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Accumulating evidence has demonstrated that oxidative stress is associated with depression. Our present study aimed at
investigating the antidepressant effect and the possible mechanisms of curcumin (CUR) in chronic unpredictable mild stress-
(CUMS-) induced depression model in rats. After exposure to CUMS for four weeks, the rats showed depressive-like behavior,
and the depressive-like behaviors in CUMS-treated rats were successfully corrected after administration of CUR. In addition,
CUR could effectively decrease protein expression of oxidative stress markers (Nox2, 4-HNE, and MDA) and increase the
activity of CAT. CUR treatment also reversed CUMS-induced inhibition of Nrf2-ARE signaling pathway, along with increasing
the mRNA expression of NQO-1 and HO-1. Furthermore, the supplementation of CUR also increased the ratio of
pCREB/CREB and synaptic-related protein (BDNF, PSD-95, and synaptophysin). In addition, CUR could effectively reverse
CUMS-induced reduction of spine density and total dendritic length. In conclusion, the study revealed that CUR relieves

depressive-like state through the mitigation of oxidative stress and the activation of Nrf2-ARE signaling pathway.

1. Introduction

As one of the most common neuropsychiatric illness, depres-
sion has affected 300 million people of all ages in the modern
world [1]. According to the WHO’s prediction, depression is
expected to become the world’s second leading cause of dis-
ability by 2020 [2], leading to a huge social and economic
burden on the modern society [3]. In currently clinical prac-
tice, many chemical treatments are used for depression, such
as tricyclic antidepressants, monoamine oxidase inhibitors,
and selective serotonin reuptake inhibitors [4, 5]. However,
the existing treatments were not effective to all patients [6]
and also accompanied with unwanted side effects [7, 8].
Thus, it is necessary to develop a more effective and safer
pharmacological intervention.

Increasing evidence suggested that oxidative stress is
responsible for the development of depression [9]. Oxidative
stress mainly focused on brain which has a limited

amount of antioxidant capacity [10]. It was reported that
antidepressants could effectively reduced oxidative damage
in depressed patients [11, 12]. The antioxidant subjects
like polyphenolic compounds exhibit antidepressant activity
in experimentally induced depression models by modulating
the brain oxidative stress status [13].

Oxidative stress is an etiologic factor in depressive/
neurodegenerative disorders that it is often accompanied by
deregulation of nuclear factor erythroid-2-related factor 2
(Nrf2) pathway, a key antioxidant mechanism indicated as
a promising target for treatment of depression [14]. As a piv-
otal transcription factor, Nrf2 was involved in the regulation
of the antioxidant response in the brain. Under oxidative
stress circumstances, Nrf2 isolate from Kelch-like ECH-
associated protein 1 (Keapl) and translocate from cytoplasm
into the nucleus [15, 16]. Furthermore, antioxidant response
element (ARE) could be upregulated after the activation of
the Nrf2 and finally regulates the expressions of a variety
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of antioxidant enzymes like heme oxygenase-1 (HO-1) and
NADPH: quinine oxidoreductase-1 (NQO-1) [17, 18].
Buendia et al. [19] has reported that Nrf2-ARE pathway
is proved to reduce oxidative stress and neuroinflammation
and play a protective role in neurodegenerative diseases.

Numerous evidence has indicated that depression was
associated with a range of changes in synaptic form [20, 21].
Cyclic AMP response element-binding protein (CREB)
was a major transcription factor involved in the regulation
of genes associated with synaptic and neural plasticity. As
an important neurotrophic factor, brain-derived neuro-
trophic factor (BDNF) supports growth and survival of neu-
rons. Recent study has showed that CREB-BDNF signaling
pathway in hippocampus was closely related to depression
and the pathogenesis of cognitive function impairments
[22]. PSD-95 and synaptophysin were postsynaptic marker
and presynaptic marker, respectively, which play an impor-
tant role in the maintenance of synaptic plasticity.

