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Previously, colorectal cancer (CRC) has been classified into four distinct

molecular subtypes based on transcriptome data. These consensus molecu-

lar subtypes (CMSs) have implications for our understanding of tumor

heterogeneity and the prognosis of patients. So far, this classification has

been based on the use of messenger RNAs (mRNAs), although micro-

RNAs (miRNAs) have also been shown to play a role in tumor hetero-

geneity and biological differences between CMSs. In contrast to mRNAs,

miRNAs have a smaller size and increased stability, facilitating their detec-

tion. Therefore, we built a miRNA-based CMS classifier by converting the

existing mRNA-based CMS classification using machine learning (training

dataset of n = 271). The performance of this miRNA-assigned CMS classi-

fier (CMS-miRaCl) was evaluated in several datasets, achieving an overall

accuracy of ~ 0.72 (0.6329–0.7987) in the largest dataset (n = 158). To gain

insight into the biological relevance of CMS-miRaCl, we evaluated the

most important features in the classifier. We found that miRNAs previ-

ously reported to be relevant in microsatellite-instable CRCs or Wnt sig-

naling were important features for CMS-miRaCl. Following further studies

to validate its robustness, this miRNA-based alternative might simplify the

implementation of CMS classification in clinical workflows.
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1. Introduction

1.1. CMS based on mRNA and alternatives

To understand the intertumor heterogeneity of col-

orectal cancer (CRC), tumors have been classified

into consensus molecular subtypes (CMSs), which

reflect their molecular characteristics [1]. By studying

transcriptomic features, we and others were able to

characterize these four main disease subtypes with

implications for clinical outcome, response to ther-

apy, and fundamental disease mechanisms [1–5].
Since then, several studies have attempted to extract

this classification from other data types, in order to

widen the applicability to clinical and research

contexts.

For example, the CMS classifier was adapted for

NanoString gene panels for RNA from formalin-fixed

paraffin-embedded tissue [6,7], and transcriptome

microarray data were used to build a qPCR-based

classifier for the most aggressive CMS, CMS4 [8]. Fur-

thermore, the CMS classifier has been applied to ana-

lyze histology slides via a neural network-based image

analysis approach, imCMS, or via small panels of

immunohistochemical stainings [9–11].
The profiling of other genomic data types demon-

strated incomplete associations of CMSs with muta-

tions, methylation, and miRNAs [1]. Since previous

studies revealed that gene expression profiles of CMSs

are partially regulated by miRNAs [1,12], this study

examined whether CMSs can be determined directly

from miRNA expression levels.

1.2. miRNAs in cancer and CRC

miRNAs are small noncoding RNAs of 18–25 nucleo-

tides with wide regulatory functions including initiat-

ing decay or blocking translation of specific target

mRNAs in the cytoplasm. Moreover, as an adverse

function, transcription-activating interactions with

promotor regions have been described for miRNAs

that translocate from the cytoplasm into the nucleus.

Since their target interaction typically requires a

match of only 7–8 nucleotides to the 30 untranslated

region of the mRNA, which might allow for a mis-

match, the range of potential targets is large. How-

ever, the effect size of a single interaction is usually

low and depends on the expression levels of the tar-

get. Therefore, efficient regulation is often achieved

by targeting multiple genes of a pathway and/or addi-

tive effects of commonly transcribed miRNA clusters

or families [13].

miRNAs are relatively stable even in tissues of com-

promised quality [14]; thus, they are frequently investi-

gated as biomarkers. A significant number of miRNAs

have been found to be upregulated or downregulated

in cancerous compared to normal colorectal tissue as

reviewed by Pid�ıkova et al. [15]. Furthermore, the

expression profiles of miRNAs seem to be more tissue-

specific than those of mRNAs [16]. There have been

indications that miRNA–mRNA interactions might be

context-dependent and could even differ between

molecular cancer subtypes [17,18]. A comparison

between CMSs, on the level of cell lines, suggested reg-

ulatory roles of miR-194 (from the 192/194/215-

cluster) and the miR-200 family [19]. The latter is criti-

cal in establishing and maintaining epithelial cell iden-

tity, and both are downregulated in CMS4 [12,20].

1.3. Study setup

To investigate to which extent the miRNA transcrip-

tome can separate the CMS classes we trained a ran-

dom forest classifier using miRNA expression data for

which standard CMS classes was available from paired

mRNA data. During this supervised training of a

miRNA-assigned classifier, we gained additional

insights into the regulation of CMSs through miR-

NAs. The testing performed in a different dataset

showed an accuracy of 76–79% for samples with high

prediction confidence.

