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+is work is implemented for the management of patients with epilepsy, and methods based on electroencephalography (EEG)
analysis have been proposed for the timely prediction of its occurrence. +e proposed system is used for crisis detection and
prediction system; it is useful for both patients and medical staff to know their status easily and more accurately. In the treatment
of Parkinson’s disease, the affected patients with Parkinson’s disease can assess the prognostic risk factors, and the symptoms are
evaluated to predict rapid progression in the early stages after diagnosis. +e presented seizure prediction system introduces deep
learning algorithms into EEG score analysis. +is proposed work long short-term memory (LSTM) network model is mainly
implemented for the identification and classification of qualitative patterns in the EEG of patients. While compared with other
techniques like deep learningmodels such as convolutional neural networks (CNNs) and traditional machine learning algorithms,
the proposed LSTM model plays a significant role in predicting impending crises over 4 different qualifying intervals from 10
minutes to 1.5 hours with very few wrong predictions.

1. Introduction

Seizure prediction methodologies are based entirely on
continuous EEG recordings. Unlike seizure detection, the
sample’s weight now shifts to epileptic waves at EEG in-
tervals before seizure onset. Qualified EEG analysis for
seizure prediction has two main approaches. +e first is

based on the analysis of the characteristics of export signals
to track the temporal change in their prices, which leads to
the onset of a crisis. When prices exceed a certain threshold,
the system is activated to warn of an impending crisis. From
the time the alert is issued, a window of time is given during
which a crisis is expected to eventually occur. If the crisis
occurs within the forecast window, it is considered to have
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been successfully forecast; otherwise, it is characterized as an
incorrect forecast. +e second approach is based on the use
of machine learning to identify subcritical and intra-critical
areas of the EEG of patients. In this case, the scoring window
and the corresponding EEG segments from the start point of
each attack to the window definition are determined before
grouping them in the same class as the markers. All other
sections of the EEG preceding the scoring window and all
sections after the end of the seizure are intercritical. After
exporting two classes, the classification algorithm learns to
separate them. Each time, a part of the EEG is deemed
qualified; a corresponding warning of an impending crisis is
generated. +e qualifying window in both approaches is
randomly chosen by investigators in each study and has been
shown to last from minutes to hours before a seizure.

2. Literature Review

In recent years, machine learning algorithms have been
widely used to predict crises. In said system, a model was
developed and trained for the classification of the rating and
average critical departments using support vector machines
(SVMs) using the characteristics of spectrum extraction for
each EEG channel and energy distribution in different
frequency ranges [1]. Similar analysis methods have shown
that the EEG frequency composition changes significantly
over the qualifying period. In their study, Netoff and his
colleagues used EEG energy distribution in 9 frequency
bands (0.5 to 4Hz, 4 to 8Hz, 8 to 13Hz, 13 to 30Hz, 30 to
50Hz, 50 to 70Hz, 70–90Hz, and > 90Hz) and an SVM
classifier to separate the qualifying and mesocritical seg-
ments.+e evaluation was performed on the EEG recordings
of 9 patients at the Freiburg base (45 seizures in 219 hours)
with a mean sensitivity of 77.8% without prediction errors
[2]. +e qualifying window was much shorter at 5 minutes.
In a similar study evaluating a large sample of 18 patients
from Freiburg (80 seizures in 433 hours), the researchers
focused on extracting features from the higher frequency
spectrum and the methodology achieved a significantly
higher average sensitivity of 97.5%, but also 0.27 predictions
per hour [3]. And in this study, the classification was per-
formed using SVM. In addition to the Fourier transform and
the corresponding wavelet transform, it has also been shown
to be a very efficient method of calculating the energy
distribution of the signal to separate the defining parts of the
EEG both intracranial [4] and on the surface recordings [5]
with similar results. In another approach, the number of null
transitions (sign change in the EEG waveform) was used to
determine qualifying sites and predict seizures. In the
proposed methodology, the differences in the rate of zero
transitions between qualified and intercritical units were
studied using Gaussian mixed models (GMMs) to predict
40-minute depth crises [6]. To improve neural networks,
models have been proposed that are capable of synthesizing
more efficient complex networks that can be better adapted
to train data and learn more complex representations and
hidden dependencies. In recent years, deep learning algo-
rithms have become increasingly popular in medical image
and signal analysis due to the increase in available