Curcumin (CUR) is the major active component extracted
from Curcuma longa, which exhibited anti-inflammatory,
antioxidant, immunomodulatory, and neuroprotective activi-
ties [23, 24]. It has been increasingly recognized that CUR
has the potential to cross blood brain barrier and exert
antidepressant-like action. Xu et al. have reported that chronic
administration of CUR produced a significant antidepressant
property in the treatment of depression in mice model [25].
Notably, CUR’s antioxidative properties hold a great deal of
potential for the treatment of depression. More and more
evidences also showed that the activation of Nrf2 was the main
mechanism of CUR in the treatment of oxidant stress-related
diseases [26, 27]. Shen et al. have reported that CUR exerts its
chemopreventive effects via the induction of antioxidant
enzymes by activating Nrf2-ARE signaling [28]. Oxidative
stress in the diabetic rat-induced by STZ could be attenuated
by CUR through activation of the Keapl-Nrf2-ARE signaling
pathway [29]. In addition, CUR augments the cardioprotec-
tive effect of metformin in an experimental model of type I
diabetes mellitus via the Nrf2/HO-1 pathway which is also
reported in previous study [30]. However, the detailed mech-
anism underlying the antidepressant effects of CUR as related
to Nrf2 in the brain remains seldom studied.

Therefore, in our present study, we aimed to investigate
the antidepressant-like effect of CUR in CUMS-induced rats.
In addition, to further investigate the possible molecular
mechanisms underlying the therapeutic effects of CUR, we
also assessed whether the possible antidepressant-like effects
of CUR are associated with oxidative stress status and the
changes on the activation of Nrf2 in the brain.

2. Materials and Methods

2.1. Animals. Male Sprague-Dawley rats (180-220g) were
provided by the Hunan Cancer Hospital Animal Centre.
The rats were housed in standard conditions (23 +2°C, 12h
light/dark cycle). Except prior to sucrose preference test
(SPT), food and water were freely available in the whole
experiment. This study was approved by the Animal Care
and Use Committee of Hunan Cancer Hospital (protocol
number 016/2018). All experiments were performed in
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TaBLE 1: Specific modeling methods of CUMS.

Number CUMS procedure

24 h food deprivation
24 h water deprivation
45 cage tilting for 24 h
Restraint for 4h in an empty water bottle
20 min of noise

1 min tail clamping

N Y Uk W

Damp bedding

accordance with the Guide for Care and Use of Laboratory
Animals (Chinese Council).

2.2. CUMS Procedure. The rats were adapted for one week
and the CUMS procedure was performed for four weeks as
previously described [31]. 24 h food deprivation followed by
24 h water deprivation, 45 cage tilting for 24 h, restraint for
4h in an empty water bottle, 20min of noise, 1 min tail
clamping, and damp bedding were selected as stressors in
our study. All stressors were applied individually, continu-
ously, and randomly, so that the stress procedure is unpre-
dictable. The detailed information for specific modeling
methods of CUMS are shown in Table 1.

2.3. Experimental Design. Rats were randomly divided into
three groups (n=38): control, CUMS, and CUMS+CUR.
CUR (suspended in 0.5% Tween 80, purchased from Sigma
Chemical Co., USA) was administrated by oral gavage
(100 mg/kg/day) in the CUMS+CUR group, and the rats in
control group were treated with the same volume of saline.

At the end of four weeks, behavioral tests were carried out,
and the rats were sacrificed under anesthesia with an intraper-
itoneal injection of 1% sodium pentobarbital (50 mg/kg).
Blood samples and the hippocampus were collected in our
study. The whole experimental protocols are shown in
Figure 1.

2.4. Behavioral Test

2.4.1. SPT. The SPT was performed as our previous study
[32]. Prior to testing conditions, all the rats were separated
in 1 cage each and habituated to 48 h of forced 1% sucrose
solution consumption in two bottles on each side. After dep-
rivation of water for 14 h, two preweighted bottles containing
1% sucrose solution and tap water were given to each rat.
After 1h, the bottles were weighed again, and the consumed
weights of 1% sucrose solution and tap water were
recorded. The percentage preference for sucrose was calcu-
lated as follows: sucrose preference (%) = sucrose consumption/
(sucrose consumption + water consumption).