2. Materials and methods

2.1. Experimental setup

We trained a random forest classifier using miRNA

expression data from The Cancer Genome Atlas

(TCGA) colon adenocarcinoma (COAD) dataset (271

samples) to identify CMS classes, which we obtained

from paired mRNA data [21]. The classifier was tested

using miRNA expression data from TCGA rectal ade-

nocarcinoma (READ) compared with the standard

CMS classes from paired mRNA data (158 samples)

[21], and miRNA expression data with clinical

data from a cohort of 126 primary samples of CRC

with metastases, EGAS00001001127 (abbreviated as

EGAS1127) [22,23]. Furthermore, we tested the classi-

fier on primary COAD samples, which were difficult

to classify based on mRNA and had thus not been

used for training (n = 169). COAD sample pairs from

fresh frozen and formalin-fixed, paraffin-embedded

(FFPE) tissue were used to test applicability to FFPE

samples (n = 7). In addition, we examined primary
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samples of the datasets GSE29623 (n = 65) and

GSE35834 (n = 31) concerning the generalization to

microarray-based data. Our scripts and the classifiers

are publicly available via Github/rsmadam/CMS-

miRaCl.

2.2. Data retrieval and preprocessing

We retrieved COAD miRNA data using TCGABIOLINKS

(2.14.1) [24]. We used only primary tumor samples

from the first vial (sample/vial-ID -01A). Isoforms

were summarized as mean expression. To normalize

the miRNA count data, we used variance stabilizing

transformation from DESEQ2 (1.26.0) [25]. During prin-

cipal component and t-distributed stochastic neighbor

embedding (tSNE) analyses using CARET (6.0–85), we

identified batch effects in the miRNA datasets from

COAD related to tissue source sites, and we used

LIMMA (3.42.2) to remove them (Fig. S1A,B) [26,27].

For COAD (n = 445), we obtained the CMS annota-

tion from our previous work [1]. In addition, we gen-

erated the mRNA-based CMS labels via the R

package CMSCLASSIFIER (1.0.0), applying the Random

Forest classifier to the COAD mRNA data. For this,

we obtained COAD mRNA data from TCGABIOLINKS

as RSEM normalized counts, which we log-

transformed and applied batch effect removal concern-

ing the different platforms GA/HiSeq. Only labels that

were reclassified concordant to our previous classifica-

tion and had a P-value < 0.05 were considered as

robust (n = 276). COAD samples were thus excluded

from the training dataset if they were nonclassifiable,

e.g., due to the presence of intermediate subtypes or

intratumor heterogeneity. We removed outlier samples

(n = 5) using the Tukey’s mild outlier definition. Fea-

tures with low variance < 0.5 or high correlations

> 0.75 were removed using CARET (6.0–85) [26]. The

remaining 381 miRNAs were considered suitable for

the classifier training.

After obtaining the READ miRNA data from TC-

GABIOLINKS, we proceeded similarly, performing an

independent variance stabilizing transformation and

removal of batch effects related to tissue source sites.

We used only primary tumor samples from the first

vial (sample/vial-ID -01A) (n = 158) and did not

remove outliers. We performed log transformation of

READ RSEM counts and removed batch effects from

sequencing platforms to obtain CMS class labels.

EGAS1127 data was obtained from fresh frozen tis-

sue samples of metastasized CRC as described previ-

ously [22,23]. It comprised 126 primary tumor

samples, of which 38 had at least one matched metas-

tasis sample. We used these metastatic samples purely

for creating a comparison between metastases and pri-

mary tumors (Fig. 5D). The 38 primary samples

matched to 46 metastatic samples as follows: 30 pri-

maries matched to 30 single metastatic samples, one

primary matched to a single metastasis plus a local

recurrence, and seven primaries matched to every two

metastatic samples (corresponding to two different

sites). Raw data underwent summarization of isoforms

and variance stabilizing transformation and showed no

obvious batch effects.

For the microarray-based datasets GSE29623 and

GSE35834, we obtained mRNA and miRNA data

from Gene Expression Omnibus [28,29]. We excluded

two outliers in GSE29623 based on the Tukey’s mild

outlier definition. In the miRNA data, isoforms were

summarized and each feature was scaled by division

by their standard deviation. In the mRNA data, Affy-

metrix identifiers were translated to Entrez identifiers

using biomaRt [30] before applying the CMS classifier.

2.3. Differential expression analysis

DESEQ2 (1.26.0) was applied for variance stabilizing

transformation and differential expression analysis of

raw read counts for both miRNA and mRNA data

from COAD [25]. The results were annotated with

org.Hs.eg.db (3.10.0) and plotted using COMPLEX-

HEATMAP (2.2.0) [31].

