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Background
Omic analysis carries the potential to reveal new biological understanding and serve as a 
source of biomarkers. Still, omic data are challenging to work with, in part as they often 
contain considerable variation within and between experiments driven by both biological 
and technical factors, such as differing experimental conditions or sampling procedures. 
This variation needs to be considered to correctly interpreting the data. Furthermore, 
choices of algorithms and statistical procedures for processing the data cause additional 
differences in the final results [1, 2]. The variation seen in the data can represent valuable 

Abstract 

Background:  Visual exploration of gene product behavior across multiple omic data-
sets can pinpoint technical limitations in data and reveal biological trends. Still, such 
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downloading of selected features. The usage of OmicLoupe is demonstrated in three 
different studies, where it allowed for detection of both technical data limitations and 
biological trends across different omic layers. An example is an analysis of SARS-CoV-2 
infection based on two previously published studies, where OmicLoupe facilitated the 
identification of gene products with consistent expression changes across datasets at 
both the transcript and protein levels.

Conclusions:  OmicLoupe provides fast exploration of omics data with tailored visu-
alizations for comparisons within and across data layers. The interactive visualizations 
are highly informative and are expected to be useful in various analyses of both newly 
generated and previously published data. OmicLoupe is available at quantitativeprot-
eomics.org/omicloupe
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biological trends, but can also be caused by nuisance factors, such as batch effects [3]  or 
sample-to-sample technical variation. If the sources of trends in a dataset are understood, 
the dataset’s reliability can be assessed, and robust approaches of analysis and follow-up 
studies can be designed. Visualization is a critical tool for developing this understanding.

In comparative studies, one commonly overlooked aspect is the in-depth analysis of how 
individual features, such as transcripts or proteins, detected in one set of samples behave 
in other samples, datasets, or types of omics. Quality visualizations such as principal com-
ponent analysis (PCA), and visualizations based on the outcome of statistical comparisons 
such as volcano plots and p-value histograms are often used to study trends within datasets. 
As an extension, several approaches to multiomics have been presented where the aim is to 
project down multiple sets of data to the same low dimensional space, such that they can be 
jointly visualized and inspected [4–6]. These provide useful overviews of multiomic data-
sets, but does not offer a detailed view of how individual features behave across multiple 
datasets in statistical comparisons.

As visualization is an important tool to fully explore omics datasets and to highlight fea-
tures that can be difficult to assess with numbers alone, there are several new software solu-
tions for omic data visualization presented over the past few years. These include a range 
of user-friendly stand-alone software for omics visualization such as Perseus [7] for prot-
eomics, or shiny-based software such as ShinyOmics [8], which provides a flexible quality-
oriented interface to omic data, and WIlsON [9] providing high-quality interactive figures 
based on an open file format but only limited abilities to compare features. Intervene is a 
software focusing on comparisons [10], aiming to provide various types of overlap infor-
mation, but only based on fold change information and not allowing for feature-by-feature 
examination. Furthermore, software solutions dedicated to incorporating multiple layers of 
omics such as MixOmics [11] have extensive multiomics integration capabilities, but does 
so on a sample-wide scale rather than focusing on the behavior of single features.

Here, we propose an approach where single dataset visualization approaches are 
expanded to allow direct comparisons across datasets. Use cases are, for example, (1) Bio-
marker studies where an initial set of candidates is to be validated (2) Time-series experi-
ment where the global expression is inspected, for instance, at different times after infection 
(3) Multiomics experiments where multiple types of data are produced for the same or 
similar biological systems and (4) Detailed studies of comparisons between methods or 
software approaches. To facilitate such analyses, we here introduce the interactive software 
OmicLoupe, which leverages additions to standard visualizations to allow for explorations 
of features and conditions across datasets beyond simple thresholds, giving insight which 
otherwise might be lost. The tool aims to be easy to use, directly interface with upstream 
software and to enable exploration and exporting parts of particular interest in the data. In 
the present work, we further demonstrate how OmicLoupe can be used to rapidly explore 
complex datasets in three different use cases.

Results
Software implementation

To improve the accessibility and capability of analysis of complex datasets, we devel-
oped OmicLoupe. It is an interactive piece of software accessible through any web 
browser, which can either be accessed online or installed and launched locally as an R 
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package. A Singularity container for execution without any prior dependency instal-
lation, and video tutorials are available to increase its accessibility. The code follows 
a modular design, promoting the extension of OmicLoupe with additional visualiza-
tions in the future.

OmicLoupe is built as a collection of modules, each performing a certain part of the 
analysis (Fig.  1). It is built to fit into upstream workflows and can handle any combi-
nation of one or two expression datasets where the data are presented as tables with 
samples as columns and features (genes, proteins, transcripts or other measured fea-
tures) per rows (illustrated in Additional file  1: Materials S1). If visualizing two data-
sets, one column needs to contain shared IDs such as gene IDs to map the two datasets. 
If multiple entries map to the same ID, for instance in the case of multiple transcripts 
mapping to one gene ID, OmicLoupe can still combine these datasets by using the first 
listed entry for each ID. Alternatively, the user may preprocess the data such that the IDs 
are unique. Statistical visualizations require columns with p-value, false discovery rate 
(FDR) corrected p-values, fold change (difference of means between the two compared 
groups) and average feature level. These values are provided by up-stream software such 
as NormalyzerDE [12] or R packages such as Limma [13] for most types of omics or 
DESeq2 [14], for RNA-seq expression data. After loading the data in the web interface, 
the visualizations can be accessed immediately.