computing power and the collection of large amounts of data
[7]. One of the best-known deep learning models is con-
volutional neural networks (CNNs), a type of network
consisting of repeated layers of convolution and pooling that
is very efficient for analyzing data representing a lattice
topology, such as medical images [8]. However, some studies
have also been suggested, presented to CNN on EEG analysis
for the purpose of predicting seizures. One of these meth-
odologies used a CNN network with 3 successive hidden
convergence levels to estimate the spectrum of EEG signals
extracted using the short-term Fourier transform. +e
spectrum was analyzed as an image to find differences be-
tween qualifying and mesocritical segments [9]. Training of
the deeper CNN with 6 hidden layers and use of the wavelet
transform to extract frequency information from EEG [10].

3. Crisis Prediction Model with Deep Machine
Learning Algorithms

+is section presents a proposed methodology for predicting
seizures from EEG data.+e proposed methodology is based
on the separation of the qualified EEG regions from the
corresponding mesocritics using traditional classification
algorithms [11], as well as deep learning models [12]. +e
process of EEG signal analysis and feature extraction for
classifier training is carried out separately for each patient.
+e main stages of the technique are shown in Figure 1. In
the first stage of data preprocessing, an initial evaluation of
the available EEG recordings is performed to determine the
number of channels available and the recording model when
receiving signals.+is is necessary because both the channels
and the recording schema contained in the patient’s charts
may change during a long continuous EEG recording. By
collecting information relevant to each patient’s record file,
channels that are not available in the entire record are
discarded in subsequent analysis to ensure that the system
consistently obtains the same amount of information from
the patient’s EEG, regardless of the log point parsed at any
time.

Apart from checking the homogeneity of the EEG
channels, no other preprocessing is applied to the data (e.g.,
filtering to exclude static noise or possible spurious en-
dogenous or extracerebral parameters). +e next step con-
sists of dividing the EEG signals into segments of shorter
duration, which will be analyzed separately to extract
characteristics from which the final classification will be
made. +e duration of these sections is set to 5 seconds, and
consecutive sections are separated without overlapping. +e
most well-known EEG processing and analysis methods are
used to extract features.+e set of exported features contains
values from the EEG analysis in the time field and in the
frequency field, from the calculation of the correlation be-
tween its different channels and from the trace, in an attempt
to create a space of features that contains the complete
information as possible. +e advantage of using a feature
extraction step is that it is an efficient method for revealing
hidden and more complex correlations that may be hidden
in the EEG signals. Next, the effect of feature extraction on
the efficiency of the final classification is estimated in
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comparison with the direct use of the signals of each EEG
channel in the form of a time series.

+e last stage consists of training the classifier, which is
in charge of dividing the sections into classificatory and
mesocritical, using the values of the exported characteristics.
+e accuracy of crisis forecasting depends largely on the
classification algorithm; therefore, in the following blocks
different methods are evaluated, in the field of both classical
machine learning (RIPPER algorithm, decision trees, SVM)
and deep learning (LSTM model). Initially, each 5-second
section is assigned to the appropriate class to which it be-
longs (critical, intercritical, or qualifying) based on the
length of the qualifying window and the start and end points
of each crisis, as specified in the database of data scores. File
judgment segments are automatically discarded as they have
no useful value for prediction, leading to a binary classifi-
cation problem with two classes (mesocritic qualifier). +e
length of the qualifying period is an arbitrary choice for any
study, as it has not yet been proven that there is a strictly
defined period of time before the onset of each crisis. Several
studies have even shown that changes in EEG activity can
occur several hours before the onset of the disease [13–15].
For the sake of completeness, this article estimates 4 qual-
ifying windows ranging from 15 minutes to 2 hours before
the onset of crises.