2.4. Classifier training

We used the CARET package (6.0–85) for classifier

development [26], with the goal to predict CMS labels

from miRNA data. For this supervised classifier train-

ing, we combined the COAD miRNA data with the

mRNA-based CMS labels. To identify the optimal

classifier algorithm, we compared accuracy and Kappa

(accuracy with correction for random predictions) in

random forests and support vector machines, each

maximizing either accuracy or Kappa. After deciding

for the ranger implementation of a random forest clas-

sifier, the optimal parameters were determined in a

grid search [32]: We ran 1009 repeated 10-fold cross-

validations, using downsampling to balance the class

composition. The importance of features was deter-

mined based on the Gini importance, which is equiva-

lent to the mean decrease in Gini impurity. This

indicates the pureness of the sample classes after sepa-

rating samples based on this feature—compared with

randomly picking a class label (respecting the class dis-

tribution). The values were scaled to a maximum of

100. To identify the average Gini importance of fea-

tures and the accuracy on the training data, we created
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100 leave-out partitions of 20% and reran 100 times a

109 repeated 10-fold cross-validation to optimize

parameters in the 80% subset before training the clas-

sifier (maximizing Kappa) on the 80% subset. The

Gini importance showed a steep decrease within the 10

most important features and a minimal decrease after

the 20th rank on average (Fig. S2A). With the opti-

mized parameters (number of features to try

(mtry) = 25 for miRaCl or mtry = 2 for miRaCl-20,

number of nodes = 10, number of trees = 2000), we

trained a classifier (maximizing Kappa) on the entire

COAD training dataset (n = 271) with 381 miRNAs

(miRaCl) or 20 most important miRNAs (miRaCl-20).

We also explored further decreasing the number of

features, but the accuracy decreased when we kept

only 12 or 10 of the most important features

(Fig. S2B).

2.5. Classifier evaluation

The classifier was applied to READ and EGAS1127 data-

sets to evaluate performance on two completely unrelated

datasets. Furthermore, we applied the classifier to samples

from COAD, which were not robustly classified by the

mRNA-based method and therefore excluded from train-

ing. Similarly, in READ, we required a robust mRNA-

based CMS label for the test set. Samples from READ,

which were not robustly classified by the mRNA-based

method, were evaluated separately. The output of class

probabilities was used to estimate the prediction confi-

dence as the absolute difference between first and second

highest class probabilities since similar probabilities

between the predicted first class and second class indicate

low confidence in the class decision. Prediction compar-

isons were plotted using PHEATMAP (1.0.12) for confusion

matrices or GGALLUVIAL (0.12.2) for alluvial plots [33].

The correlation was tested using the Spearman method in

R package GGPUBR (0.2.5) and plotted in GGPLOT2 (3.2.1)

[34]. The ability to predict CMS based on 20 miRNAs

was validated using two independent microarray-based

datasets, of which the larger GSE29623 was used to

retrain the classifier to allow the input of scaled microar-

ray data, and the smaller dataset GSE35834 was used to

test the accuracy as reported. The clinical relevance of the

miRNA-based CMS classification for the overall survival

(OS) was tested in the EGAS1127 dataset using a Cox

proportional hazards regression model for association

with the most informative miRNAs and a Kaplan–Meier

analysis with a log-rank test in R package survival (3.1–8)
[35]. OS was defined as the time between the start of first-

line treatment until death from any cause and OS data.

OS information was available for 82 out of 126 patients

from the EGAS1127 dataset. For validation, the hazard

ratios were also calculated in TCGA CRC (COAD+-
READ) samples with available OS data (n = 594), and a

subset of patients with Stage IV (n = 87).

2.6. Network analysis

Regulatory transcriptional networks (RTN) were con-

structed using RTN package (2.10.1) and visualized

using REDER (1.34.0) [36–38]. The RTN method is

based on the ARACNE algorithm [39], thus it identifies

potential interactions, i.e., co-expression, from expres-

sion data by measuring mutual information. The use

of the mutual information criterion allows for captur-

ing of interactions that are nonlinear, in contrast to

using a correlation coefficient. Before the network is

inferred, the identified interactions are reduced to the

most significant ones by permutation analysis and

bootstrapping and testing for data processing inequal-

ity (DPI) to prefer direct interactions over indirect

interactions. From dataset COAD, we used the most

differentially expressed mRNAs (absolute log2 fold

change |log2FC| > 0.85, adjusted P-value (Padj)

< 0.001, at most 200) and the most differentially

expressed miRNAs (|log2FC| > 0.71 and Padj < 0.05)

per CMS based on Wald statistic with Benjamini–
Hochberg corrected P-values, related to previous pro-

ceedings [12]. The expression data of these genes

(RSEM/RPM-normalized scaled read counts) were

evaluated for mutual information with the subgroup

of either upregulated or downregulated miRNAs with

Padj < 0.001 in each CMS, respectively, for the net-

work inference. Benjamini–Hochberg method was

applied to account for multiple testing, the unstable or

redundant interactions were filtered via bootstrap and

DPI filter. For visualization, we added the log2FC

from DESEQ2 as a node color and the feature impor-

tance as node sizes, feature names were reduced to

those present in miRaCl and miRaCl-20.

2.7. Pathway analysis

We identified potential targets of the 20 most impor-

tant miRNAs from the databases miRDB, miRTar-

getScan, and miRbase [40–42]. We ranked the

predicted target genes based on the (experimental) sup-

port type and the number of databases they were listed

in. To exclude low evidence targets and make results

between miRNAs more comparable, we considered

only genes predicted by at least two databases and a

maximum of 200 predicted targets per miRNA. To

analyze which pathways these target gene candidates

were involved in, we tested for overlap with Hallmark

gene sets with one-sided hypergeometric tests
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equivalent to the Fisher’s exact test using LIMMA [27].