Fig. 1  The OmicLoupe workflow. OmicLoupe is designed to easily interface with the upstream data 
generation process and to work on any expression data matrix. It provides the ability to explore up to two 
datasets, and provides comparative views between statistical contrasts performed either within one dataset 
or across multiple. It is organized in modules allowing rapidly shifting from a sample-wide view, to inspect 
individual statistical comparisons, overlaps between multiple comparisons, to understanding single features 
(Adapted from schematics shown at OmicLoupe’s home page [36])
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The general analysis workflow is shown in Fig.  1. The workflow starts with the user 
assessing their data using the sample-wide quality visualizations, including boxplots, 
density plots, bar plots, dendrograms, histograms, and principal component plots. These 
visualizations commonly reveal outlier samples and the presence of systematic effects in 
the data. Further, for studies involving two datasets, OmicLoupe provides the side-by-
side study of whether these effects are uniquely present in one or both of the datasets. 
These visualizations help the user to make decisions on how to best perform analysis 
such as outlier omissions, or decisions on what statistical comparisons to perform, and 
to judge the reliability of the data.

Next, the user can screen overlaps between statistical comparisons and sample con-
ditions by inspecting whether features pass specific statistical cutoffs (p value, FDR, 
optionally in combination with fold change) in one or several statistical comparisons 
(i.e. specific treatments or time points) or datasets. This overlap is illustrated by Venn 
diagrams for pairwise comparisons and UpSet plots [15] for a higher number of com-
parisons, with the UpSet visualization designed to efficiently compare a high number 
of overlaps. Further, for statistical comparisons, overlaps can be split by fold direction 
giving a better sense of whether overlaps indicate a shared abundance pattern. A novel 
visualization illustrates the fraction of features that change abundance in the same direc-
tion for low- and high- p-values, and the fold patterns of shared features are highlighted. 
These illustrations jointly provide a detailed view of similarities between contrasts. For 
both statistical and qualitative UpSet plots and for the Venn comparisons, subsets can 
be directly inspected and exported. Single features can be chosen for closer inspection 
in the Feature check module to evaluate in detail how their abundance values are dis-
tributed over any sample condition, shown either as raw data points or by using box- or 
violin plots.

Finally, to explore patterns across comparisons, the user can study pairwise com-
parisons and inspect how either significant or selected features in one dataset distrib-
ute across the volcano and MA scatter plots, as well as in p-value histograms. These 
visualizations can further be colored on any user-specified feature column and can be 
colored on respective loadings in the principal component plots, revealing groups of fea-
tures strongly linked to specific principal components. Together, this yields an in-depth 
understanding of similarities and differences between contrasts and can display target 
features of interest. Similarly, for overlaps, single features can be selected and inspected 
in the Feature check module.

Beyond the previously mentioned, further specialized visualizations are provided. An 
analysis approach for identifying features uniquely present in certain conditions is pro-
vided as an UpSet plot, which can highlight features for which the abundance is below 
detection limit for certain samples. A correlation plot allows direct illustration of feature 
correlation patterns between data layers based on the same set of samples, for instance 
multiomics or alternative software processing of the same dataset. All the plots discussed 
above can be downloaded in PNG or vector format and can be customized, providing 
publication ready visualizations (Figs. 2, 3, 4, 5 and 6 in the present study are examples of 
visualizations generated using OmicLoupe). Furthermore, to ensure reproducibility, set-
tings used at any point can be saved as a JSON file (outlined in Additional file 1: Materi-
als S2 and available at https​://doi.org/10.5281/zenod​o.44555​20 for the figures presented 

https://doi.org/10.5281/zenodo.4455520
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in this work), and complete HTML reports including figures and settings can be gener-
ated for the different views.

To summarize, OmicLoupe provides a tool to rapidly assess datasets for technical 
trends and for in-depth studies of statistical comparisons and individual analytes. For 
this functionality, it provides several unique features, as illustrated in a comparison with 
other software in Table 1.

