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Switchable thulium-doped fiber 
laser from polarization rotation 
vector to scalar soliton
Zhichao Wu1, Songnian Fu1,2, Kai Jiang3, Jue Song2, Huizi Li3, Ming Tang1,2, Ping Shum3 & 
Deming Liu2

We experimentally demonstrate switchable temporal soliton generation from a thulium-doped 
fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization 
dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) 
effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-
locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable 
absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, 
or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar 
solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps 
and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two 
polarized components on optical spectra and a period-doubling feature in time domain. Such operation 
principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

Passively mode-locked fiber lasers generating ultrashort and high-energy optical pulses have been widely studied 
over past decades, owing to its great advantages of high stability, simple structure and compact size1,2. Moreover, 
such lasers act as a convenient experimental platform for the investigation of nonlinear waves subject to peri-
odic boundary conditions and easy modulation. To achieve passive mode-locking operation in a fiber laser, two 
main kinds of mode-locked techniques have been widely employed. The first approach is nonlinear switching 
based mode-locking, including nonlinear polarization rotation (NPR) and nonlinear amplifying loop mirror 
(NALM)3,4. Because these techniques either introduce polarization-dependent components or mechanism in 
the laser cavity, the output pulses always possess fixed linear polarization. Theoretically a scalar model is used to 
describe these output pulses, known as scalar solitons5. The other approach is material saturable absorber (SA) 
based mode-locking, as diverse as the semiconductor saturable absorber mirror (SESAM)6, graphene7, carbon 
nanotube (CNT)8, novel two-dimensional materials, such as MoS2

9, and topological insulator10. Moreover, several 
previous researchers have investigated various fiber lasers mode-locked by CNT, such as multi-wavelength emis-
sion11 and tunable repetition rate12. The same as other SA materials, CNT with ideal polarization-independent 
feature can support vector solitons generation13.

Taking fiber birefringence into account, different types of vector solitons can be generated in fiber lasers. 
In general, a difference of group velocity between two orthogonal polarization components can cause them to 
separate temporally. However, this difference of group velocity can be compensated by a wavelength shift of 
two orthogonal components, and enable them to propagate as a single entity. Such type of soliton is known as 
group velocity locked vector soliton14,15. Apart from the group velocity, the phase velocities between two orthog-
onal components can also be locked as a result of the equilibrium among nonlinearity, dispersion, gain and 
loss, and form the so-called phase locked vector soliton16. Additionally, with the help of suitable cavity birefrin-
gence, both polarization locked vector soliton and polarization rotation locked vector soliton (PRLVS) can be 
observed in fiber lasers17,18. Various vector solitons, with attractive physical features, provide new perspectives 
and means to better understand the light polarization, which is a tradition but recently discovered very useful 
feature of laser physics19,20. Meanwhile, scalar solitons also play an important role in many theoretical researches 

1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 
430074, China. 2National Engineering Laboratory of Next Generation Internet Access System, School of Optical and 
Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China. 3Centre for Optical 
Fibre Technology, Nanyang Technological University, Singapore, 637553, Singapore. Correspondence and requests 
for materials should be addressed to S.F. (email: songnian@hust.edu.cn)

received: 20 April 2016

Accepted: 19 September 2016

Published: 06 October 2016

OPEN

mailto:songnian@hust.edu.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:34844 | DOI: 10.1038/srep34844

and scientific applications, such as three-dimensional display21 and polarization division multiplexing transmis-
sion22. Therefore, it is worthwhile studying the polarization dynamics within laser cavity, as well as investigating 
the differences and correlation between scalar and vector solitons.

In previous studies of vector soliton, polarization dependence inside laser cavity has always been avoided 
if possible. All the physical SAs and optical components are assumed to be polarization-independent. In fact, 
some optical components, especially the wavelength division multiplexer (WDM) may possess a relatively large 
residual polarization dependent loss (PDL)23. This PDL gives us an inspiration to induce a controllable NPR 
effect in a SA-based mode-locked fiber laser. By adjusting the polarization state of light within the cavity, we are 
able to manipulate the strength of NPR-based saturable absorption and observe various polarization evolutions. 
Furthermore, researches on scalar and vector solitons so far have mainly concentrated upon 1550 nm wavelength 
region. Since the fiber birefringence comes from the deviations of the core shape from circularity, transverse 
internal stress or residual twist15, it is desired to observe similar soliton features of thulium-doped fiber lasers 
(TDFLs) operated at 2μm region.