Hallmark gene sets are curated gene sets with experi-

mental evidence and a maximum size of 200 [43]. Of

note, this procedure may still produce false-positive

predictions. To narrow down the predicted pathways

towards potential roles of the miRNAs in the pheno-

types of the CMS, we performed an alternative analy-

sis, where we first intersected the predicted targets with

genes that are differentially expressed between the

CMS. For each CMS we used the 200 most downregu-

lated genes to obtain gene sets of the same size and

facilitate comparability between CMSs (Table S1). We

then performed a pathway overlap analysis for each

CMS individually and showed the miRNA-pathway

overlap predictions for each CMS with the lowest P-

value in the one-sided hypergeometric test.

3. Results

3.1. Experimental setup and dataset description

We used the COAD miRNA dataset with paired mRNA-

based CMS labels to train a miRNA-assigned CMS clas-

sifier, CMS-miRaCl, and a parsimonious version with

only 20 features, miRaCl-20. Its performance was tested

primarily on two independent datasets, READ and

EGAS1127 (Fig. 1A). In the training dataset, it was first

tested whether there were significantly differentially

expressed miRNAs between the CMSs (Fig. 1B). Of note,

miR-625 was significantly upregulated in CMS1 vs. other

CMSs and in CMS3 vs. other CMSs and, respectively,

downregulated significantly in CMS2 and CMS4.

Both datasets with previously determined CMS labels,

COAD and READ, were composed of all four CMSs,

with CMS2 representing the largest class (Fig. 1C). The

tSNE analysis resulted in clustering of the mRNA-based

CMS subtypes in the COAD miRNA dataset, whereas

the classes separated less clearly in the READ dataset.

The clinical characteristics of the examined datasets exhi-

bit differences regarding the composition of stages

(Fig. 1D, Fig. S1E). In the EGAS1127 dataset, 52% of

the samples was of advanced tumor stage IV. Addition-

ally, other primary tumors in the EGAS1127 dataset

developed metachronous metastases.

3.2. Classifier training and performance

evaluation

The most optimal results in the classifier training were

obtained with the training of a random forest optimiz-

ing Kappa instead of a support vector machine

(Fig. 2A). When we trained a random forest-based

miRNA-assigned classifier (miRaCl) on all suitable

381 miRNAs repeatedly on 80% (n = 217) of the

COAD samples with robust mRNA-based CMS labels,

we obtained an average accuracy of 76.7% on the

unseen samples (n = 54). When the number of features

was reduced to keep only the features with the highest

Gini importance, we observed a slightly higher accu-

racy of 77.9% with 20 miRNAs retained (miRaCl-20).

The performance of the final model was tested in

the READ dataset. We observed that the accuracy of

the CMS predictions was slightly higher for miRaCl-

20 (72%) than for miRaCl (70%). The 95% confidence

intervals (CI) were 0.6329–0.7987 for miRaCl-20 and

0.607–0.7767 for miRaCl. The balanced accuracy was

at least 75% for CMS1, CMS2, and CMS4 for

miRaCl-20 (Fig. S2C). The individual predictions plot-

ted as confusion matrices showed that the majority of

miRaCl (Fig. 2B) and miRaCl-20 (Fig. 2C) predictions

match the mRNA-based CMS classes. Specifically,

CMS3 was often mislabelled as CMS2, and CMS2 and

CMS4 labels were swapped in a minor fraction of the

samples. Discordance between miRaCl and miRaCl-20

was uncommonly observed, only in 19 out of 122

(15.6%) samples, (Fig. 2D) and when we examined the

dataset EGAS1127 in 17 out of 126 (13.5%) samples.

Moreover, we demonstrated in a microarray-based

dataset that 20 miRNAs are sufficient for the predic-

tion of CMS classes with an accuracy of 65.2% (95%

CI 0.4273, 0.8362) in an additional test set (Fig. 2E).

As a parameter to measure the confidence of the pre-

diction, we compared (subtracted) the probabilities of

the first and second most likely class prediction, with

lower values reflecting a lower confidence. From this

analysis, it was apparent that confidences in CMS3 and

CMS1 predictions were lower in both datasets

(Fig. 2F). A lower prevalence of CMS1 in the READ

dataset was expected due to the preferential right-sided

location of CMS1 tumors [1]. The lower prevalence of

CMS1 and CMS3 tumors in the metastatic dataset

EGAS1127 was in accordance with their lower rate of

metastases and their decreased fraction of stage IV

CRC [44]. When excluding predictions with lower confi-

dences (< 25th percentile), the accuracy in the READ

dataset was improved (76% for miRaCl and 79% for

miRaCl-20), with no clear separation of clinical param-

eters as stage or histology (Fig. S2D). The confidence

to predict CMS4 was reduced when the tumor purity

was high (Fig. 2G); however, the confidence of CMS1

and CMS2 was not affected by the tumor purity. The

confidence in CMS3 tended to correlate positively with

tumor purity. These observations were similar in miR-

aCl and miRaCl-20 (Fig. S2E,F). The distribution of

CMS class predictions based on miRaCl-20 showed
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variations between the datasets (Fig. 2H). This was

expected due to varying clinical compositions of the

datasets, i.e., rectal location in READ or metastatic dis-

ease in EGAS1127 (Fig. S1E).