Case 1: effects of data processing software on differential expression analysis outcome

To assess the utility and validity of the approaches introduced in OmicLoupe, we started 
by analyzing spike-in proteomic data that have previously been explored extensively 
in a comparison of data processing software for data-independent acquisition (DIA) 
LC–MS/MS data [1]. This dataset consists of E. coli and yeast proteins spiked at two 
different concentrations into a human proteome background. The two mixtures were 
analyzed in triplicates. In the original work, the data were processed using five different 

Fig. 2  Effects of data processing using different software. Illustrations of data after processing with software: 
PeakView (pv), Skyline (sl), OpenSwath (os), DIA Umpire (du) and Spectronaut (sn). a, b Density distributions, 
available in OmicLoupe’s Quality panel, are colored on the data source (left) and spike-in level (right), 
respectively. c UpSet plot of features uniquely identified (not missing in all samples) after processing of 
different methods, with DIA Umpire highlighted. d UpSet plot of the features that were found as significantly 
differentially abundant (FDR < 0.05, log2 fold change > 1) when data had been processed using the different 
software. Features that are changing upwards or downwards in the comparison are displayed separately to 
visualize contradictory abundance changes due to differential processing. Eleven proteins that were deemed 
significantly changing, but with opposing direction of change after processing in PeakView and Spectronaut 
are highlighted in blue
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software, allowing for a comparison of their relative performance. The software used 
were PeakView (SWATH2.0, SCIEX), Skyline [16], OpenSwath [17], DIA Umpire [18], 
and Spectronaut [19], where only DIA Umpire was used without matching to a previ-
ously generated spectral library. This dataset was employed as an example with known 
ground truth where concentrations of proteins from different organisms were known, 
allowing assessment of how well the visualizations illustrate the known underlying 
trends. Further, it demonstrates how OmicLoupe can be used to assess the impact of dif-
ferent DIA software methods for processing the same set of samples.

Upon inspection in OmicLoupe, the quality control visualizations show that the choice 
of software impacts the absolute dynamic range of protein intensity, as illustrated in the 
density plots shown in Fig. 2a, b. Less obvious differences are seen between the spike-in 
levels, although upon inspection in a dendrogram, the difference between OpenSwath 
and PeakView appeared smaller than their respective spike-in levels (Additional file 1: 

Fig. 3  Comparison of contrast between spike-in levels in DIA Umpire and PeakView. These panels show 
part of the statistical interface in OmicLoupe, showing how the unadjusted p values for features relate 
to fold-changes in the statistical comparison between the two spike-in levels. a Features passing the 
significance threshold FDR < 0.05 and log2 fold > 0.5 in individual datasets, and in both. Green points (“contra” 
in the legend) are passing the significance threshold in both datasets, but with reversed log2 fold direction. 
b Coloring based on the spike-in source. c The outcome of interactively highlighting a set of six features only 
significant in PeakView and one significant in both. This reveals their distribution in DIA Umpire, showing that 
the features upregulated in both are true positives, while one of the two found in lower abundance in DIA 
Umpire is a false hit
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Materials S3). It can be noted that the intensity values were scaled to reach similar lev-
els in subsequent analyses in the original study for this reason. Qualitative inspection 
was performed to identify proteins only detected by certain software processing meth-
ods. Here, the majority of proteins (2453) were detected by all five methods, and 1101 

Fig. 4  Illustrations of multiomics data investigated in Case 2. a Principal component illustration present in 
the quality module, comparing proteomics and transcriptomics. As can be seen, the major trends are similar 
between the two data types. b Distribution of how high-significance features upregulated in RNA-seq (left) 
distribute in the proteomics dataset (right). The positions of TP53 are indicated with an arrow. c Boxplots of 
TP53, identified in the dataset across the four studied sample classifications using the feature check module. 
Significant differences are present between CNV_high and CNV_low in both transcriptomics and proteomics. 
d Correlation distributions between the RNA-seq and proteomics features using the correlation module
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proteins were detected by all methods except DIA Umpire. Conversely, DIA Umpire 
identified 477 proteins that were not detected by any other method (highlighted in 
blue, Fig. 2c), although PeakView identified a higher number of proteins uniquely (648, 
Fig. 2c). Upon statistically comparing the abundances between the spike-in levels, a con-
siderable number of proteins were also uniquely identified as differentially expressed by 
PeakView (488 spike-ins, out of which 462 were correctly identified). Eleven proteins 
were found to be significant but with opposing direction of change when comparing 
PeakView and Spectronaut output (highlighted in blue, Fig. 2d). Out of these, all eleven 
were spiked-in yeast protein, correctly identified as downregulated by PeakView.

To further elucidate the underlying differences in the processed data from DIA 
Umpire and PeakView, a closer inspection of the statistical distributions was made in 
OmicLoupe. Out of the six statistical figures, the volcano plots are illustrated in Fig. 3 
(all six can be found in the Additional file 1: Materials S4). Inspection of features passing 
the thresholds FDR < 0.05 and fold change (log2) > 1 (Fig. 3a) using the built-in side-by-
side overlap coloring scheme shows a considerable number of common features with 
the same abundance change directions (blue) but it is notable that a larger number of 
features are identified only after PeakView processing, in most cases correctly so (95% of 
these were correctly identified spiked-in proteins, in line with the applied FDR-threshold 
of 0.05). These are distributed across all significance levels and folds, with no evident 

