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ABSTRACT: The estimation of chemical reaction properties such
as activation energies, rates, or yields is a central topic of
computational chemistry. In contrast to molecular properties,
where machine learning approaches such as graph convolutional
neural networks (GCNNs) have excelled for a wide variety of tasks,
no general and transferable adaptations of GCNNs for reactions
have been developed yet. We therefore combined a popular
cheminformatics reaction representation, the so-called condensed
graph of reaction (CGR), with a recent GCNN architecture to
arrive at a versatile, robust, and compact deep learning model. The CGR is a superposition of the reactant and product graphs of a
chemical reaction and thus an ideal input for graph-based machine learning approaches. The model learns to create a data-driven,
task-dependent reaction embedding that does not rely on expert knowledge, similar to current molecular GCNNs. Our approach
outperforms current state-of-the-art models in accuracy, is applicable even to imbalanced reactions, and possesses excellent
predictive capabilities for diverse target properties, such as activation energies, reaction enthalpies, rate constants, yields, or reaction
classes. We furthermore curated a large set of atom-mapped reactions along with their target properties, which can serve as
benchmark data sets for future work. All data sets and the developed reaction GCNN model are available online, free of charge, and
open source.

■ INTRODUCTION
Machine learning models to predict molecular properties have
seen a large surge in popularity in the past decade, leading to new
developments and impressive performances on the prediction of
quantum-mechanical properties,1−3 biological effects,4−6 or
physicochemical properties,7−9 to name just a few. In particular,
graph-based approaches are on the rise and have proven both
powerful and useful in fields such as drug discovery.10

Many representations and model architectures have been
developed for the property prediction of molecules. Popular
approaches range from conventional machine learning models
on fingerprints or descriptors,11 graph-convolutional neural
networks on 2D graphs,1,3,8,9 and spatial convolutions on 3D
coordinates2,12,13 to natural language processing on string
representations,14,15 among others. In contrast, the development
of representations and architectures to predict the properties of
chemical reactions, i.e., the transformation from onemolecule to
another, lags behind. Recent studies include the prediction of
reaction yields via a random forest model on selected
descriptors,16 a random forest model on structure-based
fingerprints,17 or a molecular transformer model on reaction
strings.18 Reaction barriers were successfully predicted with
both linear regression and neural network models on expert-
selected features19 or Gaussian process regression on selected
computational results.20 Reaction rates were estimated via deep
neural network models on expert features,21 as well as
selectivities via different models on expert-curated descriptors.22

With the notable exception of the seminal work of Schwaller et
al.,18 all these approaches rely on manually created sets of
descriptors or features, which hinders the ability to transfer
model architectures and representations to new tasks. Recent
advances toward a more data-driven reaction representation
mainly concern the field of retrosynthesis,23−26 forward reaction
prediction,27−32 or learning the potential energy surface of a
reaction.33 Furthermore, a dual graph-convolutional neural
network was recently proposed for the prediction of activation
energies but is unable to handle imbalanced reactions.34 General
architectures which can address a variety of reaction properties
are still scarce, mainly due to a lack of a general reaction
representation.
Within the field of cheminformatics, the condensed graph of

reaction (CGR),35,36 which is a superposition of the reactant and
product molecules of a reaction, was found to be a suitable
reaction representation for a diverse set of tasks. It can be easily
constructed from an atom-mapped reaction by assigning dual
labels to each bond and atom according to their properties in the
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reactants and products, respectively. A CGR can be computed
from both balanced and imbalanced reactions, thus naturally
alleviating some of the restrictions of previous reaction
representations. Among others, CGRs were successfully used
for structure−reactivity modeling,37−39 reaction condition
prediction,40,41 atom-mapping error identification,42 and
reaction similarity searches.35 Toolkits are available to generate
or process CGRs, such as the Python library CGRTools.43

Despite these promising results, the condensed graph of reaction
has not been utilized as input representation to deep learning
models, such as graph-convolutional neural networks, yet.
In this study, we therefore adapt a graph-convolutional neural

network to encode the condensed graph of reaction instead of a
molecular graph and successfully predict reaction properties
such as activation energies, reaction enthalpies, rate constants,
yields, or reaction classes. The developed architecture is general,
versatile, and provides a large improvement in accuracy
compared to current reaction prediction approaches over a
broad field of tasks.