When the performance of miRaCl was examined

on COAD or READ samples that could not be

classified based on mRNA, a good correlation of

posterior probabilities between miRaCl- and mRNA-

based predictions by CMS classifier was observed

(Fig. S3A,B). The comparison of the derived confi-

dences revealed a low correlation (Fig. S3C,D). This

suggests that the samples that were more difficult to

clinical
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classify were different between mRNA and miRNA-

based classification. The alluvial plot indicated that

multiple samples classified differently between mRNA

and miRNA-based prediction (Fig. S3E,F). This

result should be interpreted with caution since these

samples were not robustly classified by the standard

mRNA-based method (CMS classifier) including P-

values > 0.05. By censoring labels for 25% of samples

with the lowest miRaCl confidence, the overall accu-

racy in this comparison increased from 56.2% to

61.6% for the COAD test set samples (n = 169) and

from 45.7% to 52% for the READ samples that had

impossible or inconsistent mRNA-based classification

(n = 35). Altogether, the data indicate that many of

the excluded samples remain difficult to classify with

miRaCl.

To investigate the applicability of miRaCl to FFPE

tissue, we used COAD sample pairs from fresh frozen

and FFPE tissue (n = 7) and observed a very good

correlation of posterior probabilities between these

replicates (Fig. S3G). However, due to four out of the

seven samples being classified as CMS1, the results

obtained in this patient cohort are potentially not suit-

able for generalization. Furthermore, we found that

one sample shifted from CMS2 to CMS4 in FFPE

compared with fresh frozen samples.

3.3. Importance of miRaCl features

In order to understand which miRNAs the classifier is

based on, we examined its most important features

(Fig. 3A) obtained by the mean decrease in impurity

(Gini importance) in more detail. Five of the 20 most

important miRNAs have previously been reported to

be significantly upregulated in CRC tumor tissue com-

pared to surrounding normal tissue: miR-592, miR-

552, miR-335, miR-92b, and miR-92a [22].

In the density plots of the features with the highest

Gini importance, which are relevant for both miRaCl

and miRaCl-20, we investigated the separation of the

miRNA expression per class (Fig. 3B, Fig. S4A). For

classification it is equally useful to know whether a

feature is depleted or enriched in one or more classes,

thus most features carry multiple information. For

example, a low expression of miR-625 makes it likely

to be a CMS2 or CMS4 tumor and a high expression

makes it likely to be a CMS1 or CMS3 tumor. A

low expression of miR-592 makes the tumor more

likely to be of class CMS1 than CMS2 and vice

versa.

A comparison of the most important features

between miRaCl(-20) and the microarray-based adap-

tation miRaCl-20A revealed that miR-552, miR-592,

miR-31, miR-155, and miR-625 were reproducibly

important for the discrimination of CMS (Fig. S4B).

3.4. Regulatory role of miRaCl features

Next, we aimed to explore the regulatory role of miR-

aCl and miRaCl-20 features for differences between

CMSs. Therefore, we constructed regulatory networks

from genes differentially expressed in each CMS and

visualized the miRaCl feature importance in this con-

text. To find regulatory roles among the most signifi-

cantly upregulated (Fig. 4) or downregulated (Fig. S5)

miRNAs in each CMS, we considered both mRNAs

and miRNAs with differential expression in the same

CMS as potential targets in the network analysis.

Interestingly, among all significantly upregulated miR-

NAs with a regulatory role, more than one-third (14/

38) was also represented in miRaCl-20, and this set is

highlighted with the miRNA names displayed. In

regard to the downregulated miRNAs with regulatory

roles (15/44 in miRaCl-20), we confirmed the impor-

tance of the miR-200 family (miR-141 and miR-200c)

in CMS4, as was previously reported [12].

By comparing the networks in both directions, we

discovered a few overlaps with the potential to explain

differences between the CMSs: miR-92a, miR-362,

miR-335, miR-552, and miR-592 were downregulated

regulators in CMS1 and upregulated regulators in

CMS2. We also found miR-615 to have a diverging

expression with regulatory roles in CMS1 and CMS2.

Further examples were miR-625 and miR-99a with

opposing expression between CMS1 and CMS4 and

miR-143 with downregulation in CMS2 and upregula-

tion in CMS4.