2.4.2. Forced Swimming Test (FST). The FST was performed
as described previously [33] with minor modifications. In
brief, rats were separated and were forced to swim in an open
cylindrical container (45 cm height, 25 cm diameter) contain-
ing 35 cm of water (24 + 1°C) for a 15 min pretest. The rats
were then dried and removed from their cages. 24 hours later,
the rats were exposed to the same experimental conditions
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FIGURE 1: Schematic representation of experimental protocol.

TABLE 2: Primers used in real-time PCR analyses of mRNA expression.

Gene Sense primer (5'-3") Antisense primer (5'-3")

HO-1 TGCTCGCATGAACACTCTGGAGAT ATGGCATAAATTCCCACTGCCACG
NQO-1 GTGAGAAGAGCCCTGATTGT CCTGTGATGTCGTTTCTGGA
Nrf2 CCCAGCACATCCAGACAG TATCCAGGGCAAGCGACT
B-Actin CATCCTGCGTCTGGACCTGG TAATGTCACGCACGATTTCC

outlined above for a 5min FST. Immobility time was scored
by an experienced observer blind to the experiment design,
defined as floating with only small movement necessary to
keep the head above water.

2.4.3. Novelty-Suppressed Feeding Test (NSFT). All the rats
were food deprived for 24 h in their home cages before NSFT.
A piece of white paper (10 x 10 cm) was placed in an open
field (7575 x40 cm), and a small amount of food was
placed on this paper. The rats were allowed to explore the
open field for 8 min. The time it took for the rat to approach
and take the first bite of the food was defined as the latency
time and was recorded in our study. Immediately afterwards,
the animals were transferred to their home cage, and the total
food intake for the next 5min was also weighed to avoid the
influence of the animals’ appetite.

2.4.4. Open Field Test (OFT). The open field apparatus con-
sisted of a 76 x 76 cm gray wooden box with 42cm high
boundary walls. The floor was divided into 25 equal squares
by black lines. Each rat was placed in the center of the square
and left to explore it freely for 5 min. The number of crossing
and rearing was recorded by the observer blind to the treat-
ment condition of the animal. The apparatus was cleaned
with ethanol and water to remove olfactory cues.

2.5. Determination of Serum Corticosterone. For the determi-
nation of serum corticosterone, the blood samples were
collected at 13:00-15:00 on day 38 before sacrifice. The col-
lected plasma was centrifuged (3500xg, 15min) at 4°C and
stored at -80°C until analysis. The serum corticosterone levels
were measured using a commercial ELISA kit (Cayman
Chemical, USA) according to the manufacturer’s instruc-
tions. The standards and samples were all run in duplicates,
and the averaged data were used for statistical analysis.

2.6. Real-Time PCR Analysis. According to the instruction of
manufactory, total RNA was extracted from the hippocam-
pus using TRIzol reagent (Invitrogen Corp., Carlsbad, CA,

USA). The mRNA expression of Nrf2, NQO-1, and HO-1
was determined in our present study. Quantitative PCR was
performed on Bio-Rad Cx96 Detection System (Bio-Rad,
Hercules, CA, USA) using the SYBR green PCR kit (Applied
Biosystems Inc., Woburn, MA, USA) and gene-specific
primers. The sequences of gene-specific primers are listed
in Table 2. A 5ng cDNA sample was used with 40 cycles of
amplification. Each cDNA was determined in triplicate. The
signals were normalized to -actin as an internal standard.

2.7. Determination of Antioxidant Enzyme Activities and
Lipid Peroxidation. Malondialdehyde (MDA) content was
determined according to the previous report [34]. Briefly,
1 ml of 15% trichloroacetic acid was added to 500 ul of brain
homogenate supernatant and mixed well, and then, the solu-
tions were centrifuged at 1006xg for 10 min. One milliliter of
the supernatant was added to 0.5ml of 0.7% TBA, and then,
the mixture was heated for 60 min at 90°C. The absorbance
was recorded at 532nm using UV spectrophotometer.
CAT activity was assayed by H,O, consumption, following
Aebi’s [35].