■ METHODS

Condensed Graph of Reaction. The CGR is a simple
superposition of the reactant and product graphs of the
molecules in a reaction. The atom mapping of the reaction
links the two graphs and thus provides an important input to
correctly construct the CGR. Figure 1 depicts the atom-mapped
reactant molecules in gray (left), as well as the atom-mapped
product molecule in red (right) for the dissociation of water. In
the middle, the resulting CGR is visualized. The two-colored
atoms represent the dual properties of each atom before and
after the reaction. The bonds undergoing changes are depicted
as dashed lines, and the labels indicate the bond type before and
after the reaction. Usually, changes in an atom concern its
charge, hybridization, multiplicity, or its environment, whereas
changes in a bond concern its bond type.43 Usually labels that
are the same for reactants and products, for example, [1,1] for
the bond from O2 to H3 or H/H for H3, are collapsed into a
single label,43 but we deliberately keep both labels, as each label
is used later to construct a part of the atomic and bond features

vectors of the CGR graph representation. CGRs can be obtained
for both balanced and imbalanced reactions, and imbalanced
reactions can be balanced via decomposition of the CGR.44

However, correct labels for missing atoms and bonds can only be
recovered for some but not all reactions using CGR
decomposition, namely, if no rearrangements occurs within
the missing fragments. An automatic balancing via the CGR
therefore potentially introduces noise to a data set, if some of the
missing fragments are wrongly autocompleted. We therefore
provide the user with the option to either set the features of the
corresponding atoms and bonds to zero, or copy the features
from the respective atoms and bonds on the other side of the
reaction, to avoid inconsistencies between balanced and
imbalanced data sets. The striped area in the bottom part of
Figure 1 indicates this choice. Later in this article, the benefit of
this treatment over a simple balancing via the CGR is described
further.

D-MPNN Architecture. In the following, we briefly
summarize the architecture of molecular-directed message
passing neural networks (D-MPNNs), a class of graph-
convolutional neural networks (GCNNs), to provide context
to the necessary changes and adaptions to generalize from
molecules to reactions. We only discuss the directed message
passing architecture from ref 8, but the described changes can be
easily adapted to any other graph-based architecture.
In general, GCNNs take the graph of a molecule as input,

where atoms correspond to vertices in the graph and bonds to
edges. The vertices and edges are usually associated with feature
vectors, which describe the identity of an atom, as well as the
type of a bond. The vertex or edge features are updated
iteratively through exchanging information with their neighbors
to create a learned representation of each atom. A representation
of the whole molecule is then obtained by an aggregation
function, often a simple sum or mean of the atomic
representations. The molecular embedding is then passed to a
readout function, in most cases a feed-forward neural network
(FFN) to relate it to a target property. The whole architecture,
i.e., the graph convolutions, aggregation, and FFN, are usually
trained at the same time, end to end.
In the case of D-MPNNs, messages are associated with

directed edges instead of vertices, in contrast to regular MPNN
architectures. The architecture of Yang et al.8 is schematically
depicted in Figure 2, top panel. For a molecular graph G, initial
atom features {xv |v∈ V} for all vertices V are constructed from a
one-hot encoding of the atomic number, degree, formal charge,
chirality, number of hydrogens, hybridization, and aromaticity of
the atom, as well as the scaled atomicmass, resulting in vectors of
length 133. Initial bond features {evw |vw ∈ E} for all edges E
describe the bond type, whether the bond is conjugated, in a
ring, and contains stereochemical information, resulting in
vectors of length 28. The initial directed edge features hvw

0 are
constructed via appending the features of the first atom of a
bond, xv to the respective bond features, evw, and passing the
concatenated vector to a single neural network layer

τ=h x eW( cat( , ))vw i v vw
0

(1)

with ∈ ×Wi
h hi and h being the hidden size (default 300), hi the

size of cat(xv,evw), here 147, and τ() ̇ a nonlinear activation
function. The directed edge features are then updated via an
appointed number of message passing steps t = T (default 3)