4. Export Features

Features are extracted separately for each part of the EEG by
analyzing the signal values of all available channels. +e
number of samples in each 5-second segment depends on
the sample rate selected when the data were written (e.g.,
1280 samples for 256Hz). Exported features are among the
most widely used in EEG analysis, and previous studies have
also shown them to be very useful for seizure prediction, as
their values change significantly over the scoring period.

4.1. Features in the Field of Time. +is category includes
features that can be calculated directly from recorded EEG
samples at the time they are acquired. +ese features include
average price (mean), variance, standard deviation, skew-
ness, kurtosis, number of zero crossings, signal width, signal-
to-peak (V-peak), and signal area with a trapezoid rule. All

functions are exported separately for each EEG channel.
Although the abovemeasurements are relatively simple, they
have great potential for detecting qualitative changes in
patients’ EEGs. For example, variability has been shown to
decrease significantly during the rating period, while cur-
vature increases as the onset of crisis approaches [16]. Also,
as mentioned above, the number of spikes and zero crossings
varies considerably over the rating period.

4.2.Characteristics in the FrequencyDomain. EEG frequency
analysis is one of the most useful methods, since the dis-
tribution of the signal energy hides a lot of information
about the state of the brain.+erefore, the distribution of the
signal energy in the main EEG frequencies is calculated: δ
(1–3Hz), θ (4–7Hz), α (8–13Hz), β (14–30Hz), c1

(31–55Hz), and c2 (65–110Hz). +e EEG spectrum for
energy distribution is exported as a periodic table (perio-
dogram, P) based on discrete Fourier transform (DFT). Also,
in addition to the power distribution over the above 6
speeds, the total signal power of each channel is used.

A discrete wavelet transform (DWT) is then applied to
the EEG signals of each section to calculate the energy
distribution using the pyramidal algorithm proposed by
[17], with the key feature of low computational cost. +e
transformation occurs in successive steps in an iterative
process that each time separates the information contained
in the high-frequency signal values by applying high-pass
and low-pass composite filters to the original wavelet. In the
present analysis, the fourth Daubechies wavelet was chosen
as the initial wavelet. At each level, the signal samples are
halved due to filtering. +e procedure is tentatively illus-
trated in Figure 2 for 3 levels at a sample rate of 256Hz,
which is the CHB-MIT base sample rate that will be used to
evaluate the methodology. +e coefficients Di are called
detail coefficients, while the approximation coefficients Ai
are used to determine the outputs of the high-pass and low-
pass filters, respectively. With the help of DWT, it is possible
to estimate the energy distribution of the signal at individual
sub-frequencies 64–128Hz, 32–64Hz, 16–32Hz, 8–16Hz,
4–8Hz, 2–4Hz, 1-2Hz, and <1Hz with low computational
cost.

+e use of 7 levels allows to calculate the energy dis-
tribution in the spectra very close to the base frequencies,

Qualifying sections

Mesocritical sectionsDecision
Trees

LSTM networks

Selection of features
- Classification

Export featuresDivision into
sections

EEG signals

Learning
rules

Support Vector
Machines

Selection of
features

based on 
correlation

C1

C2

C3

CN

...

Figure 1: +e basic stages of seizure prediction methodology.

Computational Intelligence and Neuroscience 3



adequately extracting the δ frequency at 1–3Hz and dis-
carding frequencies <1Hz, which usually contain strong
spurious potentials.