In this submission, we experimentally demonstrate switchable temporal soliton generation from a TDFL 
based on a combination of CNT and NPR effect induced by residual PDL arising in WDM. By finely adjusting 
the polarization controller, the fiber laser can generate either period-doubling PRLVSs or conventional scalar 
solitons. It is the first time that different polarization types of solitons have been generated and investigated within 
one laser cavity. This switchable operation of vector and scalar solitons may greatly enrich the understanding of 
soliton dynamics in laser cavities and find applications in a wide variety of optical fields.

Experimental Results
The setup of the proposed fiber laser is schematically shown in Fig. 1. The CNT mode-locker is deposited on a 
standard FC/PC fiber end via the popular optically-driven deposition technique24,25. The CNTs are efficiently 
deposited in the region of the fiber core due to optimal interaction with radiation propagating in the fiber, while 
at the same time minimizing the waste of the CNTs during device preparation.

A continuous wave (CW) laser with 1 mW output power at 1570 nm is used as a seed source for an 
erbium-doped fiber amplifier (EDFA). The amplified signal with maximum output power of 5 W acts as a pump 
source for a 3.5-m commercial thulium-doped fiber (TDF, Nufern SM-TDF-10P/130-HE). The isolator is used 
to guarantee unidirectional propagation and to suppress detrimental reflections. The intra-cavity linear birefrin-
gence is adjusted by a polarization controller (PC). The laser output is achieved by a 10:90 optical coupler (OC). 
All the optical components within the cavity are fusion spliced, with a total cavity length of about 15 m. As for the 
polarization resolved measurement along the output port, a polarization maintaining fiber (PMF) pigtailed polar-
ization beam splitter (PBS) is used to separate two orthogonal polarization components, and to simultaneously 
measure the polarization characteristics of generated solitons. In order to balance the fiber pigtail induced linear 
polarization rotation, we insert another PC between the laser output port and the PBS.

Scalar soliton. Self-starting mode-locking at the central wavelength of 1947 nm can be observed, when 
the pump power is increased above 280 mW. We maintain the pump power to be 320 mW, and obtain a sta-
ble mode-locking operation with an output power of 4 mW, as shown in Fig. 2. Figure 2(a) presents a typical 
mode-locked spectrum with a 3-dB bandwidth of 2.2 nm. The sets of Kelly sidebands originating from spectral 
interference of dispersive waves are clearly observed, indicating that the fiber laser is operated under conventional 
soliton regime. The oscilloscope trace is shown in Fig. 2(b), where all pulses within the cavity possess exactly the 
same pulse height and the repetition rate of pulse-train is 13.6 MHz, which agrees well with the cavity length. The 
RF spectrum with a scanning range of 215 MHz is illustrated in Fig. 2(c). Obviously, there is no fluctuation in 

Figure 1. Schematic illustration of the experimental setup: the laser cavity and polarization resolved 
measurement. CW, continuous wave. EDFA: erbium-doped fiber amplifier. PC, polarization controller. OC, 
optical coupler. WDM, wavelength division multiplexer. TDF, thulium-doped fiber. PBS, polarization beam 
splitter.
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the broad spectrum, which confirms the stable mode-locking operation without Q-switching modulation. The 
smooth noise floor also demonstrates the fiber laser is operated with low amplitude noise. The inset shows the 
fundamental frequency with a resolution of 100 Hz. The signal-to-noise ratio (SNR) is about 60 dB. Figure 2(d) 
shows the pulse profile with the full-width of half maximum (FWHM) of 2.8 ps, corresponding to the pulse 
duration of 1.8 ps if a sech2 pulse profile shape is assumed. Therefore, the time-bandwidth product (TBP) of the 
pulses is ~0.32, indicating the pulse is almost transform-limited. For the case of femtosecond pulse generation 
in the TDFL, either more efficient pump scheme with the help of mode-locker with faster recovery time or chirp 
management along the TDFL output is desired.