2.8. Western Blot Analysis. For western blot analysis, total
protein was prepared from the hippocampus, and the
Bradford method was used to determine its concentration.
The hippocampus sample was loaded on a precast 12%
SDS-PAGE gel with 10 ug proteins in each lane. Proteins in
the gels were transferred to a polyvinylidene fluoride mem-
brane and blocked for 1h in 5% nonfat dry milk in TBS-T
(25mM Tris, pH 7.5, 150 mM NaCl, 0.05% Tween-20). The
antibodies and concentrations listed below were used
overnight at a temperature of 4°C: Nox2 (Santa Cruz; sc-
130549; 1:800); 4-HNE (Abcam ab48506; 1:1000); Nrf2
(Abcam; ab137550; 1:200); pCREB (Cell Signaling; 9198;
1:1000); CREB (Cell Signaling; 9197; 1:1000); BDNF
(Abcam; ab108319; 1:2000); PSD-95 (ProteinTech; 20665-
1-AP; 1:2000); synaptophysin (ProteinTech; 17785-1-AP;
1:1000); PCNA (ProteinTech; 10205-2-AP; 1:3000); and
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FiGurek 2: Effect of CUR on CUMS-induced behavior changes. (a) Sucrose preference in SPT, (b) immobility time in FST, (c) latency time in
NSFT, (d) food intake in NSFT, (e) number of crossing in OPT, and (f) number of rearing in OPT. Data are expressed as means + SD (n = 8).
#p < 0.05 and *#p < 0.01 compared to the control group. “p < 0.05 and **p < 0.01 compared to the CUMS group.

B-actin (ProteinTech; 60008-1-Ig; 1:4000). Membranes were
then probed with horseradish peroxidase-conjugated sec-
ondary antibody for 40 min. After washing, the membranes
were dipped in electrochemiluminescence, and immunoblots
were analyzed by using the Bioprofl Biolight PC software
(Vulber Lourmat, France). 8-Actin was used as an internal
standard to normalize the signals.

2.9. TUNEL Staining. According to the manufacturer’s
instructions, the terminal deoxynucleotidyl transferase-
mediated deoxyuridine triphosphate nick-end labeling
(TUNEL) detection kit (KeyGen Biotech, Nanjing, China)
was used to assess apoptosis. Apoptotic index was defined
as the average percentage of TUNEL-positive cells in 20
nonoverlapping cortical fields under x200 magnification.

2.10. Immunohistochemical Staining. Paraffin-embedded
tissue sections were rehydrated first in xylene and then in
graded ethanol solutions. The slides were then blocked with
5% bovine serum albumin (BSA) in Tris-buffered saline
(TBS) for 2h. After incubation with anti-8-OHDG and
anti-Nox2 overnight at 4°C, the sections were then washed
with PBS and incubated with secondary antibodies. Counter
staining was performed using hematoxylin, and the slides
were visualized under a light microscope.

2.11. Golgi Staining. Golgi staining was performed as previ-
ous report [36]. In brief, the brain tissues of the rat were kept
in the Golgi-Cox solution for 14 days in the darkness, and the
solution was replaced every 48 h. After dehydration with 30%

sucrose solution, the tissues were cut into 100 um section.
The following steps included treatment with ammonia water
and acid hardening fixing bath and dehydration with increas-
ing concentrations of alcohol. A digital camera attached with
microscopy was used to take images of the tissues for
dendritic structure analyzing. Dendritic spine density and
total dendritic length analysis were done manually using
the Fiji software under x400 magnification.

2.12. DHE Staining. Reactive oxygen species (ROS) was
measured by dihydroethidium (DHE) microfluorography as
previous study [37]. In brief, freshly prepared frozen brain
sections (15um thick) were incubated with 5uM DHE in
PBS at 37°C for 30 min in a dark humidified chamber. The
sections were then imaged by using the Leica fluorescence
microscope (Leica Microsystems, Germany).

2.13. Statistical Analysis. Statistical Package for Social Science
(SPSS) version 18 (SPSS Inc., Chicago, IL, USA) was used for
data analysis in our study. All data were analyzed by one-way
analysis of variance (ANOVA) with least significant differ-
ence (LSD) post hoc multiple comparisons. All data were
presented as means + SD, and p < 0.05 was considered statis-
tically significant.