Fig. 5  Quality inspection of the SARS-CoV-2 proteomics dataset. a Inspection revealed a separation of 
samples along the second principal component likely related to a plating effect. This was compensated 
for in subsequent statistical tests by including it as a covariate. Separation along the first axis is related to 
infection and time passed from infection. b The impact of performing differential expression analysis without 
and with inclusion of the putative plating number as a covariate. The inclusion of the covariate yielded 
345 new statistical features while losing six as compared to not including the covariate. c Comparison of 
control samples 6 h and 2 h shows many features with a decrease in abundance, indicating that the mock 
treatment might influence the data. Comparison between infected samples at 6 h and 2 h show more limited 
differences, with seven detected viral proteins among those with increased abundance at 6 h indicated in red 
circles (log2 fold change > 0.3) out of which two passed the FDR threshold
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trends for a higher concentration of lower abundance values. A handful of features were, 
using the coloring scheme, found to be changing in opposite direction between the 
groups (green) and were compared to the expected regulation pattern. Here, it was found 
that all features with a positive log2 fold in both methods were true positives according 
to the type of spiked-in proteins, while out of the two with negative fold-change, one 
was a false positive. This indicates how OmicLoupe could be used to qualitatively give 
indications of the reliability of features across comparisons by using fold change. Inter-
estingly, sets of features found to be changing in one group are clustering around zero-
fold change in the other method, indicating a different ability of the software to handle 
these features. Further inspection of the ground truth (Fig. 3b) illustrates the possibility 

Fig. 6  Inspection of trends in SARS-CoV-2 proteomics and transcriptomics datasets. Statistical analysis 
performed using the following settings: FDR < 0.05 and log2 fold change > 0.3. For both datasets, data from 
24 h after viral infection are used a Inspection of infected samples, 10 h and 24 h compared to 2 h, colored 
by proteins known as virus proteins (‘virus’ in blue) and virus receptors (‘virus_host’ in green) revealed a clear 
upregulation among virus proteins. b Direct comparison of infected and control at 24 h after infection in 
proteomics and comparison between the proteomic dataset and the transcriptomic dataset (expansion 
media). The coloring is based on in which dataset the gene products pass the significance threshold. Green 
points (“contra” in the legend) are passing the significance threshold in both datasets, but with reversed 
log2 fold direction. This comparison revealed a set of shared proteins, both changing abundance in the 
same or opposite direction. c Illustration of the shared significant genes between proteomic (“prot”) and 
transcriptomic (differential “diff” and expansion “exp” media) datasets. d CD47 distribution at different time 
points in the proteomic study and in the transcriptomic data
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in OmicLoupe to change color scheme to highlight the respective types of spike-in. For 
PeakView, there seems to be, in particular for yeast, a considerable number of false neg-
atives identified, while for DIA Umpire these are less common. To illustrate the joint 
use of the two methods, a subset of features identified after processing by both meth-
ods was inspected (Fig. 3c). Here, a set of features, only identified as differentially abun-
dant after PeakView processing (yellow in Fig. 3a), was highlighted and their distribution 
after DIA Umpire processing inspected. One exception was significant in both cases, 
seen as the green point with lowest p-value (highest along the y-axis). Interestingly, the 
features represented a mix of true positives (E. Coli) and false positives (human). The 
true positives were found with greater fold change in DIA Umpire (two rightmost green 
points in Fig. 3C, DIA Umpire panel), which is closer to but still below the fold-change 
expected from the spiked-in concentrations. From these observations, we conclude that 
OmicLoupe allows for fine-grained analysis of differences resulting from data process-
ing using different software and allows careful inspection of specific data points across 
multiple datasets.

Table 1  Comparison of software for omics data visualization

Simplified overview of features in a selection of software solutions for omics data visualization
1  Installer provided
2  “Yes” if calculation of statistical contrasts is performed interactively within the software, “No” if part of pre-processing is 
performed before loading data in the software
3  Cross-comparison volcano plots or similar
4  Detailed display of how individual measurements distribute over sample conditions
5  Selection of subsets of features by direct interaction with the visuals. “Limited” if one type of visualization is provided, “Yes” 
for multiple types including interactive scatter-plots, and highlighting of subsections in overlap-plots with visualization of 
the selection
6  “Limited” if only Venn. “Yes” if extended overlap representations such as UpSet plots
7  Possibility to split visualizations to highlight features with similar or different abundance change directions in multiple 
comparisons

Software OmicLoupe Perseus [7] WIlsON [9] ShinyOmics [8] Intervene [10]

Web deployment Yes No Yes Yes Yes

Open source Yes No Yes Yes Yes

Platform independent installation Yes No Yes Yes Yes

Container-based dependency 
management

Yes No1 Yes Yes No

Compare multiple datasets Yes Yes No Yes Yes (overlap)

Correlations between datasets Yes Yes No No Yes

Statistical calculations2 No Yes No No No

Overview plots (Box-plot, PCA, 
dendrograms)

Yes Yes Yes Yes No

Network visualization No Yes No Yes No

Side-by-side comparisons3 Yes No No No No

Single-feature visualization4 Yes Yes Yes No No

Feature selection from visuals5 Yes No No Limited No

Overlap visualizations6 Yes Limited No No Yes

Fold-oriented analysis7 Yes No No No No

Absence/presence comparisons Yes Yes No No No

Export publication ready figures 
(vector format)

