe-
cies, 51 amphibians, 225 reptiles, 116 birds, and 112 mammals were 
included in this study (Appendix S1). All species polygons were gridded 
in 1° resolution grid cells (≈110*110 km). A grid cell that intersected, 
fully or partially, with a species polygon, was considered as occupied. 
We used these maps to generate four binary site-by-species matrices 
(i.e., a single matrix for each tetrapod class). Cells with very few species 
can potentially influence the analysis (Kreft & Jetz, 2010; Yusefi, Safi, 
& Brito, 2019); therefore, we excluded all grid cells containing fewer 
than five species.

We calculated species richness for each class by summing up the 
respective species presence–absence raster maps (Sow, Martínez-
Freiría, Dieng, Fahd, & Brito, 2014; Zhang, Slik, & Ma, 2016). This ap-
proach provides a robust estimation for species richness that is less 
sensitive to spatial scale and incomplete species sampling compared 
to the traditional approach that estimates the richness only from the 
recorded species occurrences (Brown et al., 2014).

2.3 | Delineation of bioregions

We developed the biogeographic regionalization for the Afro-
Arabian region by applying an unweighted pair-group clustering 
algorithm based on the arithmetic averages (UPGMA) to the βsim 
dissimilarity matrix. UPGMA is frequently favoured over other 
clustering algorithms as it minimizes the distortion of the values 
and avoids emphasizing outliers by including them in their closest 
groups (Hattab et al., 2015; Kreft & Jetz, 2010; Linder et al., 2012; 

Zhang et al., 2016). βsim calculates the dissimilarity matrix based on 
the presence data (i.e., not considering the shared absence) and 
is less sensitive to species richness differences; therefore, it is fa-
voured for regions that share few species such as the Sahara (Linder 
et al., 2012; Zhang et al., 2016). We determined the optimal num-
ber of bioregions using a Kelley–Gardner–Sutcliffe penalty function 
(KGS) (Kelley, Gardner, & Sutcliffe, 1996). KGS uses species pairwise 
distance matrix to maximize the dissimilarity between the bioregions 
and the similarity within the bioregions (Hattab et al., 2015; Kelley 
et al., 1996; Linder et al., 2012). To map a spatial and quantitative 
representation of each tetrapod class dissimilarity, we followed the 
approach developed by Moura, Argôlo, and Costa (2017). We first 
performed nonmetric multidimensional scaling (NMDS) using the 
“vegan” package (Jari Oksanen et al., 2017), and then we built an 
RGB raster using the interpolated NMDS scores, plotted it using 
“plotRGB” function of the “raster” package (Hijmans, 2016). We used 
the R script provided by Moura et al. (2017) to interpolate NMDS 
scores.

2.4 | Indicator species

To identify the species composition characterizing each bioregion, 
we calculated the indicator value of a species (IndVal) (De Cáceres, 
Legendre, & Moretti, 2010). IndVal takes into account two compo-
nents: (a) Specificity: the relative frequency of each species in a given 
bioregion, divided by the sum of relative frequencies over all biore-
gions, and (b) Fidelity: the relative frequency of the species within 
a given bioregion (Hattab et al., 2015; Rodrigues et al., 2015). We 
calculated the IndVal using “multipatt” function implemented in 
“indicspecies” R package (De Cáceres & Legendre, 2009), where a 
species is identified as an indicator for a particular bioregion when 
it's IndVal > 0.50 for a p < .05 after 999 permutations (Rodrigues 
et al., 2015).

2.5 | Bioregion–environment relationships

We considered 10 environmental variables known to define species 
diversity patterns and distribution. These variables were as follows:

F I G U R E  1   Geographic location of 
the Afro-Arabian region overlaid with 
the political boundaries of the countries. 
The base map represents the elevation 
gradient
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1. Annual mean temperature (Bio1), mean diurnal range (Bio2), and 
potential evapo-transpiration (PET), as they have been shown 
to influence species physiological function such as thermoreg-
ulation (Buckley & Jetz, 2007, 2008).

2. Annual precipitation (Bio12), precipitation of the wettest month 
(Bio13), and distance to water source, as indicators for water avail-
ability (Buckley & Jetz, 2007).