3. Results

3.1. Effects of CUR on Behavioral Tests. The CUMS group
showed reduced source preference in SPT (Figure 2(a),
p <0.01), prolonged immobility time in FST (Figure 2(b),
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p <0.01), and latency time in NSFT (Figure 2(c), p <0.01)
in comparison with the rats in control group. Our study
also observed that the number of crossing (Figure 2(e),
p <0.05) and rearing (Figure 2(f), p<0.01) in OPT was
all significantly decreased in the CUMS group. In compari-
son with the CUMS group, the administration of CUR suc-
cessfully increased the sucrose preference (Figure 2(a),
p <0.01), decreased immobility time (Figure 2(b), p <0.01)
and latency time (Figure 2(c), p <0.01), and increased the
number of crossing (Figure 2(e), p<0.05) and rearing
(Figure 2(f), p < 0.01) in the CUMS+CUR group. In addition,
no significant difference of food intake was observed in
NSFT.

3.2. Effects of CUR on Corticosterone Level. As displayed
in Figure 3, the serum corticosterone level significantly
increased (p <0.01) in the CUMS group compared with
the control group. However, the administration of CUR
markedly decreased (p<0.01) the corticosterone level
when compared with the rats in the CUMS group.

3.3. Effect of CUMS and CUR on Oxidative Stress. The immu-
nohistochemical staining results of 8-OHDG and Nox2 are
shown in Figure 4(a); the results showed that the expressions
of 8-OHDG and Nox2 were all increased in CUMS-treated
rats when compared to control group, and the supplementa-
tion of CUR markedly moderated CUMS-induced increasing
of 8-OHDG and Nox2. The results of DHE immunostaining
showed that ROS production was significantly increased
in the CUMS group, and this increase in ROS generation
was markedly alleviated by the pretreatment with CUR
(Figure 4(a)). The protein expressions of Nox2 (Figure 4(b),
p <0.01) and 4-HNE (Figure 4(c), p < 0.01) were significantly
increased in the CUMS group as compared to the rats in the
control group, and the administration of CUR effectively mit-
igated CUMS-induced increasing of Nox2 (Figure 4(b), p <
0.05) and 4-HNE (Figure 4(c, p < 0.01); the western blot result
of Nox2 was in accordance with immunohistochemical
staining results. The content of MDA (Figure 4(d), p <0.01)
was significantly increased in the CUMS group when com-
pared to the control group. The CUR treatment successfully
decreased the content of MDA in the CUMS+CUR group
when compared to the CUMS group (Figure 4(d), p < 0.01).
In comparison with the rats in the control group, the activity
of CAT (Figure 4(e), p>0.05) was decreased in CUMS-
treated rats but without significance difference. Furthermore,
the administration of CUR significantly increased CAT activ-
ity in the CUMS+CUR group when compared to the CUMS
group (Figure 4(e), p < 0.05).

3.4. Effects of CUR on the Activation of Nrf2 in CUMS-
Treated Rats. The Nrf2 levels in cytoplasmic (Figure 5(a),
p<0.05) and nuclear (Figure 5(b), p<0.01) all signifi-
cantly decreased in the CUMS group when compared with
the rats in the normal-treated group, and the Nrf2 in
nuclear obviously (Figure 5(b), p <0.01) increased in the
CUMS+CUR group compared to the CUMS group. Interest-
ingly, as shown in Figure 5(c), the gene expression of Nrf2
was similar with the protein expression of Nrf2 in the
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Ficure 3: Effect of CUR on CUMS-induced serum corticosterone
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nuclear. The mRNA expressions of NQO-1 (Figure 5(d),
p<0.01) and HO-1 (Figure 5(e), p <0.05) all significantly
decreased in the CUMS model rats, and CUR treatment
significantly prevented the decrease of NQO-1 (Figure 5(d),
p<0.01) and HO-1 (Figure 5(e), p < 0.05) in the CUMS+
CUR group when compared with the rats in the CUMS

group.