Next, we maintain polarization within the laser cavity and gradually increase the pump power to 630 mW. 
We can obtain a maximum of 8th-order harmonic mode-locking with a repetition rate of 108.8 MHz, as shown 
in Fig. 3(a). Then, we carefully decrease the pump power, the pulse-trains reduce one by one accordingly and the 
repetition frequency returns to fundamental mode-locking at the pump power of 270 mW. The formation and 
annihilation of each pulse-train verify the pumping parameter hysteresis26, as shown in Fig. 3(b). Especially, our 
mode-locking state always stably evolves with respect to the pump power adjustment. Furthermore, Fig. 4 shows 

Figure 2. Scalar soliton state: (a) Optical spectra. (b) Oscilloscope trace of the pulse-train. (c) RF spectrum and 
fundamental frequency signal (inset). (d) autocorrelation trace.

Figure 3. (a) 8th-order harmonic mode-locking at the pump power of 630 mW. (b) The number of pulses as a 
function of pump power.
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the optical spectrum at the 630 mW pump power as a comparison with that at the 320 mW pump power. The 3-dB 
spectral bandwidth slightly reduces to 2.02 nm.

Then, to investigate the polarization features of generated solitons, we introduce the output of TDFL to the 
external polarization resolved configuration. We are able to simultaneously observe the optical spectra from two 
orthogonal polarization directions with the help of inline PBS. By finely adjusting PC2, the spectral intensity 
from two orthogonal directions always moves simultaneously with one rising up and the other falling down. In 
particular, we are able to achieve the maximum power of one direction while the other decreases to the lowest, as 
shown by the red and blue dash lines in Fig. 5. It is observed that the light at vertical axis is almost extinct, indi-
cating that the soliton has linear polarization state along horizontal axis. This phenomenon is completely different 
from vector soliton case where two orthogonal components trap each other and always exist on both axes in fiber 
medium. In consequence, we can confirm the generation of scalar soliton on this scenario.

Vector soliton. If we keep the 320 mW pump power constant and further optimize the PC1, another sta-
ble mode-locking operation, which has typical features of period-doubling PRLVSs, can be obtained, as shown 
in Fig. 6. Figure 6(a) is the measured optical spectrum. The central wavelength stays unchanged at 1947 nm. 
However, the 3-dB bandwidth reduces to 2 nm, leading to an increase of the pulse profile width up to 3.1 ps, as 
shown in Fig. 6(d), which corresponds to the pulse duration of 2 ps if a sech2 pulse shape is assumed. Therefore, 
the output pulses maintain transform-limited characteristics in this case. Figure 6(b) illustrates the pulse-train 
with an evident period-doubling phenomenon characterized by the periodic intensity fluctuation between adja-
cent pulses. A basic feature of period-doubling pulses is a weak but obvious frequency component which appears 
at the position of the half cavity fundamental repetition rate, as shown by the RF spectrum with a scanning range 
of 70 MHz in Fig. 6(c).

To investigate the individual characteristics of two orthogonal components, we proceed with the same polari-
zation resolved measurement. In this case, no matter how we adjust the PC2, we can no longer observe completed 
extinction at either orthogonal direction. Instead, the maximum intensity gap between the two axes is only ~3 dB, 
as shown in Fig. 7 with red and blue dash line. We note that, different from the optical spectrum of scalar soliton 
with only Kelly sidebands, there exists an extra pair of spectral sidebands for vector soliton, which are pointed 
by arrows in the Fig. 7. This pair of sidebands will shift their positions remarkably on the optical spectrum, when 
we carefully either adjust the PC inside laser cavity or alter the pump power, indicating that they are sensitive to 

Figure 4. Optical spectra of scalar soliton at the pump power of 630 mW and 320 mW. 