3. Net primary production (NPP) as it showed to mediate species co-
existence (Buckley & Jetz, 2007, 2008).

4. Altitude, roughness, and soil characteristics, as it showed to shape 
species dispersal.

5. Climate-change velocity (hereinafter referred to as “velocity”), as 
it showed to be strongly associated with endemism and species 
richness (Loarie et al., 2009; Sandel et al., 2011).

We obtained Bio1, Bio2, Bio12, Bio13, and altitude from 
WorldClim data (http://www.world clim.org/), NPP from (https://
neo.sci.gsfc.nasa.gov/), PET from (http://www.cgiar -csi.org/), and 
soil data from Harmonized World Soil Database (FAO/IIASA/ISRIC/
ISSCAS/JRC, 2012). Roughness was calculated from altitude using 
“terrain” function implemented in “raster” R package (Hijmans, 2016), 
and the water variable was extracted from land-cover data avail-
able in (http://glcf.umd.edu). We calculated climate-change ve-
locity over the last 21,000 years using the method developed by 
Loarie et al. (2009). Based on current mean annual temperature and 
last glacial maximum mean annual temperature from WorldClim 
data, we calculated the velocity using “dVoCC” function imple-
mented in “VoCC” R package (García Molinos, Schoeman, Brown, & 
Burrows, 2019).

We used the relative environmental turnover (RET) method 
to assess the relationship between environmental variables and 
the identified bioregions based on species turnover (Buckley & 
Jetz, 2008; González-Orozco, Ebach, et al., 2014; Zhang et al., 2016). 
We used the Gstar hotspot statistic (also known as Getis-Ord Gi*) 
to perform the RET analysis (González-Orozco, Ebach, et al., 2014; 
Zhang et al., 2016). Gstar with a value >2 or < −2 indicates that the 
environmental values within a given bioregion are significantly dif-
ferent from expected (González-Orozco, Ebach, et al., 2014; Zhang 
et al., 2016). We used the “localG” function in “spdep” R package 
to calculate Gstar (Bivand, Hauke, & Kossowski, 2013; Bivand & 
Piras, 2015).

3  | RESULTS

3.1 | Species richness

Richness hotspots of endemic tetrapod classes were heterogene-
ously distributed in the Afro-Arabian region (Figure 2). For endemic 
amphibians, the hotspot areas are concentrated in the Ethiopian 
highlands, and at the northwestern edge of the study area. The rich-
ness hotspots of endemic reptiles are concentrated in the Levant, 
the northwestern edge of the study area, and along the Red Sea 

Mountains in the western edge of the Arabian Desert. For endemic 
birds, the hotspots are almost all concentrated in the southern part 
of the study area: the Ethiopian highlands and its adjacent regions, 
the Sahel and southern part of the Red Sea Mountains. Endemic 
mammal species richness is high along the Mediterranean Sea coast 
in North Africa, followed by the Sahel and the Red Sea mountains. 
Overall, three regions, the Ethiopian highlands, the Mediterranean 
coast, and the Red Sea Mountains, support high richness.

3.2 | Bioregions delineation

The biogeographic analysis identified three bioregions for amphib-
ians, four for reptiles and birds, and five bioregions for mammals 
(Figure 2). For all classes, the Ethiopian region and the Arabian Desert 
were identified as two distinct bioregions (the Ethiopian Highlands 
and the Arabia). For amphibians, in addition to these two bioregions, 
one additional bioregion was identified (the Mediterranean biore-
gion), which expands over the Mediterranean coast and the northern 
part of the Sahara. For reptiles, the Sahara and the Sahel regions 
were grouped into one distinct bioregion (henceforth referred to as 
“the Sahara–Sahel bioregion”), while the Mediterranean coast at the 
northwestern edge of the study area was identified as a distinct bi-
oregion (henceforth referred to as “the Mediterranean bioregion”). 
The identified bioregions for birds and mammals were relatively sim-
ilar, where both agreed in four bioregions (the “Ethiopian Highlands,” 
the “Sahara,” the “Sahel,” and the “Arabia”). However, for birds, the 
“Sahara bioregion” covers the Mediterranean coast and the Sahara, 
while for mammals, the Sahara and the Mediterranean coast were 
distinct.