To investigate relevant biological processes for the

miRaCl-20 features, we performed an overlap analysis

between their predicted targets and the Hallmark

gene sets (Fig. S4C) [43]. In order to refine the analy-

sis and increase relevance for CMS, we narrowed

down the set of predicted target mRNAs: Targets

that were predicted by at least two databases were

additionally intersected with mRNAs downregulated

in each CMS to pin down the biological processes

important for each CMS (Fig. 3C). Indeed, the iden-

tified pathways were in line with the known biology

of the CMS, such as epithelial-mesenchymal transi-

tion (EMT) being downregulated in the highly differ-

entiated CMS3 and a downregulation of MYC

targets in CMS4, as was previously described [1].

Furthermore, when a miRNA was suggested to target

a pathway in a CMS, this miRNA was generally also

highly expressed in the corresponding CMS (Fig. 3B,

Fig. S3A).
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3.5. Clinical implications

To test whether the identified miRNAs that separate

CMS classes were also related to the OS in the

EGAS1127 dataset, we computed the hazard ratios in

a multivariate model of the first 10 features in

miRaCl/miRaCl-20 (Fig. 5A). A slightly decreased

hazard (0.82, 95% CI 0.68–0.99) was observed in miR-

552, a miRNA with the highest expression in CMS2.

Using the TCGA dataset as an additional dataset to

study survival, miR-552 was confirmed as a positive

prognostic marker of good survival in patients with

CRC in all stages [HR = 0.89 (0.79–1.0)], and even

more pronounced within Stage IV CRC [HR = 0.65

(0.49–0.85)]. For two miRNAs—miR-218 and miR-

143—showing the highest expression in CMS4, we

observed opposing hazard ratios on the OS in the

EGAS1127 dataset (stage IV): a decreased hazard for

miR-218 (0.82, 95% CI 0.67–0.99) and an increased

hazard for miR-143 (1.58, 95% CI 1.11–2.23). This

result was not confirmed in the TCGA COAD/READ

datasets across all stages.

Of note, the OS based on miRaCl(-20)-CMS predic-

tions was worst for CMS1 (Fig. 5B,C), as previously

reported for metastatic CRC [45,46], although the

number of cases predicted as CMS1 was low. As

described in the original publication, CMS4 has a

worse prognosis than CMS2 [1]. The difference

between CMS2 and CMS4 is less pronounced in this

metastatic cancer cohort than in the original study,

which focused on earlier stages, in line with previous

findings [45]. We confirm an enrichment of CMS4 and

depletion of CMS1 (Fig. 2H) in this cohort consisting

largely of advanced disease stages as described earlier

[44].

In the EGAS1127 dataset, we retrieved CMS labels

for the available metastatic samples from 38 patients

and compared them with their corresponding primary

samples. Though the CMS classification was not

developed for use on metastases, we wanted to explore

the concordance of CMS class predictions between pri-

mary and metastases pairs (Fig. 5D). We observed

that peritoneal metastases were mostly classified as

CMS4, whereas the liver metastases were enriched in

CMS2 (P-value 0.0355, Fisher’s exact test).

4. Discussion

4.1. Training and validation of miRaCl

It has been widely acknowledged that molecular inter-

tumor heterogeneity of CRC plays a major role in the

clinical outcome of the disease, and this notion has

resulted in the development of CMSs [1]. The typical

CMS classification is dependent on the availability of

mRNA expression data. To allow for the identification

of CMSs based on an additional source of molecular

information, we generated a miRNA-assigned CMS

classifier, CMS-miRaCl. The parsimonious version of

this classifier could predict unseen samples with an

average accuracy of 77.9% within the COAD training

dataset. In comparison, imCMS, the image-based clas-

sifier, which made use of histochemical staining, had

an accuracy of 70% within the training dataset [9]. We

investigated the accuracy of miRaCl(-20) and the cor-

relation with clinical characteristics in two additional,

completely independent datasets. While there was a

good concordance of CMS1 between mRNA- and

miRaCl-based predictions, CMS3 seemed to be rela-

tively frequently misclassified. Often, mRNA-based

CMS3 predictions were misclassified by miRaCl as

CMS2, indicating that the distinction between the two

classes could be challenging. One strategy to circum-

vent this problem is to combine CMS3 samples

together with CMS2 samples into an “epithelial-like”

group, which was implemented by imCMS as well [11].