4.3. Channel Correlation and Self-Correlation. Calculating
the correlation between different EEG channels (cross-
correlation) can provide information on the simultaneous
activation of different brain regions, since it has been shown
that both synchronization and de-synchronization between
them can indicate an impending crisis. +e correlation is
tested in pairs between all the possible combinations of
available channels and is calculated based on the act of
convergence (∗ ) from the following equation, taking into
account the temporal offset n between the signals (delay time
or delay):

ρ
cicj[m+n]� ci ∗ cj( [m+n( /σci

σcj
 , n∈[−m,+m]

. (1)

To calculate the correlation coefficient, the signals must
have the same duration. +e final correlation values are
normalized to the interval [−1, 1]. +e greater the value to
one, the better the correlation between the pair of channels
considered, and negative values indicate the presence of
phase difference correlation. In addition to the correlation
between different channels, the decorrelation time is also
calculated. +e decoupling time indicates the time interval
before the first transition from zero of the autocorrelation
signal of each channel. +e point at which the autocorre-
lation first resets to zero is the requested latency and is
calculated for each available channel separately.

5. Long Short-Term Memory (LSTM)
Crisis Prediction

+e architecture of the LSTM model is an evolution of
recurrent neural networks (RNNs) and has been proposed to
improve adaptability to sequential training data. RNNs were
the first class of neural networks designed specifically for the
analysis of sequential data and time series, and have found

applications in the analysis of medical signals such as EEG.
+e peculiarity of this datum is that each value is a natural
continuation of the previous one and depends on it. Patterns
of time change also often appear, which in order to discover
a network must be able to respond to current input given
information that preceded it even long ago. RNNs are
designed to manage such serial connections by allowing
previous input values to influence the current response of
the network, essentially implementing a type of memory as
shown in Figure 3.+ree tables with weights U,W, and V are
used and applied for the input data for this purpose to the
shared data in the hidden layer of the next state and to the
network output, respectively. +e weights are distributed
among the different states based on the depth of the grid.

While theoretically long-range RNNs can be adapted to
signals such as EEG, in practice they have been shown to be
unable to detect long-range dependencies effectively. +e
reason is that the weight values in the U,W, and V tables are
common to all time states supported by the depth of the grid,
so it is very likely that some parameter will become unstable,
causing the slope of the cost function rise or fall abruptly,
which leads to a violation of the learning process and the
impossibility of successfully adapting the network to the data
due to the high complexity of the load calculation functions.
+is problem is commonly known as the gradient problem
and is mainly related to back propagation in time [18].

5.1. Operation of LSTM Networks. +e previous difficulty of
the internal architecture in an RNN was overcome with the
long short-term memory model (LSTM) [19]. Although
memory cells are wired in the same way as RNNs (Figure 3),
LSTMs have a more complex architecture within them,
allowing them to better manage information over long
periods of time without requiring much effort to train them.
LSTM is a chain-like structure constructed by replicating
blocks of NN. +e memory cell stores the information and
runs the chain. In addition, the gates control whether in-
formation can eventually be added to or blocked in the
memory cell. It is necessary to first create a vector for the cell
state using the tanh function, then sort the information from
gt−1 to xt, and multiply by the previously created vector to
obtain the new output. LSTM functions are defined as in
equations (2)–(7) as shown in Figure 4.

it−g � ϕ ωi gt−1, xt (  + ai, (2)

ft−g � ϕ ωf gt−1, xt   + af, (3)

ot−g � ϕ ωo[g., x.](  + a0, (4)

yt � tanh ωc gt−1, xt (  + af, (5)

yt � fg · yt−1 + ig · yt, (6)

gt � og · tanh yt( . (7)

Logistic sigmoid function is represented by ϕ, hyperbolic
tangent function is represented by tanh, and· denotes
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Figure 2: Illustration of the discrete 3-level transformation with
wavelets.
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multiplication function. At time t, ig denotes input gate, fg

denotes forget gate, og denotes output gate, and gt denotes
hidden state. ωi,ωf andωo denote the weights of input,
forget, and output gate, respectively, while ai, af and ao

denote their respective biases.
+erefore, by being able to independently install and

configure three gateways for each memory cell, the LSTM
network may be much more suitable for analyzing time-
based data such as EEG recordings. Furthermore, an LSTM
network can be composed of several hidden layers, in which
the cache state output of one layer of memory cells is used as
input for the next layer of memory cells, forming deeper and
more complex architectures. However, the complexity of
such a network grows rapidly, resulting in millions of
training parameters for a network with multiple layers and a
large number of memory cells in each layer. With networks
this deep, there are two problems to solve:

(1) Computational costs, which are enormous, and even
arrays of computing units are required to train such
networks.