3.3 | Indicator species

Of the 51 endemic amphibian species analyzed, 17 species had a 
significant IndVal of above 60% and were thus considered indicator 
species (Appendix S2). For reptiles, a total of 49 species showed sig-
nificant IndVal of above 50%. Considering the five main bioregions 
identified for endemic birds, 53 species had a significant IndVal, 
where 35 species were indicators for the Ethiopian Highlands biore-
gion while only three species for the Sahara bioregion. For mammals, 
32 species were considered as indicator species, with 13 species 
being indicators for the Mediterranean bioregion only, while only 
four indicator species for the Sahara and four for Arabia.

3.4 | Bioregions–environment relationship

The results of the Gstar statistic (Table 1) revealed that precipitation 
is the main driver for amphibian species turnover in the Ethiopian 
Highlands bioregion, while temperature was the main driver in the 
Arabia bioregion. The diversity pattern for reptiles was determined 
mainly by temperature, potential evapo-transpiration, velocity, and 

http://www.worldclim.org/
https://neo.sci.gsfc.nasa.gov/
https://neo.sci.gsfc.nasa.gov/
http://www.cgiar-csi.org/
http://glcf.umd.edu
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net primary production in the Mediterranean bioregion and by pre-
cipitation and soil in the Ethiopian Highlands bioregion. For birds and 
mammals, the precipitation, velocity, and the topographical features 
of the habitats were the main drivers of turnover in the Ethiopian 
Highlands bioregion.

4  | DISCUSSION

Our study provides insight into the spatial diversity patterns and bi-
oregion affiliations for endemic tetrapod classes in the Afro-Arabian 
regions. We showed that IUCN and BirdLife spatial data with mul-
tivariate statistical analysis could identify bioregion affiliations and 
provide transparent and replicable analyses as a basis for conser-
vation and other ecological studies. The Afro-Arabian region is 

characterized by extreme environmental conditions and its remote-
ness and is thus scarcely investigated. Identifying richness hotspots 
and delineating the bioregions would be essential for implementing 
effective conservation plans and conducting the appropriate con-
servation measures.

In contrast to the previous bioregion analyses (Brito et al., 2016; 
Vale & Brito, 2015), we considered the impact of the adjacent 
areas, the sub-Saharan and the Arabian Desert. This impact, 
known as “Nearest Neighbor Effect” (Patiny & Michez, 2007), in-
fluences species composition and endemism in the Sahara (Patiny 
& Michez, 2007). Additionally, we carried out a separate analysis 
for each tetrapod class, whereas the previous studies gathered all 
groups in one analysis.

Our analysis showed an incongruence among the tetrapod 
classes, amphibians, reptiles, birds, and mammals, in the richness 

F I G U R E  2   Quantitative representation of species diversity at ≈110*110 km spatial resolution for the endemic tetrapod classes, 
amphibians, reptiles, birds, and mammals; (a) species turnover as interpolated dissimilarity based on NMDS axes (three axes represented by 
a RGB scale), (b) the proposed bioregions based on the cluster analysis, and (c) species richness. The scale bars on the right side refer to the 
score of the species richness, where cold colors represent lower richness and warm colors represent higher richness
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hotspots, where each class has distinct richness patterns (Figure 2). 
This finding is in concordance with previous work that showed a 
heterogeneous distribution for the endemic tetrapod species across 
the Sahara–Sahel region (Brito et al., 2016). However, other studies 
conducted at a larger scale (i.e., global and continental) were incon-
sistent with our results, as they showed a homogeneous richness 
distribution (Lamoreux et al., 2006; Lewin et al., 2016). Our find-
ings together with previous works (Brito et al., 2016; Rodrigues 
et al., 2015) confirm that analyses at smaller spatial scales allow for 
better identification of important conservation areas that might 
not be identified at broad scales (Brown et al., 2014; Rodrigues 
et al., 2015). While the richness hotspots occurred on the margins 
of the Afro-Arabian region, the center of the study area is also an 
area of high conservation value because it harbors other endemic 
species despite the harsh environmental condition. Identifying the 
endemic richness hotspots should, therefore, be useful for conserv-
ing both endemic and nonendemic species. For instance, Lamoreux 
et al. (2006) demonstrated that prioritizing just 10% of the world's 
land based on the richness hotspots of only endemic birds would 
significantly benefit about 60% of world vertebrates. Therefore, pri-
oritizing conservation efforts based on hotspots of endemism would 
be highly recommended over using the traditional prioritization ap-
proach, which relies on richness hotspots of all species.