3.5. Effect of CUMS and CUR on Synaptic Plasticity. As
shown in Figure 6(b), the pCREB/CREB ratio was signifi-
cantly decreased in the CUMS group compared to vehicle
control group (Figure 6(b), p <0.05). Administration of
CUR significantly increased pCREB/CREB ratio in the hip-
pocampus compared to the CUS-treated rats (Figure 6(b),
p <0.01). The protein expression of BDNF (Figure 6(c),
p<0.01), PSD-95 (Figure 6(d), p <0.05), and synaptophy-
sin (Figure 6(e), p <0.01) all significantly decreased in the
CUMS-treated rats, and CUR successfully reversed the
CUMS-induced decrease of these three proteins (p < 0.01).
Previous studies have reported that dynamic alterations in
synaptic and dendritic structure and function play a pivotal
role in the development of depression [38, 39]. In our present
study, Golgi staining showed that spine density (Figure 6(g),
p<0.01) and total dendritic length (Figure 6(i), p <0.01)
significantly decreased in the dentate gyrus (DG) granule
neurons of CUMS-induced rats, and the administration of
CUR markedly reversed this effect (Figure 6(g), p <0.01,
Figure 6(i), p < 0.05).

4. Discussion

Our present study demonstrated that the administration of
CUR exhibited antidepressant-like activities in CUMS-
induced depression model. We investigated the depressive-
like behaviors (SFT, FST, NSFT, and OFT) in rats under
CUMS, and chronic administration of CUR normalized
behavioral changes in rats exposed to stress. CUR could effec-
tively decrease protein expression of oxidative stress marker
(MDA, Nox2, and 4-HNE). CUR could also activate stress-
induced Nrf2-ARE axis inhibition. In addition, long-term
treatment with CUR markedly prevented CUMS-induced
reduction of BDNF, PSD-95, and synaptophysin expressions.
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These findings indicate the potential benefits of administra-
tion of CUR to reverse the development of depression. Fur-
thermore, the antidepressant mechanism of CUR may be
mediated by restoring changes in oxidative stress and the
activation of the Nrf2-ARE signaling pathway.

The CUMS model has long been used as animal model of
depression, and previous study showed that most effects of
CUMS could be effectively reversed by antidepressant agents
[40]. In our present study, reduced sucrose preference in SPT
and prolonged immobility time in FST were observed in the
CUMS group, which indicated the depressive-like state. In
comparison with the rats in the CUMS group, chronic
administration of CUR successfully increased sucrose prefer-
ence and decreased immobility time, which was consistent
with the former studies [41, 42]. Anxiety status was assessed
by NSFT and OFT. Our study observed that CUR treatment
could successfully reverse CUMS-induced increase in latency
time in NSFT and decrease in crossing number and rearing

number in OFT. Motaghinejad et al. have also reported that
chronic administration of CUR could effectively improve
ambulation number and ambulation distance in nicotine-
treated rats, indicating neuroprotective effect of CUR against
nicotine-induced neurotoxicity [43]. Therefore, CUR exhib-
ited antidepressant-like properties basing on the above-
mentioned results.

As a stress marker, corticosterone level is widely used for
accessing the stress state. More and more evidences showed
that the elevated corticosterone level was associated with
depressive-like behaviors, and antidepressant-like activity
could always induce a reduction of corticosterone level
[44-46]. In the present study, the corticosterone serum
level was significantly increased in rats exposed to CUMS
model compared to the nonstressed group, and chronic
administration of CUR successfully reversed CUMS-
induced the elevation of the corticosterone serum level. The
results that serum corticosterone in the rats of the CUMS
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*p <0.05 and *p < 0.01 compared to the CUMS group.

group increased significantly were in accordance with
previous studies [2, 47]. As a typical antidepressant agent,
fluoxetine could effectively prevent the elevation of serum
corticosterone level in CUMS-treated rats [1, 48]. Disrupting
the HPA axis and elevating the levels of serum corticosterone
by CUMS were increasingly recognized [49, 50]. In addition,
CUMS-induced increase of serum corticosterone level may
be due to an impaired negative feedback in the HPA
[51, 52] and lack of the inhibitory role of the hippocam-
pus in glucocorticoid synthesis [53].