Figure 1. Schematic depiction of the CGR (middle) for the dissociation
of water, constructed from the atom-mapped reactants (right) and the
atom-mapped products (left). (Top) Example of balanced reaction.
(Bottom) Example of imbalanced reaction. In the CGR, each atom and
each bond has two labels, one corresponding to the reactants and
another to the products. For imbalanced reactions, the features of an
imbalanced atom can either be imputed or set to zero (indicated by the
striped area).
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where ∈ ×Wh
h h and N(v)w denotes the neighbors of node v

excluding w. The hidden states are then transformed back to
atom features
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with ∈ ×Wo
h ho and ho being the size of xv and h. The atomic

representations hv can then be aggregated to a molecular feature
vector

∑=
∈

h h
v G

v
(4)

and optionally augmented with precomputed molecular features
f as cat(h,f). Themolecular fingerprints are then passed to one or
multiple FFN layers.
To adapt the D-MPNN architecture to reactions, two main

changes are necessary. First, the list of bonds now encompasses
all pairs of atoms that have a bond in either the reactants or the
products or both, i.e., E = Ereac ∪ Eprod of the reactant Greac and
product Gprod graphs. Likewise, the list of atoms comprises all
atoms that are present in either reactants, products, or both, V =
Vreac ∪ Vprod. Second, the initial atom and bond feature vectors
now contain two parts, extracted from the reactant and product
graphs separately, one corresponding to the reactants and the
other to the products or the difference between reactants and
products. If an atom or bond only occurs on one side of the
reaction, the user is provided with a choice to either set its
respective feature vector to zero on the other side or to directly
copy over its features to the other side for all atoms and bonds
unless a bond is broken within the reaction. Some of the copied
features can be incorrect, especially for atoms close to the

reactive center, but the reliability of the imputed data can be
learned by comparing the features with the structure of the
graph. For example, an unbalanced atom next to a broken bond
will have a wrong degree (number of neighbors) copied over
from the other side of the reactant, which can be identified by
comparing against the actual number of neighbors in the graph.
If not indicated otherwise, we follow the first approach (setting
features to zero) in the remainder of the article but found the
performance of both options to be equal on data set 8.We do not
provide an option for automatic balancing via the CGR since
some imbalanced reactions cannot be autocompleted correctly
due to possible rearrangements in the missing fragments,
introducing noise to a data set and therefore decreasing model
performance (tested on data set 8, data not shown). For atoms,
we do not repeat the one-hot encoding of the atomic number,
since it cannot change during a chemical reaction, but the scaled
mass information is kept for both reactants and products to not
lose isotope information in case of imbalanced reactions. We
tested different combinations of the reactant and product
features to yield the CGR features, namely, to concatenate the
reactant and product features directly, to concatenate the
product features with the difference between reactant and
product features, and to concatenate the reactant features with
the difference between product and reactant features, and found
that the last option (reactant + difference) usually performs best.
All results reported in this study were obtained with this setting,
i.e., xv = cat(xv

reac, x̃v
diff) with length 165, where the tilde denotes

the vector missing the atomic number information, and evw =
cat(evw

reac,evw
diff) with length 28. All options are available in the

provided code on GitHub45 and can be tuned as hyper-
parameters. The bottom panel of Figure 2 schematically depicts
the adapted architecture, where the gray parts of the initial
fingerprints correspond to the reactants and the red parts to the
products. The two changes thus only concern the creation of the
graph object, as well as the initialization of the edge and vertex
features. The remaining parts of the model, i.e., eqs 1−4, are
unchanged.

Data Preparation.We utilized four reaction databases from
the literature as provided, as well as cleaned and atom mapped
four more, which we made openly available on GitHub.53 Table
1 provides a compact overview over all employed data sets.

(1) Computational activation energies of forward and reverse
reactions at the ωB97X-D3/def2-TZVP level of theory
(as well as at the B97-D3/def2-mSVP level of theory for
pretraining) were used as provided in ref 46. The data set
features a diverse set of reactions transforming unim-
olecular reactants into unimolecular or multimolecular
products and is already atom mapped. All reactions were
balanced and contained explicit hydrogens.

(2) Computational activation energies for competing E2/SN2
were taken from ref 47 and atom mapped manually using
heuristic substitution patterns. The resulting database is
published along with this study. All reactions were
balanced and contained explicit hydrogens.