The amphibians are almost absent from much of the Sahara and 
the Arabian Desert (Figure 2), which could be because of the ex-
treme environmental conditions. This finding has also been reported 
in previous studies (Holt et al., 2013; Linder et al., 2012; Vale, Santos, 
& Brito, 2020), making amphibians obviously poor indicator species 
for the Sahara. The main three bioregions we identified here for 
the endemic amphibians (Figure 2), the Mediterranean, Arabia, and 
the Ethiopian Highlands, are in broad congruence with the updated 
Wallace bioregions (Holt et al., 2013).

For the endemic reptile species in the Afro-Arabian regions, we 
propose four bioregions: Mediterranean, Sahara–Sahel, Ethiopian 
Highlands, and Arabia (Figure 2). Among the terrestrial verte-
brates, reptiles are the only group without a comprehensive analysis 
(Ficetola et al., 2013; Roll et al., 2017), which limits the possibility to 
compare our findings with previous results. However, a recent study 
focusing on the phylogeography of the genus Acanthodactylus (Tamar 
et al., 2016), the most species-rich genus in the family Lacertidae 
(≈40 species), combined the Sahara and the Sahel in one bioregion 
and separated the Sahara from the Arabian Desert. This finding is 
congruent with our finding (Figure 2) and supports the argument 
that bioregion analysis can be a useful surrogate of eco-evolution-
ary processes in the absence of molecular data (Brito et al., 2016; 
Carvalho, Brito, Crespo, & Possingham, 2011).

For the endemic bird species in the Afro-Arabian regions, we 
propose four bioregions (Figure 2): the Sahara, the Sahel, Arabia, and 
the Ethiopian Highlands. This result relatively agrees with a previous 
study that focused only on endemic bird species in the sub-Saharan 
(de Klerk, Crowe, Fjeldsa, & Burgess, 2002), where the authors split 
the Sahel and the Ethiopia regions into two distinct bioregions. These 
findings and our results are distinct from the bioregions proposed 

for birds by Holt et al., (2013), where they recognized the Sahara and 
the Arabian Desert as one bioregion and the Sahel and the Ethiopian 
montane as another. However, this disagreement is probably an ef-
fect of the scale combined with the characteristics of the species. 
Holt et al. (2013) conducted their study at a global scale. Most often, 
studies at a global scale exclude species with small ranges to mini-
mize the distortion that could influence the outcome. We, however, 
restricted our analysis to the endemic species, which are varying in 
their response to the micro-environmental conditions, due to local 
adaptation, which might not be reflected in the global scale analysis 
and when using all species, including both endemic and nonendemic 
species. Nevertheless, our analyses agree with Holt et al., (2013), in 
grouping the Saharan and Mediterranean regions into one bioregion, 
which we refer to as the Sahara for sake of simplicity.

We proposed five bioregions (Figure 2), the Mediterranean, the 
Sahara, Arabia, the Sahel, and the Ethiopian Highlands, for endemic 
mammal species in the Afro-Arabian regions. These bioregions 
showed a large degree of congruence with the bioregions proposed 
in the previous studies (Holt et al., 2013; Kreft & Jetz, 2010), par-
ticularly the Mediterranean and the Sahel bioregions. However, we, 
together with Kreft and Jetz (2010), disagree with Holt et al., (2013) 
in grouping the Sahara and the Arabian Desert in one distinct biore-
gion (the Saharo-Arabia).