Yes Yes Yes Yes Yes

Export reports and settings Yes Yes Yes No No

Tutorial videos Yes Yes No No No
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Case 2: analysis of matched proteome and transcriptome data

Multiomics studies of the same biological samples are becoming increasingly more 
frequent, but how to integrate the data types and finding important features remains 
challenging. We thus investigated how OmicLoupe can be used for direct compari-
sons of different data types taken from the same set of samples, to reveal features 
only detected in certain conditions, and common patterns of observed abundance 
level changes. For this purpose, a comprehensive multiomics dataset from endome-
trial cancer samples was downloaded [20]. Multiple types of data, including prot-
eomics and RNA-seq, were acquired for the samples in the original study, and the 
features had been mapped to common gene identifiers. The samples are classified in 
different genomic sub-types, including Copy Number Variation (CNV) high, which 
includes serous and aggressive endometrioid cancers and CNV low, consisting of 
less aggressive endometrioid cancers. We focused our statistical analysis on a com-
parison between these two groups, as the differences between these subtypes were 
not extensively discussed in the original study.

A first view using the PCA module revealed a primary separation between most 
normal samples and tumor samples (Fig.  4a). This separation was similar in both 
proteomics and RNA-seq datasets, with few noticeable differences. PCA analysis 
without the control samples group was also performed using the function available 
in OmicLoupe (Additional file  1: Materials S5). Here, a partial separation between 
CNV high and CNV low is evident along the second principal component. To study 
the similarity of the statistical comparisons across the two data types, features with 
positive abundance change and with low p-values were highlighted in the RNA-
seq contrast (by dragging directly in the figure) between CNV high and CNV low 
to see how these distribute in the corresponding contrast in the proteomics dataset 
(Fig. 4b). The majority of features were also upregulated in the proteomics data with 
three exceptions, namely FOLR3, STEAP1B and TBL1D31, which showed opposite 
direction of change in the proteome data. Another cancer gene of interest, TP53, 
which was discussed in light of TP53 gene mutation effects on the p53 protein level 
in the original study, was inspected using the feature check feature in OmicLoupe 
(Fig. 4c) and showed a seemingly reversed pattern between the transcript and pro-
tein levels for the compared groups. Finally, the overall correlation between tran-
scriptomics and proteomics was studied. Pearson and Spearman correlations are 
illustrated in Fig.  4d and showed similar median values (Pearson 0.51, Spearman 
0.48) to those presented in the original study (Spearman 0.48), with a small number 
of inversely correlated features. As suggested by the feature check of TP53, the tran-
script and protein showed little correlation for this gene (Pearson 0.10, Spearman 
0.07), highlighting either a complex regulation pattern and / or possible quantifica-
tion artefacts caused by gene mutations for RNA seq or proteomics, as well as the 
added value of explorations across multiple omic layers.

This demonstrates how OmicLoupe can be used to inspect similarities and differ-
ences between layers of omic data generated from the same set of samples, providing 
an improved understanding of both the general expression profiles and individual 
gene products.
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Case 3: cross dataset comparisons of proteome and transcriptome data from two 

published SARS‑CoV‑2 studies

When studying proteins, for instance involved in certain diseases, validation of key 
proteins in multiple experimental setups can provide valuable biological information. 
However, it can be demanding to handle omics data from different studies. We aimed 
to assess whether OmicLoupe could facilitate this process and aid in finding shared key 
features. Herein, we examined SARS-CoV-2 infection of two model systems from differ-
ent studies with time series data to find overlapping features. The first study employed 
human colon epithelial carcinoma cell line (Caco-2) infected by the virus at different 
time points (2, 6, 10 and 24 h), with corresponding control samples, and with both pro-
teomics and translatomics read-out, a proteomics-technique for measuring currently 
translated proteins [21]. In our work, we focused on the proteomics data. In the second 
study [22], the transcriptomic analysis had been performed on human intestinal orga-
noids, representing the human gut, infected with the virus at time points 0, 24 and 60 h 
and in two different media: differentiation and expansion media. The datasets were first 
overviewed individually using OmicLoupe and then analyzed jointly to find common 
patterns.