(3) Experimental activation energies for SNAr reactions were
taken as provided from ref 20. All reactions were already
atom mapped and furthermore contained information
about the solvent each reaction was carried out in, as well
as the computational activation energy at the ωB97X-D/
6-311+G(d,p) level of theory. The solvent descriptors
(vectors of length 5) and computational activation
energies (single value) were passed to the model as

Figure 2. Architecture of a standard graph convolutional neural net
(top) and adaption to reactions via input of the condensed graph of
reaction (bottom). Each atom and bond fingerprint now consists of two
parts, one describing the reactants (gray) and the other the products
(red). If a bond does not exist in reactants or products, the
corresponding parts of the fingerprint (white, crossed out) are set to
zero. If an atom is missing in an imbalanced reactions, its features can be
either imputed or set to zero. The white vectors correspond to the
hidden atomic and molecular representations.
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molecular fingerprints f as provided from ref 20. All
reactions were balanced and contained implicit hydrogens
only.

(4) Computational reaction enthalpies were taken from the
Rad-6-RE database48 and atom mapped via Grzybowski’s
algorithm.54 Imbalanced reactions (less than 2% of the
data) were discarded, since ref 48 explicitly claims to only
report balanced reactions. We thus assumed that
imbalanced reactions correspond to errors. Both forward
and reverse reactions were taken into account. All
resulting reactions were balanced and contained explicit
hydrogens. The resulting database is published along with
this study. We note that reaction enthalpies could also be
modeled via training a single model to predict molecular
enthalpies55,56 and converting the enthalpies of reactants
and products into the respective enthalpies of reaction.
This approach was followed by Stocker et al.;48 however,
in this work, we instead want to highlight the direct
prediction of reaction enthalpies.

(5) Reaction rate constants were taken from ref 49 and atom
mapped via Grzybowski’s algorithm.54 Models were then
trained on the logarithm of the rate constants at 1000K,

log k K
k

(1000 )

ref

i
k
jjj

y
{
zzz, with k in cm3 mol−1s−1 (bimolecular) or s−1

(unimolecular) depending on the reaction mechanism,
and kref = 1 in the same units. The resulting database is
published along with this study. All reactions were
balanced and contained explicit hydrogens.

(6) Experimental reaction yields for 218 phosphatase enzyme
sequences on 157 substrates were extracted from ref 50.
The original article features 167 substrates, but only
substrates that contained a single phosphate group were
kept. Since the reaction outcomes were not reported in ref
50, the products for multiphosphate substrates are not
known with certainty and were thus not included. The
different enzymes were represented as simple one-hot
encoding and passed to the model as molecular
fingerprints f. Products and the respective atommappings
were calculated manually with a simple set of heuristic
rules. The resulting database is published along with this
study. All reactions were balanced and contained implicit
hydrogens only.

(7) The reaction names of one million reactions from an in-
house preprocessed and cleaned version of Pistachio51

(processing analogous to ref 57) were taken with atom
mappings as provided. Since Pistachio is not open source,
the resulting database is not published along with this

study. The reactions were imbalanced, missing leaving
groups on the product side, and contained implicit
hydrogens only.

(8) The reaction names of the atom-mapped USPTO-1k-
TPL data set recently curated by Schwaller et al.52 were
used as is. The reactions were imbalanced, missing leaving
groups on the product side, and contained implicit
hydrogens only.

Dummy Baselines. The mean absolute error of a dummy
baseline model predicting the mean of the training target values
for all test reactions in each data set is given in Table 1, averaged
over five folds. Comparing against such a simple baseline helps
to judge the quality of a predictive model, where low errors on a
data set with narrow target range can otherwise be mistaken for a
satisfactory performance.