Our analysis showed that the patterns of species turnover were 
relatively similar among the tetrapod classes, particularly within 
the Arabian Desert and the Sahara (Figure 2). This finding is consis-
tent with recent work that found a similarity between the turnover 
patterns of endemic reptiles and mammals within the Sahara (Vale 
et al., 2020). Our analysis showed that species turnover patterns 
are influenced by environmental conditions (Table 1). The impact 
of the environmental conditions, however, varied among bioregions 
and classes. In line with our findings, previous studies (González-
Orozco et al., 2013; Hattab et al., 2015; Zhang et al., 2016) also 
have reported the importance of the environmental variables on 
the patterns of species turnover. For instance, we found that spe-
cies turnover in the Mediterranean bioregion is shaped mainly by 
the temperature and the potential evapo-transpiration. These vari-
ables are closely linked to the water–temperature balance, where, 
according to the water–temperature balance hypothesis, the water 
and energy jointly constrain species distribution patterns (Buckley 
& Jetz, 2007, 2008). In general, the most important environmental 
factors were precipitation and temperature, followed by the topo-
graphical variables. However, the impact of these factors on the 
patterns of species turnover in the central region of the study area, 
which includes three bioregions, the Sahara, Arabia, and the Sahel, 
was not as strong as in the other bioregions. This could be a result of 
the huge area size of these three bioregions, the Sahara, Arabia, and 
the Sahel, in comparison with other bioregions. Additionally, species 
in these three bioregions are characterized by relatively wide ranges, 
which, in turn, dilute the impact of the environmental factors. The 
relative environmental turnover analysis suggests that species diver-
sity patterns in these three bioregions are shaped by the geological 
conditions rather than environment conditions (Table 1).
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Our analysis shows that three regions, the Ethiopian highlands, the 
Mediterranean coast, and the Red Sea Mountains, support high rich-
ness (Figure 2). This could be a result of including the Mediterranean 
and the Ethiopian highlands in our study. These regions are home 
to many species with small ranges. Although the Mediterranean 
and the Ethiopian highlands are distinct bioregions (Dinerstein 
et al., 2017), including them in the analysis was important to account 
for the “Nearest Neighbor Effect” (Patiny & Michez, 2007). This ef-
fect has fundamentally shaped species composition and endemism 
in the study area and allowed for faunal interchange between the 
continents (Metallinou et al., 2012; Winney et al., 2004). This inter-
change resulted in (a) species with wide distribution over Africa and 
Asia (e.g., Panthera pardus), (b) very closely related species with al-
lopatric distributions, for instance, Gazella dorcas, Acomys cahirinus, 
and Oryx dammah in Africa, and Gazella saudiya, Acomys dimidiauts, 
and Oryx leucoryx in Asia, and (c) species with disjunct distribution 
ranges between Africa and Asia, for instance, Papio hamadryas dis-
tributed in the Horn of Africa and southwestern of the Arabian pen-
insula (Metallinou et al., 2012, 2015; Newman, Jolly, & Rogers, 2004; 
Winney et al., 2004).

The identified bioregions harbor unique species that are 
highly adapted to the environmental conditions in these biore-
gions (Appendix S2). These indicator species can be used to eval-
uate the success of conservation management in these bioregions. 
For instance, the North African Water Frog (Pelophylax saharicus), 
Checkerboard Worm Lizard (Trogonophis wiegmanni), and Maghreb 
Garden Dormouse (Eliomys munbyanus) are among the identified 
indicator amphibians, reptiles, and mammals, respectively, that in-
habit the Mediterranean bioregion (Appendix S2). The North African 
Water Frog exhibits high ecological plasticity (Marisa Esteban, 
García-París, Buckley, & Castanet, 1999). For instance, it can sur-
vive the summer period without having to go through estivation 
(Escoriza & Hassine, 2019; Marisa Esteban et al., 1999). Moreover, 
this frog can extend its breeding season; meanwhile, the adult fe-
males can have oocytes of different maturity ages (Marisa Esteban 
et al., 1999). The other species, the Checkerboard Worm Lizard and 
Maghreb Garden Dormouse, are known to be highly adapted to the 
arid and semi-arid environment (Barata et al., 2011; López-García, 
Agustí, & Aouraghe, 2013). A previous paleontological study showed 
that the key mammals in the Mediterranean bioregion adapted to 
dry condition since the Holocene period which was slightly drier 
than today (López-García et al., 2013).