For the proteomics study, the initial quality control revealed two aspects in the data 
influencing the subsequent analysis. Quality control visualizations using PCA and den-
drograms revealed clustering of samples according to a sample name-based categori-
zation, thought to be the plating numbers of the cell lines (PCA plot shown in Fig. 5a, 
dendrogram shown in Additional file  1: Materials S6). To compensate for this effect, 
this number was included as a covariate in the statistical tests, and the impact of includ-
ing it was investigated in OmicLoupe. The inclusion of this covariate led to a consid-
erably higher number of features detected as significantly different at the thresholds 
employed (FDR < 0.05 and log2 fold change > 0.3), as exemplified for the comparison 
of infected samples at 6  h versus infected samples at 2  h (Fig.  5b). Next, OmicLoupe 
was used to study control and infected samples independently (as illustrated in Addi-
tional file 1: Materials S7). Here, a clear pattern was seen in the infected samples, with 
the 24 h infected samples separating out along PC1, while the 10 h samples showed a 
weaker separation. In the control samples, the trend was less clear, and the control 6 h 
samples appeared as weak outliers. In order to study the potential impact of these group 
comparisons, control and infected samples at 6 and 2 h were compared, as depicted in 
Fig. 5c. A strong effect of decreasing abundance is seen in control 6 h, while in infected 
6 h the trend is smaller, with known viral proteins being clearly upregulated. We verified 
that this was not due to overall imbalances in the dataset by inspection in OmicLoupe 
using a boxplot illustrating the log2-transformed intensities of each sample (shown in 
Additional file 1: Materials S8). This unexpected distribution of the 6 h control samples 
led us to focus on comparisons between infected samples, and the 24 h infected versus 
control comparison.

To study the viral distribution between the infected conditions, we highlighted pro-
teins with known annotation related to either virus or other proteins thought to be 
related to SARS-CoV-2, such as virus receptor proteins [23] in comparisons of 6, 10 and 
24 h infected samples compared to 2 h infected samples. Figure 6a clearly shows how the 
viral proteins are increasing in abundance in infected cells at 10 h and even more at 24 h. 
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This first overview serves as quality control and is in line with what was shown in the 
original study. For the transcriptomic dataset, using the same cutoff parameters used for 
the proteomic study, a first evaluation shows that at 24 h after infection in the differen-
tiation media, 654 transcripts are differentially expressed, while in the expansion media 
after 24 h of infection, 438 transcripts are differentially expressed.

Furthermore, to study the potential of OmicLoupe, the results from the proteomic 
study were compared to the transcriptomic dataset. Here, the two datasets can easily 
be uploaded and compared based on their time points. To make a similar comparison 
in the two datasets, we decided to compare the proteomic and the transcriptomic data 
at 24 h, despite one outlier sample being identified in the transcriptomics data at this 
time point (the PCA plot for the transcriptomics data illustrating this outlier is shown in 
Additional file 1: Materials S9). The distribution of the significant genes in the proteomic 
study in comparison with the transcriptomic study (expansion media), is depicted in the 
volcano plot in Fig. 6b. Of particular interest are the significant genes that are shared 
between the datasets at 24 h after infection. At the set threshold (FDR < 0.05 and log2 
fold change > 0.3), 38 differentially expressed genes are shared between the proteomic 
and the transcriptomic data after 24 h of infection in the differentiation media. For the 
extension media, 23 significant genes are shared between the proteomic and transcrip-
tomic datasets after 24 h of viral infection (16 genes exclusively, and 7 genes also shared 
with the differentiation medium). The overlap between the IDs in both datasets is dis-
played in the UpSet plot in Fig. 6c. Interestingly, 7 genes were overlapping between the 
proteomic dataset and the transcriptomic study (differentiation and expansion media). 
As an example, one of those shared genes, CD47, is depicted in Fig. 6d. CD47 is a leu-
kocyte surface antigen, which has been shown to be upregulated after a viral infection, 
including SARS-CoV-2 infection, as a host response to the infection [24]. These over-
lapping groups were further analyzed in STRING [25] to investigate the relevant path-
ways connected to these significant genes identified. Of biological interest is that one of 
the main regulated Reactome [26] pathways is neutrophil degranulation, which in many 
studies has been reported as a key biological process during the SARS-CoV-2 infection 
[27–29].

In summary, in this third case study, OmicLoupe was used to perform a parallel analy-
sis of two datasets from different types of omics (proteomics and transcriptomics) to 
investigate the response to infection over time. Both these datasets were obtained from 
published studies. By straightforward visualizations, we demonstrate the feasibility of 
using this tool to easily identify significantly changing gene products, common to both 
datasets, which can be used for further analysis, such as GO enrichment and pathway 
analysis.

Discussion
Despite the recent addition of several new visualization software, we saw a lack of func-
tionality for exploring multiple comparisons across datasets, and developed OmicLoupe 
to address this. Key features in OmicLoupe like the side-by-side data distribution com-
parison volcano and MA plots, with coloring of features according to abundance change 
direction across the comparisons, do not exist in other solutions (See Table 1 for com-
parison with other software). Furthermore, the ability to rapidly switch to individual 
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feature views across samples, enable a deeper understanding of the individual features 
in the data.

The implementation of UpSet plots with optional splitting based on changes in abun-
dance direction, can rapidly help in determining reproducibility across datasets. While 
standard statistical comparison, using strict thresholds in many cases is the default 
option, underlying trends can be found in plots such as UpSet with less strict thresholds, 
when the data are lacking power.