(2) Even if funds are available to cover the computa-
tional cost, a very large set of big data must be
available for training to be efficient and not to overfit
on the training data (overfitting).

For this reason, although advances in computers now
provide a lot of computing power at a relatively low cost, the
design of an LSTM network must be done very carefully to
achieve the desired result with a minimum number of

parameters possible, and the models should be generalizable
and useful.

5.2. LSTM Network Architecture. +erefore, this section
provides a preliminary analysis that considers three different
LSTM network architectures, consisting of a simple circuit
with multiple memory cells per layer and more complex
networks with greater depth and number of elements. +ese
networks will be tested with a small subset of EEG records
from three randomly selected patients in the CHM-MIT
database to assess classification accuracy between subcritical
and intra-critical EEG segments and select the optimal ar-
chitecture. +e first architecture, LSTM_1, is the simplest
approach with a grid consisting of a hidden level with 32
memory cells. In the second architecture, LSTM_2, the
number of network memory cells is increased to 128 while
maintaining a single layer design. In the third project,
LSTM_3, the depth of the network is increased, one more
hidden level is introduced, but the number of memory cells
in each level remains constant: 128. +ree architectures are
shown in Figure 5. Figure 5 also shows intermediate levels of
neuronal deletion (dropout). +e use of dropout rates has
been proposed as a method to solve the problem of training
data overfitting in order to make LSTM networks more
robust and generalizable to new samples. In practice, its
purpose is to randomly reset part of each level’s output in
such a way as to remove a percentage of network infor-
mation and make it difficult to learn very specific patterns
that would be useless when evaluated with other data. +e
usefulness of this level in the present study of crisis fore-
casting is assessed below, since the size of LSTM networks is
relatively small, and their contribution can be very limited.
In all three cases, the output of the last layer of LSTM
networks is complemented by two additional layers con-
sisting of fully interconnected neural networks. +e first
takes the input of the LSTM network output and creates a
30-component output using the activation function of the
rectified linear unit, ReLU [21]. +e ReLU function is de-
scribed by the equation:

f(x) � max(0, x), (8)

where x is the input. In practice, the function returns a value
of zero for each negative input value, while for positive
values, triggering occurs on a 45° dial ramp.
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Figure 3: Architecture of a recurrent neural network (RNN) [18].
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+e ReLU function is preferred because it has been
shown to perform better on deep machine learning network
training problems and for this reason it is recognized as the
most popular activation function [22, 23]. Finally, a second
fully interconnected network produces a binary classifica-
tion effect by dividing the EEG segments into qualitative or
intercritical segments using the softmax function. +e
softmax function returns normalized values in the range [0,
1] for each network class. +e class with the highest value is
considered probably the most correct and is chosen to
classify the corresponding EEG segment.

+e cost function to train the algorithm uses a loga-
rithmic cross-entropy function, and Adam’s algorithm
(adaptive momentum estimation) [24] was chosen as the
optimization algorithm, using standard values of internal
parameters (i.e., learning rate� 0.001, beta_1� 0.9,
beta_2� 0.999, epsilon� 1e – 08, and decay� 0). As shown in
Figure 6, the advantages of Adam’s algorithm are lower
computational costs and relatively faster convergence, which
is a key factor for deep learning applications where network
parameters can be very large and can be trained on large data
sets. For this reason, although Adam’s algorithm is a rela-
tively recent implementation, it is almost installed on all
deep learning network design platforms (e.g., TensorFlow,
Keras, Torch, Caffe) as the recommended optimization
algorithm.