The elevated free radical generation and decreased
activity of antioxidants break the balance between oxidant-
antioxidant systems, which will always induce oxidative
stress [54]. More and more evidence showed that the brain
is highly susceptible to oxidative damage [55], and oxidative
stress plays a pivotal role in CUMS-induced depression [54].
The release of excitatory amino acid and the expression of
specific gene may be enhanced by ROS, which will always
induce lipid peroxidation and DNA oxidation, subsequently
resulting in neuronal apoptosis [56]. Our present study
observed that the intensity of DHE staining and TUNEL-
positive cells significantly increased in CUMS-treated rats,
which indicated oxidative stress induced a severe neuronal
apoptosis. Fortunately, as a natural antioxidant agent, the
administration of CUR significantly alleviated CUMS-
induced oxidative stress and neuronal apoptosis in the

CUMS+CUR group. In our present study, signs of oxidative
stress were observed as exemplified by the decrease of antiox-
idant enzyme activity, such as CAT. In addition, as lipid per-
oxidation markers, MDA and 4-HNE levels all significantly
increased in the CUMS group when compared to the control
group. Previous study has reported that CUR has shown to
counteract oxidative stress by reducing lipid peroxidation
and improving the activity of antioxidant enzymes [54].
Our study results were consistent with this report, which
expressed a significantly decrease in MDA and 4-HNE levels
and a markedly increase in CAT activity in the CUMS+CUR
group. Furthermore, DNA is an important and recognized
target of free radicals attack. 8-OHDG is one of the most
widely studied biomarkers of oxidative DNA damage. The
immunohistochemical staining results coincide with a previ-
ous study, which indicated that CUR effectively reversed the
increase of 8-OHDG expression under CUMS. ROS and
oxidative stress are mainly generated from Nox which is a
multiunit enzyme [57]. In particular, the primary mechanism
underlying the development of oxidative stress in various
neurodegenerative conditions is the activation of Nox2
[58]. In our present study, the protein expression of Nox2
significantly increased in CUMS-treated rats, and the admin-
istration of CUR successfully alleviated this phenomenon in
the CUMS+CUR group. These results supported that oxida-
tive stress plays a pivotal role in CUMS-induced depression.



()

(B)

8 Oxidative Medicine and Cellular Longevity
CON CUMS CUMS+CUR
[ @— cm— wm—| pCREB(43kD)
o L5 = 15
| | crEB(43KkD) s 5
[oa] =1
[— — — 7 50) = 1.0 510
[ | psD-95(00kD) & 2
g 05 205
T ee— S| VN (35KD) § "Z"‘
[—— (- Actin(43kD) @ 0.0 2 o0
Z 22} -4 |2} =4
@) = D % = o)
O =} O O ) O
o 3z o 3
: :
o O
(a) (b) (c)
'?t% 1.5 1.5 vs ———
= # =) CON
g 10 % &5 10
g £c T cums M
2 A d
wn 0.5 €% 05
R = >
@) @ CUMS+CURW
2 0.0 0.0 oo
2] o 2] ~
5§ £ B8 5 £ 5
®) = Q @) = @)
© & O &
p >
=) =}
O o
(d) (e) (f)
15 1500
2 CON CUMS CUMS+CUR %’ -
g ## 2 #
ZE10{ T £ & 1000 o
A ok = =
T8 o
£ 805 = % 500
& S~
[_4
0.0 . 0 .
w a4 2] ~
5 £ B - =
o =) Q o =) O
O s © %
=} =]
O o

®

Ficure 6: Effect of CUR on synaptic plasticity. (b) pCREB/CREB ratio in the hippocampus, (c) protein expression of BDNF in the
hippocampus, (d) protein expression of PSD-95 in the hippocampus, (e) protein expression of synaptophysin in the hippocampus,
(f) representative images of dendritic spines from DG granule neurons in the rat, (g) spine density in different groups, (h) representative
images of DG granule neurons in the rats, and (i) total dendritic length in different groups. Data are expressed as means + SD (n = 8). #p
<0.05 and ##p < 0.01 compared to the control group. “p < 0.05 and *p < 0.01 compared to the CUMS group.