Here, we explored three diverse datasets to highlight different aspects of OmicLoupe’s 
functionality. By comparing the impact of different proteomics software processing 
methods, we could study in detail differences in outcome between the methods, and 
identify specific features handled correctly only by one or some of the methods. Next, 
multiomics exploration with both transcriptomic and proteomic data obtained from the 
same samples gave the opportunity to explore features across omic layers. Here, we iden-
tified an overall similarity of trends across the omic data layers, and rapidly illustrated 
the correlations of transcripts and proteins. Further, we visualized key features in detail, 
including TP53, a key protein discussed in the original study, and detected differences at 
transcript and protein level. This demonstrates how OmicLoupe can confirm and pro-
vide extended knowledge for existing data. Finally, we used two separate SARS-CoV-2 
studies to profile intestine cells during infection. OmicLoupe was used to identify and 
navigate technical limitations, including a batch effect, and a seeming lower reliability 
of one set of control samples. The overall regulation patterns were relatively different, 
as expected due to the different types of samples, but still subsets of features with joint 
abundance changes were identified. These were downloaded and enriched, revealing 
biological trends in line with what had been observed in prior studies.

The cases presented in this manuscript are common examples of challenges encoun-
tered when analyzing omics data. Beyond these, the OmicLoupe software has the 
potential to be used in a wide range of scenarios, to better understand both single- and 
multiple- omics datasets. To this end, we believe usability is of critical importance for 
this kind of software, and OmicLoupe has a straightforward interface, with user help 
text complemented with video tutorials at the website. Having these at hand may mean 
the difference in how extensively the data could be explored, and thus how well they can 
be understood. We thus encourage users to test the software, provide feedback about its 
functionality and to comment on possible useful new extensions.

Conclusions
Here, we have presented OmicLoupe, which both introduces novel approaches for 
comparative visualization cross dataset and presents these in an interactive easy-to-
use software. We have demonstrated its utility on three diverse datasets, starting with a 
technical dataset to demonstrate how OmicLoupe can be used for comparing processing 
methods and how the cross-comparison fold can provide important information. Sec-
ondly, we explored a multi-omics cancer dataset illustrating how same-sample cross-
omics can be readily illustrated. Finally, to demonstrate its versatility, we reanalyzed two 
recently published SARS-CoV-2 datasets, performed comparative explorations of these 
datasets and rapidly identified proteins and RNA transcripts showing the same abun-
dance change trends across both studies. Based on these results and usage on other 
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datasets, we propose that OmicLoupe can be a versatile tool in many expression omics-
based analyses, both for novice and expert users. We provide it for usage by the commu-
nity, as an R-package and as an online server.

Methods
Development

OmicLoupe is implemented using R (v3.6.3) and Shiny (v1.4.0.2), using packages provid-
ing interactive visualizations: Plotly (v4.9.2.1), DT (v0.13) and packages for data visu-
alization: ggplot2 (v3.3.0), GGally (v1.5.0), UpSetR (v1.4.0, [15] ) and dplyr (v0.8.5) for 
data processing. The code is developed in modules to facilitate reusability. Further, a Sin-
gularity container [30] was prepared allowing immediate local execution without being 
required to install the R package dependencies.

Dataset analysis

OmicLoupe was evaluated using three datasets covering different use cases. An R note-
book containing the code used for preprocessing the datasets together with an HTML-
document with the code output is outlined in the Additional file 1: Materials S10 and 
accessible on the https​://doi.org/10.5281/zenod​o.44555​20. For all principal component 
plots, entries with missing values were filtered and scaled prior to visualization inter-
nally in OmicLoupe. For dendrograms, entries were similarly filtered and clustered using 
the average distance between clusters as distance metric internally in OmicLoupe.

Case 1: Technical spike‑in dataset

A technical dataset was employed where proteins from human, E. coli and yeast had 
been spiked in at controlled concentrations [1] and subsequently analyzed using five 
different DIA methods. The data was downloaded from ProteomeXchange [31] at the 
ID PXD002952, selecting the data generated on the TripleTOF 6600 instrument with 32 
fixed-size windows for all five methods. The HYE110 dataset was used, from two lev-
els composed of 67% w/w (weight for weight) human protein in each case and 3%/30% 
w/w E.coli and yeast reversed between the two conditions, yielding an expected spike-
in difference of log2 fold 3.3. The raw data matrices were preprocessed both into five 
separate data matrices, and into a single merged matrix consisting of all joint protein 
entries. They were subsequently log2-transformed and rolled up to protein level using 
an R-reimplementation v0.9.3[32] of the DanteR RRollup [33], using default settings 
and excluding proteins supported by a single peptide, yielding the following number of 
proteins: DIA Umpire (du) 3119, OpenSwath (os) 3656, PeakView (pv) 4615, Skyline (sl) 
4912, Spectronaut (sn) 4141. For each method, two sets of three replicates from each 
spike-in level were provided Statistical contrasts between the two concentration levels 
were subsequently calculated using Limma (v3.42.2) [13] as provided by Normalyz-
erDE (v1.5.4) [12], and resulting p-values adjusted for multiple hypothesis testing using 
the Benjamini–Hochberg procedure [34]. No filtering of the features was performed, 
and missing values were kept as missing throughout the analysis. For comparisons of 
datasets, a joint table was generated containing data from all the five comparisons and 
matched based on their shared protein IDs, with proteins missing from certain datasets 
assigned as missing values for these.