Finally, due to the complexity of networks, the training
process is carried out in smaller subsets of the total number
of training samples, called batches, to limit the memory
requirements of the system. In addition, in this way a
smoother convergence is achieved when training the LSTM
network. In each batch, pseudorandom training data subsets
are selected based on a parameter value (e.g., for batch = 10,
10 samples) through an iterative process until all data
samples have been used of training available. +e process is
then repeated for a predetermined number of iterations,
called epochs. For the present study, both parameters (batch
and epoch) are initialized to 10. +e basic parameters of the
network are shown in Table 1.

All LSTM network models for the needs of this work
were implemented using libraries from the Keras package
(version 2.0.9) [25] together with the TensorFlow envi-
ronment [26]. Programming was done in Python 3.6.

6. Evaluation Results—CHB-MIT Database

+e proposed seizure prediction methodology is evaluated
using records from the CHB-MIT database and four dif-
ferent scoring windows at 15, 30, 60, and 120minutes before
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Table 1: Basic parameters of the network.

Hidden state size LSTM 32 to 128
LSTM (layer number) levels 1 to 2
Fully connected layers 2 (ReLU, softmax)
Batch size 10
Epoch number 10
Sequence length 1 to 50
Learning rate 0.001
Number of classes Procritic, mesocritical
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seizure onset. +e LSTM network is separately trained and
evaluated for crisis prediction on each case from the CHB-
MIT database. As in the preliminary analysis, the impact of
choosing a different length of the LSTM network input
sequence on the prediction accuracy is evaluated. +e im-
balance between the available sections in the two classes is
resolved by dividing the intermediate sections into smaller
subgroups of the same size as the classified class, and the
results presented show the average of the measurements
across all subgroups [27–30].

For a more complete evaluation, results are presented
both for the case of segment-based evaluation and for the
ability to predict events as events (event-based evaluation).
To calculate the model performance, the following sampling
parameters are defined as follows:

(i) True Positives (TP): +e number of eligible parti-
tions that are correctly classified as eligible.

(ii) True Negatives (TN): +e number of mesocritical
regions that are correctly classified as mesocritical.

(iii) False Positives (FP): +e number of relevant sec-
tions misclassified as mesocritical.

(iv) False Negatives (FN): +e number of intermediate
classes that are incorrectly classified as qualifiers.

For an evaluation based on the EEG components, from
the above values, the sensitivity and specificity of the model
are calculated as follows:

Sensitivity �
TP

TP + FN
,

Specificity �
TN

TN + FP
.

(9)

To assess evidence-based prognosis, each seizure is
considered an independent event and sensitivity is defined as
the percentage of successfully predicted seizures relative to
the total number of seizures for each of 24 CHB-MIT-based
cases. For a statement to be considered successful, at least
one of its qualifying sections must be scored by the assessor
as qualifying. Fact-based scoring also uses the false pre-
diction rate (FPR), which indicates the number of false
predictions per EEG.

6.1. Comparative Analysis. Table 1 presents a comparison of
the proposed methodology with the international literature.
+e comparison focuses on studies that use the same da-
tabase (e.g., the CHB-MIT Scalp EEG database). +e pro-
posed LSTM model provided better crisis prediction results
than all previous methodologies that were previously eval-
uated with the same data set and using a similar qualification
period. +e exported features and the classification model
used in each study are also presented in Table 2. Studies that
did not use the classification algorithm but applied seizure
prediction rules are marked with a “−.” With the exception
of the graph-theoretic features, the other features extracted
in the present analysis have previously been used success-
fully to predict seizures [31]. However, if previous studies

did not use a large number of functions, according to the
results of this evaluation, their combination provides a
significant advantage, since the exported function space
contains more and more essential information.