Overall, miRaCl(-20) showed a good accuracy in the

Fig. 2. Performance of classifier. (A) Performance of different classifiers on the training dataset COAD (n = 271), random forest (rf), and

support vector machines (SVM) optimizing Kappa or accuracy (acc), respectively. (B) Confusion matrix of CMS predictions from resulting

miRNA-assigned random forest CMS classifier (miRaCl) compared with mRNA-based CMS classes using the rectal adenocarcinoma (READ)

test dataset (n = 122). (C) Confusion matrix of CMS predictions from reduced random forest classifier based on the 20 most important

features (miRaCl-20) in rows compared with known mRNA-based CMS classes in columns using the READ test dataset (n = 122). (D) The

alluvial plot of miRaCl predictions from all 381 input features in comparison with the predictions of miRaCl-20 in READ (n = 158) and

EGAS1127 primary tumor samples (n = 126). (E) Confusion matrix of microarray-based GSE35834 test dataset comparing CMS predictions

from miRNA-assigned classifier based on the 20 most important features in rows with mRNA-based CMS predictions in columns as far as

available (n = 23). (F) Confidence of miRaCl predictions was determined as the difference between the probabilities of the first and the sec-

ond most likely class in READ (n = 158) and in EGAS1127 primary tumor samples (n = 126) and the means differed (tendentially) between

the CMS classes (Kruskal–Wallis test). Boxes mark the interquartile range (IQR), whiskers extend to the furthest value within 1.5*IQR

(Tukey whiskers). (G) We tested for correlation with the tumor purity (Pearson correlation test). (H) miRNA-based CMS predictions as frac-

tions of primary samples in training and test datasets, including samples where mRNA-based classification was not possible.
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Fig. 3. Important features of miRaCl. (A) Importance (Gini index) identified during the miRaCl training on colon adenocarcinoma dataset

COAD, shown for the 20 features with the highest mean decrease in impurity. Asterix marks miRNAs previously reported as tumor-specific

[22]. (B) Density distributions (Gaussian kernel) of miRNA expression levels (read counts on log2 scale) in COAD stratified by known mRNA-

based CMS for the 10 most important miRNAs, which are used in miRaCl and miRaCl-20. (C) Genes predicted to be targets of the miRNA

from miRaCl-20 were first intersected with genes downregulated in each CMS and afterwards tested for overlap with Hallmark gene sets.
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READ test set. Especially, by censoring samples

within the lower quartile of confidence, the accuracy

increased from 72% to 79% in miRaCl-20 and from

70% to 76% in miRaCl. This opens the opportunity

to choose the higher accuracy over the completeness

of predictions. The parsimonious miRaCl-20 was

slightly more accurate than miRaCl. This might indi-

cate that the lower number of features in miRaCl-20

helps to avoid overfitting and supports generalizability

[47].

Reduced accuracy and incongruences between

mRNA and miRNA predictions might be in part

related to intratumor heterogeneity. For example,

mRNA-based CMS class predictions can even differ

between the tumor center and the invasive front in

samples from the same tumor [48]. Although all

TCGA mRNA and miRNA data pairs were retrieved

from the same sample and vial, the portion of the

sample used for the analysis was not the same for all

cases. This could be one explanation why approximately

one in four cases of both CMS2 and CMS4 were

swapped by miRaCl(-20) in comparison with the

mRNA classification in the READ test set, even

though they are considered to be quite different from

each other. To identify the role of tissue composition,

we tested whether the confidence of prediction was

related to tumor purity and found an inverse correla-

tion in CMS4 but no correlation in CMS2. Since miR-

NAs are more tissue-specific than mRNAs [16], the

inverse correlation between confidence and tumor pur-

ity in CMS4 is not surprising; if the defining mes-

enchymal component of this subtype is reduced, the

sample becomes more difficult to classify. As another

reason for misclassification related to tissue specificity

of miRNAs, we consider the tumor location (left vs.

right). Because multiple miRNAs are differentially

expressed between the tissue of the colon and rectum

[49], the location-specific expression of miRNAs might

lead to a reduced accuracy of miRaCl(-20) in the

READ dataset after training on the COAD dataset.
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Fig. 5. Clinical implications. (A) Cox proportional hazards model for the effect on overall survival (OS) for the 10 most important miRaCl/

miRaCl-20 features on EGAS1127 dataset, error bars represent 95% confidence intervals. (B, C) Kaplan–Meier analyses for OS stratified by
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predicted CMS classes in patients with paired primary (prim.) and metastasis (met.) samples, including one recurrent (recur.) colorectal

tumor; LN, lymph node; NOS, not otherwise specified. If multiple metastases were available, the primary was duplicated for visualization

purposes, as marked by underscore extension of patient IDs (n = 38).
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For example, miR-155 is included in miRaCl-20(A)

and is higher expressed in rectal cancer than in colon

cancer samples [50]. Thus, it is one example of miR-

NAs that might influence the performance of the clas-

sifier depending on the location of the tumor.

Furthermore, since CMS2 and CMS3 tumors consist

mainly of epithelial cells, these classes might be espe-

cially sensitive to the specific tissue of origin.

The tissue specificity of miRNAs might also be rele-

vant when the miRaCl(-20) classifier is applied to

metastatic samples. Contamination with noncolon tis-

sue in metastases might influence the classifier, and

thus, the prediction of metastases samples should be

interpreted with caution. Surprisingly, the concordance

of miRNA-based CMS predictions between the paired

primary and metastases samples seems to be higher

than in previous reports, where mRNA-based CMS

predictions mostly differed between the primary tumor

center and the lymph node metastasis [48]. This obser-

vation is in line with the previous observation that

miRNA expression levels are highly correlated between

paired metastases and primary samples [22]. However,

it is important to note that neither the mRNA-based

CMS classifier nor miRaCl(-20) was developed to be

used on metastases.