The Dhofar Toad (Duttaphrynus dhufarensis), Arnold's Fringe-
fingered Lizard (Acanthodactylus opheodurus), Arabian Babbler 
(Argya squamiceps), and Cheesman's Gerbil (Gerbillus cheesmani) 
are among the indicator species (amphibians, reptiles, birds, and 
mammals, respectively), that exhibit high adaptability to the Arabia 
bioregion (Appendix S2). For instance, Dhofar Toad is reported in dry 
habitats and in regions where no water bodies are present (Soorae, 
Els, Gardner, & Alqamy, 2013). Dhofar Toad goes through long es-
tivation, more than two years, to avoid a drought period (Balletto, 
Cherchi, & Gasperetti, 1985; Soorae et al., 2013). The other indica-
tor species are characterized by high ecological plasticity that allows 

these species to survive the harsh environmental conditions. For in-
stance, they can change their activity time during the day and change 
their food habit according to the available resources and their physi-
ological demands (Collar & Robson, 2020; Scott & Dunstone, 2000).

The indicator species for the Sahara and the Sahel bioregions 
are characterized by relatively wide distribution ranges compared 
to the indicators of the other bioregions. For instance, the ranges of 
the Long Fringe-fingered Lizard (Acanthodactylus longipes), African 
Houbara (Chlamydotis undulata), and Sudan Gerbil (Gerbillus nancil-
lus) extend from the Red Sea westward to the Atlantic coast (Baha 
El Din, 1996; Collar & Garcia, 2020; Happold, 2013). The lizard and 
gerbil species use the vegetation as shelters and dig burrows to 
avoid the high temperature (Baha El Din, 2006; Sindaco et al., 2008). 
The indicator species of Ethiopian highland bioregion (e.g., Eritrea 
Clawed Frogs (Xenopus clivii), Blanford's Blind-snake (Afrotyphlops 
blanfordii), Black-billed Woodhoopoe (Phoeniculus somaliensis), and 
Ethiopian Genet (Genetta abyssinica)) are characterized by a confined 
latitudinal range and broad altitudinal ecological range (Broadley 
& Wallach, 2009; Evans, Bliss, Mendel, & Tinsley, 2011; Ferguson, 
Roble, & McDonough, 2019; Ligon & Kirwan, 2020; Yalden, Largen, 
Kock, & Hillman, 1996).

Prioritizing conservation efforts requires detailed information 
about diversity patterns and their relationship with the environ-
mental conditions (Ficetola et al., 2013; Rondinini, Wilson, Boitani, 
Grantham, & Possingham, 2006; Whittaker et al., 2005). Such infor-
mation is not always available, particularly in regions with extreme 
environmental conditions, and it is necessary to fill this gap prior to 
any conservation action (Ficetola et al., 2013). Our study provides 
the required information about species diversity patterns and biore-
gion affiliations to implement an effective conservation plan in the 
Afro-Arabian region. Species richness and turnover have useful ap-
plications in conservation, as they could be used to assess efficiency 
of the already established network of protected areas and guide 
the future improvements (Lasram, Hattab, Halouani, Romdhane, & 
Le Loc'h, 2015). Lamoreux et al. (2006) showed that prioritizing just 
10% of the world's land based on the richness hotspots of endemic 
bird species included about 60% of all endemic vertebrates and a 
large number of nonendemic species. Therefore, using the identi-
fied endemic richness to prioritize conservation efforts is a useful 
approach allows for conserving both endemic and nonendemic spe-
cies. The findings of the current study (distinct bioregions and its in-
dicator species) can be used to parametrize spatial zonation models 
in order to achieve the optimal conservation practice that maximizes 
the benefits while minimizing the cost and effort.

5  | CONCLUSION

This study contributes toward delineating bioregions and the 
diversity patterns of the endemic tetrapod classes in the Afro-
Arabian region. It reveals the distinct species richness patterns 
and the hotspot areas of endemism. Our results support the 
hypothesis that species diversity patterns and endemism have 
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been shaped by the environmental conditions and the paleoge-
ographic processes. The identification of distinct bioregions for 
each tetrapod class allows prioritizing the conservation efforts in 
the Afro-Arabian region. Further analysis is required to identify 
the threatened species and the underlying processes leading to 
species extinction, which would contribute greatly toward the 
urgently needed conservation prioritization efforts in the Afro-
Arabian region.
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