7. Conclusion

+is work is dedicated to the development of artificial in-
telligence methods to improve the treatment of patients with
epilepsy or Parkinson’s disease, the two most common
neurological conditions. In the treatment of Parkinson’s
disease, the affected patients with Parkinson’s disease can
assess the prognostic risk factors, and the symptoms are
evaluated to predict rapid progression in the early stages
after diagnosis. EEG seizure prediction, the superiority of
LSTMs over CNNs has recently been reported in several
applications related to EEG analysis. +e presented seizure
prediction system introduces deep learning algorithms into
EEG score analysis. +is proposed work long short-term
memory (LSTM) network model is mainly implemented for
the identification and classification of qualitative patterns in
the EEG of patients. Compared to simpler classification
models, as well as rule-based methodologies that rely on
dynamic EEG changes, the proposed LSTM network
demonstrates significantly higher overall seizure prediction
accuracy.

Our future work, to enhance the work with optimization
scheme based on artificial intelligence methods for accurate
detection of patients with epilepsy or Parkinson’s disease
with less time consumption.
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+e data sets used and/or analyzed during the current study
are available from the corresponding author on reasonable
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Conflicts of Interest

+e authors declare that they have no conflicts of interest.

References

[1] M. Bandarabadi, C. A. Teixeira, J. Rasekhi, and A. Dourado,
“Epileptic seizure prediction using relative spectral power
features,” Clinical Neurophysiology, vol. 126, no. 2,
pp. 237–248, 2015.

[2] T. Netoff, Y. Park, and K. Parhi, “Seizure prediction using
cost-sensitive support vector machine,” in Proceedings of the
2009 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pp. 3322–3325, MN, USA,
September 2009.

[3] Y. Park, L. Luo, K. K. Parhi, and T. Netoff, “Seizure prediction
with spectral power of EEG using cost-sensitive support
vector machines,” Epilepsia, vol. 52, no. 10, pp. 1761–1770,
2011.

[4] K. Gadhoumi, J.-M. Lina, and J. Gotman, “Discriminating
preictal and interictal states in patients with temporal lobe
epilepsy using wavelet analysis of intracerebral EEG,” Clinical
Neurophysiology, vol. 123, no. 10, pp. 1906–1916, 2012.

8 Computational Intelligence and Neuroscience



[5] L. Wang, C. Fu, F. Yu et al., “Temporal lobe seizure prediction
based on a complex Gaussian wavelet,” Clinical Neurophys-
iology, vol. 122, no. 4, pp. 656–663, 2011.

[6] A. Shahidi Zandi, R. Tafreshi, M. Javidan, and G. A. Dumont,
“Predicting epileptic seizures in scalp EEG based on a vari-
ational Bayesian Gaussian mixture model of zero-crossing
intervals,” IEEE Transactions on Biomedical Engineering,
vol. 60, no. 5, pp. 1401–1413, 2013.

[7] J. R. Williamson, D. W. Bliss, D. W. Browne, and
J. T. Narayanan, “Seizure prediction using EEG spatiotem-
poral correlation structure,” Epilepsy and Behavior, vol. 25,
no. 2, pp. 230–238, 2012.

[8] S. Min, B. Lee, and S. Yoon, “Deep learning in bio-
informatics,” Briefings in Bioinformatics, vol. 18, no. 5,
pp. 851–869, 2017.

[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[10] N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi,
J. Yang, and O. Kavehei, “A Generalised Seizure Prediction
with Convolutional Neural Networks for Intracranial and
Scalp Electroencephalogram Data Analysis,” 2017, https://
arxiv.org/abs/1707.01976.

[11] H. Khan, L. Marcuse, M. Fields, K. Swann, and B. Yener,
“Focal onset seizure prediction using convolutional net-
works,” IEEE Transactions on Biomedical Engineering, vol. 65,
no. 9, pp. 2109–2118, 2018.

[12] K. Gadhoumi, J.-M. Lina, F. Mormann, and J. Gotman,
“Seizure prediction for therapeutic devices: a review,” Journal
of Neuroscience Methods, vol. 260, pp. 270–282, 2016.

[13] S. +ome-Souza, S. Jackson, M. Kadish et al., “Seizure de-
tection, seizure prediction, and closed-loop warning systems
in epilepsy,” Epilepsy and Behavior, vol. 37, pp. 291–307, 2014.