Figure 5. Optical spectra of the scalar soliton before and after polarization resolved measurement. 
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the linear cavity birefringence. At the position of the extra sidebands after polarization resolved measurement, a 
peak is observed at the vertical component, while a dip is observed at the horizontal component. This peak-dip 
pair indicates that the pair of sidebands is generated due to the coherent energy exchange between two orthog-
onal polarization components18. We also simultaneously measure the temporal pulse-trains from two axes, as 
shown in Fig. 8. Compared to the original pulse-train in Fig. 6(b), we observe a larger periodic variation in 
the temporal pulse intensity at both axes. Obviously, the intensity of the vector solitons recurs every two cavity 
lengths, which leads to the period-doubling phenomenon. Further slightly adjusting the PC inside laser cavity, 
we can also get fundamental period state PRLVSs. In this case, the optical spectra demonstrate the same features 
as period-doubling PRLVSs with the extra sidebands, which confirms the coherent energy exchange between two 
polarization components of vector solitons. However, once the extra sidebands vanish from the optical spectrum, 
the mode-locking operation will turn back to the scalar soliton case, as shown in Fig. 2. Therefore, the existence 
of these extra sidebands can be treated as a switching symbol of generated soliton types. For the case of vec-
tor soliton, we also gradually increase the pump power, but harmonic mode-locking phenomenon is no longer 
observed. The pulse maintains fundamental frequency below 400 mW pump power and then turns into cluttered 

Figure 6. Period-doubling polarization rotation locked vector soliton state. (a) Optical spectra.  
(b) Oscilloscope trace of the pulse-train.(c) RF spectrum. (d) Autocorrelation trace.

Figure 7. Optical spectra of the vector soliton before and after polarization resolved measurement. 
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and irregular multipulses, instead of stable harmonic mode-locking state. At 630 mW pump power, the 3-dB 
spectral bandwidth becomes 2.15 nm, as shown in Fig. 9. Meanwhile, we observe that both the Kelly sidebands 
and energy exchange induced sidebands keep their position on the optical spectra.

Numerical Simulation
To verify our experimental observations, we carry out the numerical simulations. The laser operation is simulated 
based on the coupled Ginzburg-Landau equations, which describe the pulse propagation. The pulse propagation 
in fibers is governed by:
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where u and v are normalized envelopes of the pulse along two orthogonal polarizations. 2β =  2πΔ n/λ is the 
wave number difference between two modes. δ =  2βλ/2πc is the inverse group velocity difference. k″  is the 
second-order dispersion coefficient, k″  is the third-order dispersion coefficient, and γ  is the fiber nonlinearity 
coefficient. g and Ωg represent the saturable gain coefficient and gain bandwidth of the TDF, respectively. We 
consider the gain saturation as:
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Figure 8. Oscilloscope traces of the vector soliton along horizontal axis (red) and vertical axis (blue). 

Figure 9. Optical spectra of vector soliton at the pump power of 630 mW and 320 mW. 
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where G is the small signal gain coefficient and Psat is the normalized saturation energy. The parameters are set 
as follows:
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The performance of the CNT mode-locker is described by the rate equation27:
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where Trec is the absorption recovery time, l0 is the initial saturable absorption of the CNT. Esat is the absorber 
saturation energy. We use the following parameters: Trec =  6 ps, Esat =  50 pJ, l0 =  0.12. The cavity transmission coef-
ficient of the NPR operation is set as follows28:

θ ϕ θ ϕ θ ϕ= + + Φ + ΦT sin sin cos cos 1
2

sin 2 sin 2 cos ( ) (5)l nl
2 2 2 2

where θ is the angle between the fast axis of the equivalent polarization controller and the fast axis of the fiber; ϕ 
is the angle between the transmission axis of the WDM and the fast axis of the fiber. φl is the linear phase delay 
and φnl is the nonlinear phase delay. The linear phase delay includes the phase delay φPC induced by the PC, and 
the linear phase shift caused by the fiber birefringence. It is found that when θ =  0.125π , ϕ =  0.625π ,φPC =  1.7π , 
the typical NPR based mode-locking can be obtained, as shown in Fig. 10. Figure 10(a) demonstrates the spectra 
from two orthogonal polarization directions. The light on vertical axis is nearly 20 dB greater than horizontal 
axis, corresponding to the scalar soliton state. Then, the intensity of NPR effect is theoretically manipulated by 
adjusting the linear cavity birefringence, which corresponds to the PC adjustment during experiment. When φPC 
is changed from 1.7π  to 0.7π , the NPR effect becomes relatively weak, and CNT dominates the mode-locking 
operation. Figure 11 shows the CNT based mode-locking when φPC is set 0.7π  and the NPR effect can be ignored. 
On this occasion, the lights of two polarization directions have only 3 dB spectral peak intensity difference, which 
corresponds to the vector soliton state. Figures 10(b) and 11(b) show the pulse profiles of scalar and vector soliton, 
respectively. The pulse widths of these two states are not the same, which is caused by the different recovery time 

Figure 10. Numerical simulation of scalar soliton: (a) Optical spectra. (b) Pulse profiles.

Figure 11. Numerical simulation of vector soliton: (a) Optical spectra. (b) Pulse profiles.
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and transmission coefficients of two different mode-locking regimes. The numerical simulation results agree well 
with our experimental observations.

Discussion
Conventionally, in order to implement NPR technique in a ring fiber laser, a polarizer is inserted in the cavity, 
which forms a nonlinear birefringent filter in combination with the nonlinear fiber cavity. Under appropriate 
phase delay bias, the transmission of the nonlinear birefringent filter increases with the light intensity, leading 
to an artificial saturable absorption effect in the cavity28. However, a polarizer with polarization dependent loss 
(PDL) of ~30 dB always cause the restriction of light polarization, thus it is almost impossible to generate vector 
solitons in the cavity with NPR mode-locking mechanism. In terms of our laser cavity, we introduce a polariza-
tion sensitive component to realize the NPR mode-locking. After component characterization, the PDL of the 
used WDM is ~3 dB. Such residual PDL can also make the fiber laser self-start to mode lock. On the other hand, 
the PDL is not as strong as an inline fiber polarizer which completely restricts one polarization component. 
Consequently, it is possible to generate vector solitons in our laser cavity. In fact, the mode-locking operation is 
based on a combination of CNT mode-locker and NPR effect. Adjusting the PC inside cavity, we are able to alter 
the polarization state of light and change the strength of NPR-based saturable absorption. When the artificial sat-
urable absorption is efficiently strong to dominate the mode-locking, the intrinsic polarization-selective property 
of NPR effect will restrain the pulse polarization and thus generate scalar soliton. On the other hand, when the 
artificial saturable absorption is relatively weak and CNT mode-locker makes more contribution to mode-locking 
operation, the fiber laser can be operated at vector soliton state. To further verify the mechanism, we separately 
decrease the pump power from the two mode-locking operations. The scalar solitons degenerate to CW laser 
emission, when the pump power is reduced below 270 mW. While the vector solitons can be maintained till 
220 mW. The obvious pump power difference can be explained by the different energy requirement for the NPR 
and SA-based mode-locking.

Conclusions
In conclusion, we experimentally demonstrate switchable solitons generation from a TDFL based on the CNT. 
By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the fiber laser can be 
operated at either PRLVSs or scalar solitons. After polarization solved measurement at the output port of TDFL, 
the scalar solitons are characterized by complete extinction in one polarization direction, while the PRLVSs pres-
ent a typical period-doubling mode-locking state. This switchable working regime is novel and likely to be appli-
cable to a variety of other nonlinear systems.

Methods
An optical spectrum analyzer (OSA, Yokogawa AQ6375) with a resolution of 0.05 nm is used to observe the opti-
cal spectra. Meanwhile, a real-time oscilloscope (OSC, Agilent 54641A) with a bandwidth of 350 MHz is used to 
monitor the temporal pulses with the help of a photodetector (PD, EOT ET-5000F) of 12.5 GHz. Moreover, the 
radio-frequency (RF) spectrum is characterized by a signal source analyzer (R&S FSUP). Finally, the pulse profile 
is measured by a commercial autocorrelator (FR-103XL).
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