https://doi.org/10.5281/zenodo.4455520
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Case 2: Multiomics dataset

A multiomics dataset from a study investigating 95 prospectively collected endo-
metrial carcinoma tumors [20] divided into four histological groups, including copy 
number (CNV)-high (serous cancer—a rare aggressive variant, and cancers with more 
than 50% penetrance of the endometrial wall) and CNV-low (less than 50% pene-
trance of the endometrial wall). The data matrices and meta information were down-
loaded from the supplementary information of the original study. Samples omitted 
from the original study were similarly omitted, as specified in the matrix obtained 
from the original supplementary, and samples present in both the RNA-seq and the 
proteomics data were used, resulting in 109 samples. Further, upon inspection with 
OmicLoupe the set of normal samples was identified as a strong outgroup and omit-
ted to avoid influence in the statistical procedure, resulting in a final 95 samples. The 
original dataset contains multiple layers of omic data, out of which the following two 
were used in the present study: proteomics and mRNA levels. For the proteomics 
matrix contained 10,999 proteins, statistical contrasts were calculated using Limma 
(v3.42.2) [13] in NormalyzerDE (v1.5.4) and Benjamini-Hochberg [34] corrected FDR 
values were calculated. Missing values were kept as missing throughout the proteom-
ics analysis. For the transcriptomics matrices the data was provided as RSEM esti-
mated counts originally provided for 28,057 transcripts. Missing values were replaced 
with zeroes in the data and lowly abundant transcripts were filtered, resulting in 
19,110 transcripts. It was then transformed using Voom with quality weights [35] 
as provided by the Limma package. Subsequent statistics were also calculated using 
Limma [13]. Statistical contrasts were for both data types calculated between sam-
ples classified as CNV-high and CNV-low. The data provided by the original study 
had already been mapped uniquely to gene IDs, which were used to combine the two 
datasets within OmicLoupe, resulting in 7805 shared entries.

Case 3: SARS‑CoV‑2 datasets

The first dataset analyzed in this case study is a recently published SARS-CoV-2 pro-
teomic dataset [21], where human colon epithelial carcinoma cell line (Caco-2) was 
infected by SARS-CoV-2 and proteomic analyses were performed on samples at four 
time points (2, 6, 10, 24  h after infection), both for infected samples, and samples 
treated with a mock infection. Three replicates are provided for each condition, for 
a total of 24 samples. The proteomic data and metadata were generously provided by 
the authors in the supplementary materials of the study, with 6381 measured proteins 
present in the original data. Zero-values were replaced with NA and kept as missing 
throughout the analysis, and the protein abundance values were log2 transformed. 
No filtering was done prior to the statistical analysis. Statistical contrasts were calcu-
lated using Limma (v3.42.2) [13] in NormalyzerDE (v1.5.4) [12] and resulting p-values 
FDR-corrected using the Benjamini–Hochberg procedure [34]. Initially, statistical 
comparisons were made between infected and control samples at each of the four 
time points (2, 6, 10 and 24 h after infection). After initial explorations in OmicLoupe 
a batch effect was identified, which was subsequently included as a covariate in the 
statistical test, as described in the results section.



Page 17 of 19Willforss et al. BMC Bioinformatics          (2021) 22:107 	

The second dataset was from human intestinal organoids infected with SARS-CoV-2 
in both differentiation and expansion media and analyzed at two time points after 
infection (24 and 60 h) using transcriptomics [22], with two replicates in each condi-
tion. The data was retrieved from the NCBI Gene Expression Omnibus (GEO) data-
base, from the accession number GSE149312. The original dataset contained 18,014 
transcripts, with no transcripts filtered prior to the statistical analysis. The data were 
TMM normalized with missing values as zeroes, and Voom transformed [35] with 
quality weights as provided by the Limma package. Subsequently, statistical calcula-
tions were carried out using Limma [13], comparing infected samples at 24 and 60 h 
after infection to the uninfected reference. P-values were FDR-corrected using the 
Benjamini–Hochberg procedure [34]. In both datasets, gene names were provided in 
one column. These were used in OmicLoupe to map proteins and transcripts between 
the datasets. In cases with duplicate entries being present, the first found entry was 
used (“Discard dups.” option in OmicLoupe), resulting in 5428 shared entries.

Availability and requirements

The R package and its source code is available at github.com/ComputationalProteomics/
OmicLoupe with https​://doi.org/10.5281/zenod​o.44555​06

A public server running OmicLoupe, as well as links to video tutorials, can be accessed 
from the project home page.

A singularity container is available at singularity-hub.org/collections/4795 which 
allows execution with no need to install dependencies.

Project name: OmicLoupe.
Project home page: http://quant​itati​vepro​teomi​cs.org/omicl​oupe
Operating system(s): Platform independent.
Programming language: R and Shiny.
Other requirements: none.
License: MIT license.
Any restrictions to use by non-academics: none.
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