The classification result could be influenced by the

(clinical) composition of the classified cohort, as has

been discussed for the mRNA-based classifier [51].

Therefore, we tested whether the classification of sam-

ples was sensitive to the cohort composition in the

EGAS1127 dataset. The CMS classification of primary

tumor samples on the EGAS1127 dataset remained

consistent, regardless of primary tumor and metastases

samples (n = 172) were jointly classified using miRaCl

or the primary samples were classified separately

(n = 126) (data not shown). The ability to predict

CMS from 20 miRNAs in microarray data was also

tested and gave correct CMS classifications with an

accuracy of about 65% in the dataset GSE35834.

However, we did not test the classifier on other dataset

compositions with different clinical characteristics such

as a dataset consisting mainly of early-stage colon can-

cer samples. To prove the consistency throughout all

CRC tumor stages, it would be interesting to study the

performance of miRaCl-20 on additional datasets.

4.2. Role of important miRaCl(-20) features in

CMSs

Due to a redundancy of gene regulation by miRNAs

or correlating expression of miRNAs from the same

family, gene signatures for the same phenotype can

differ depending on the analysis [52]. However, miR-

625, miR-592, miR-552, miR-31, and miR-155 were

reproducibly important for the discrimination of

CMSs as we confirmed with the microarray version

miRaCl-20A. Therefore, we reflected upon their poten-

tial biological roles in CMSs. The most important fea-

ture of miRaCl(-20), miR-625, was significantly

upregulated in CMS1 and CMS3 and significantly

downregulated in CMS2 and CMS4. Interestingly, a

recent single-cell study described that CMS1 and

CMS3 share some similarities in their epithelial cell

compartment [53]. Furthermore, miR-625 was previ-

ously identified to be associated with MSI [54]. The

pathway analysis suggested that miR-625 might be

involved in the differential regulation of Wnt signaling

between CMS: It has predicted targets among the Wnt

signaling pathway (AXIN2, NKD1), which were highly

downregulated in CMS1 in comparison with other

CMSs.

As miRNA with the potential to discriminate

CMS2, we identified miR-592 and miR-552 among the

most important miRaCl(-20(A)) features. The pre-

sented network analyses suggested that miR-592 has a

regulatory role among the upregulated miRNAs in

CMS2 and among the downregulated miRNAs in

CMS1. Interestingly, miR-592 has previously been

linked to both tumor suppressive and tumor promotive

characteristics in different cancer types [55–60]. Of

note, miR-592 was the most differentially expressed

miRNA between tumors of patients with a clinical

benefit versus progressive disease on first-line systemic

treatment in advanced CRC [23]. Based on the path-

way analysis we performed, we can speculate that the

target genes of miR-592 could be related to the EMT

pathway. More is known about the mechanism of

miR-552: It has been found to be upregulated in CRC,

compared with normal colon tissue, and it plays a role

in promoting cell proliferation and migration in vitro

[22,61]. Moreover, miR-552 appears to be a direct tar-

get of Wnt signaling and in turn targets TP53 [62], in-

ducing Wnt/b-catenin signaling [61], consistent

with the presence of Wnt signaling in CMS2 [1]. In

different datasets, EGAS1127 and TCGA COAD and

READ, we found miR-552 to have a significantly

decreased hazard ratio for the OS. It seems interesting

to further explore the relevance of miR-552 as a prog-

nostic biomarker.

The miRNA miR-31 was upregulated in CMS1 and

is known to be an established immunomodulatory

miRNA, which is deregulated in autoimmune disorders

[63]. In CRC, miR-31 was previously found to be asso-

ciated with worse differentiation [64] and immune infil-

tration [65], coinciding with CMS1 characteristics

[1,66].
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Overall, several promising findings regarding the

roles of miRNAs in CMSs suggest that the identifica-

tion of novel molecular subtypes from miRNA data

might further elucidate intertumor heterogeneity and

could be an interesting subject for future research.

5. Conclusion

We developed a random forest classifier to separate

CMSs based on miRNA expression. The parsimo-

nious version miRaCl-20 is able to determine the

CMS in unrelated datasets with an average accuracy

of > 70% across all classes based on only 20 miR-

NAs in the largest dataset. When the less represented

group CMS3 or low confidence predictions are disre-

garded, the accuracy rises to > 75%. Additionally,

the prediction of CMS4 appears to be influenced by

tumor purity. During the classifier training, the

importance of miRNAs was ranked. This provided

insight into regulatory mechanisms potentially under-

lying the differences between CMSs. In highlight,

miR-552 is an interesting candidate for further evalu-

ation as a prognostic biomarker. The application of

miRaCl in an independent dataset of metastasized

CRC allowed us to recapitulate the prognostic value

of CMS classification.
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