[14] K. M. Tsiouris, V. C. Pezoulas, D. D. Koutsouris, M. Zervakis,
and D. I. Fotiadis, “Discrimination of preictal and interictal
brain states from long-term EEG data,” in Proceedings of the
2017 IEEE 30th International Symposium on Computer-Based
Medical Systems, pp. 318–323, CBMS), +essaloniki, Greece,
June 2017.

[15] V. C. Pezoulas, M. Zervakis, S. Konitsiotis, D. D. Koutsouris,
and D. I. Fotiadis, “A Long Short-Term Memory deep
learning network for the prediction of epileptic seizures using
EEG signals,” Computers in Biology and Medicine, vol. 99,
pp. 24–37, 2018.

[16] T. N. Alotaiby, S. A. Alshebeili, T. Alshawi, I. Ahmad, and
F. E. Abd El-Samie, “EEG seizure detection and prediction
algorithms: a survey,” EURASIP Journal on Applied Signal
Processing, vol. 2014, no. 1, p. 183, 2014.

[17] F. Kreuz, T. Rieke, C. Andrzejak et al., “On the predictability
of epileptic seizures,” Clinical Neurophysiology, vol. 116, no. 3,
pp. 569–587, 2005.

[18] S. G. Mallat, “A theory for multiresolution signal decom-
position: the wavelet representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 11, no. 7,
pp. 674–693, 1989.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[20] S. Hochreiter, “+e vanishing gradient problem during
learning recurrent neural nets and problem solutions,” In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 6, no. 2, 1998.

[21] S. Schmidhuber and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[22] R. G. Hefron, B. J. Borghetti, J. C. Christensen, and
C. M. S. Kabban, “Deep long short-term memory structures
model temporal dependencies improving cognitive workload
estimation,” Pattern Recognition Letters, vol. 94, pp. 96–104,
2017/07/15/2017.

[23] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” in Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 315–323, FL, USA, April 2011.

[24] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for
Activation Functions,” 2018, https://arxiv.org/abs/1710.
05941.

[25] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” 2014, https://arxiv.org/abs/1412.6980.

[26] F. Chollet, Keras, 2015.
[27] M. Abadi, “Tensorflow: large-scale machine learning on

heterogeneous distributed systems,” 2016, https://arxiv.org/
abs/1603.04467.

[28] I. Ullah, M. Hussain, E.-u.-H. Qazi, and H. Aboalsamh, “An
Automated System for Epilepsy Detection Using EEG Brain
Signals Based on Deep Learning Approach,” 2018, https://
arxiv.org/ftp/arxiv/papers/1801/1801.05412.pdf.

[29] S. Tripathi, S. Acharya, R. D. Sharma, S. Mittal, and
S. Bhattacharya, “Using deep and convolutional neural net-
works for accurate emotion classification on DEAP data,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, no. 2, pp. 4746–4752, 2017.

[30] M. M. Hasib, T. Nayak, and Y. Huang, “A Hierarchical LSTM
Model with Attention for Modeling EEG Non-stationarity for
Human Decision Prediction,” in Proceedings of the 2018 IEEE
EMBS International Conference on Biomedical & Health In-
formatics (BHI), pp. 104–107, NV, USA, March 2018.

[31] T. N. Alotaiby, S. A. Alshebeili, F. M. Alotaibi, and
S. R. Alrshoud, “Epileptic seizure prediction using CSP and
LDA for scalp EEG signals,” Computational Intelligence and
Neuroscience, vol. 2017, pp. 1–11, Article ID 1240323, 2017.

Computational Intelligence and Neuroscience 9

https://arxiv.org/abs/1707.01976
https://arxiv.org/abs/1707.01976
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://arxiv.org/ftp/arxiv/papers/1801/1801.05412.pdf
https://arxiv.org/ftp/arxiv/papers/1801/1801.05412.pdf