In addition, our results also demonstrated that the neuropro-
tective effect of CUR was mediated via its antioxidative
ability.

As a transcription factor, Nrf2 is known to play a pivotal
role in modulating oxidative stress and exhibiting an impor-
tant protective role in brain injury and neurodegenerative
diseases. As it is known to us, Nrf2 is mainly located in the
cytoplasm under physical conditions. However, Nrf2 translo-
cates into the nucleus in response to oxidative stress [15]. In
our present study, the results of western blot showed that
CUR administration promoted Nrf2 nuclear translocation.
This indicates that the Nrf2 level markedly increased in
CUMS+CUR-treated rats when compared with the rats in
the CUMS group. And the protein expression of Nrf2 was
without significant difference in both the CUMS+CUR group
and the CUMS group. The above observations revealed that
Nrf2 was inhibited when rats exposed to CUMS and CUR

had the ability to activate Nrf2. Previous studies have also
reported that CUR had the ability to activate Nrf2 and
provide neuroprotection from a traumatic brain injury
[16, 56]. In order to investigate the regulation effects of
CUR on the Nrf2 downstream pathway, the mRNA levels
of Nrf2, NQO-1, and HO-1 were evaluated in our study.
NQO-1 and HO-1 are important antioxidant enzymes in
the Nrf2-ARE pathway [59]. The results showed that chronic
administration of CUR could significantly reverse CUMS-
induced decrease in the mRNA level of Nrf2, NQO-1, and
HO-1. The above results indicated that the Nrf2 downstream
pathway was inhibited under CUMS, and chronic adminis-
tration of CUR could effectively activate this signal pathway.
Our results indicated that the Nrf2 signal pathway was inhib-
ited under CUMS, and chronic administration of CUR
enhanced Nrf2 translocation from cytoplasm to nucleus
and increased expression of antioxidant enzymes through
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Nrf2 signal pathway, thereby protecting the brain against
CUMS-induced depression.

CREB is involved in the regulation of genes associated
with synaptic and neural plasticity [43]. CREB has been
reported to be phosphorylated by many signaling events on
serine 133 [60]. The results in our study showed that the ratio
of pCREB/CREB significantly decreased in the CUMS group,
and chronic administration of CUR successfully reversed this
reduction. These results were in conformity with previous
studies which have shown that CUR can increase the
pCREB/CREB ratio in rats exposed to CUMS [61]. In addi-
tion, a previous study also showed that CUR could function
as a potential agent that suppresses depressive-like behavior
via the prevention of protein changes associated with syn-
aptic plasticity [62]. As the most abundant neurotrophin
in the brain, BDNF plays a crucial role in the regulation
of survival as well as synaptic plasticity. Our study investi-
gated whether BDNF was involved in the antidepressant
effects induced by CUR. The results indicated that the
expression of BDNF in rats exposed to CUMS was signifi-
cantly increased after chronic administration of CUR.
Furthermore, other synapse-associated proteins were also
accessed in our study. PSD-95 and synaptophysin were
postsynaptic marker and presynaptic marker respectively.
In accordance with BDNF, CUR successfully alleviated
CMUS-induced reduction in the protein level of PSD-95
and synaptophysin. Zhang et al. have reported that CUR
can reverse the decreased expression of BDNF, PSD-95,
and synaptophysin in CMS-induced rats [62]. Previous
studies have shown that spine densities and synaptic plas-
ticity were closely correlated with the function of neuron
and cognitive performance [63, 64]. Our present study
shows that CUR could effectively reverse CUMS-induced
decrease of spine density and total dendritic length. Hence,
the alteration of the above-mentioned synaptic plasticity-
associated proteins may underlie changes in functional
plasticity associated with CUMS-induced depression.

5. Conclusion

In conclusion, our present study suggests that the admin-
istration CUR is effective in preventing CUMS-induced
depression. Furthermore, the current results suggested that
the antidepressant action of CUR may be mediated by
restoring changes in oxidative stress, the Nrf2-ARE signal-
ing pathway, and the synaptic and neural plasticity, which
might ultimately contribute to its antidepressive-like effect.
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