Other Baselines. We furthermore examined more complex
baseline models. First, the dual GCNN model of Grambow et
al.34 was trained with hyperparameters similar to the CGR
GCNN approach (MPNN depth of 3, hidden size of 300, one
FFN layer, no dropout) on all data sets comprising balanced
reactions, termed “Grambow” in the following. The model
computes atom embeddings of all atoms in the reactant and
product molecules for the reactants and products separately via
directed message passing and then subtracts the reactant from
the product atom embeddings before aggregating the atomic to
molecular embeddings and passing them to a FFN.We note that
the model does not accept imbalanced reactions as input, so that
no baseline could be computed for the imbalanced data sets
(sets 7 and 8) in Table 1.
Second, the recently developed BERT deep learning reaction

fingerprints52 were utilized as input to a regular FFN, where we
used a default hidden size of 300 and two FFN layers. The
fingerprints were computed using the open-access rxnfp
software on nonatom-mapped reaction SMILES.58 BERT
reaction fingerprints are vectors of size 256 obtained from a
pretrained transformer-based model trained on the classification
of nonannotated, text-based representations of chemical
reactions.
Third, Morgan fingerprints59 were calculated for the reactants

and products separately and either subtracted (“Morgan Diff”)
or concatenated (“Morgan Concat”) and again served as input
to an FFN of hidden size 300 and two FFN layers. Morgan
fingerprints at radius 3 and length 1024 were calculated via
RDKit.60

Fourth, we utilized ISIDA descriptors35,43 as inputs to an FFN
of hidden size 300 and two FFN layers (sequential fragment
features calculated on the CGRs, maximum fragment length of

Table 1. Summary of Employed Data Sets (a)

data set data points ref H bal. split task span MAE RMSE unit epochs

Ea ωB97X-D3
b 23,923 46 yes yes dir. scaffold regression 0 to 205 25.1 ± 0.0 31.0 ± 0.0 kcal/mol 100

Ea E2/SN2 3626 47 yes yes random regression 0 to 65 11.0 ± 0.4 13.3 ± 0.5 kcal/mol 100
Ea SNAr 443 20 no yes random+c regression 13 to 42 2.7 ± 0.4 3.6 ± 0.6 kcal/mol 500
ΔH Rad-6-RE 63,849 48 yes yes dir. scaffold regression −6 to 12 3.4 ± 0.0 3.9 ± 0.0 eV 100
log(k) rate const. 779 49 yes yes random regression −5 to 10 1.9 ± 0.1 2.2 ± 0.1 unitless 100
Yield phosphatases 33,355 50 no yes random+c regression 0 to 1d 0.10 ± 0.01 0.14 ± 0.01 unitless 100
Pistachio 1,074,765 51 no no random multiclass 937e − − − 30
USPTO-1k-TPL 445,117 52 no no predefined multiclass 1000e − − − 30

aUse of explicit hydrogens, whether reactions are balanced, type of split and task, span of targets, performance of dummy model evaluated on five
folds, units and number of epochs. bPretraining on 32,731 data points at the B97-D3 level of theory. cRandom splits ensuring that identical
reactions with different additional features (solvents or enzymes) are put in the same set. dFour data points have yields higher than 1 due to
uncertainties in the assay evaluation. eNumber of classes.
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4). ISIDA descriptors are count vectors of all CGR fragments of
a certain size in the data set. Their length depends on the
number of distinct fragments in a data set and ranges up to
several tens of thousands for the large and diverse data sets 1 and
4.
Model Parameters. A hyperparameter search for the

optimal hidden size, number of layers, number of message
passing steps, and dropout rate was computed via 20 steps of
Bayesian optimization for the CGR GCNN, Grambow’s dual
GCNN, and all fingerprint models as implemented in
Chemprop.8 Optimized models are termed “opt” throughout
this study. More details are given in the Supporting Information.
All models were trained with a batch size of 50, ReLU activation
functions, mean aggregation between the MPNN and FFN step,
and explicit hydrogens as specified in Table 1. Learning rates
were increased linearly from 10−4 to 10−3 for two epochs and
then decreased exponentially from 10−3 to 10−4. Prior to
hyperparameter optimization, no dropout, three iterations of
message passing, and a hidden size of 300 were used (termed
“default”). Regression models used mean absolute error as the
metric for evaluation and early stopping; classification models
instead used accuracy as the metric. All models were trained on
five different data splits to arrive at a split-independent estimate
of the true model performance. Split sizes of 80/10/10 for
training, validation, and test sets were used if not indicated
otherwise. Table 1 lists the split types for each data set. Scaffold
splits were performed on the reactant side of the Ea ωB97X-D3
andΔHRad-6-RE databases, where multiplemolecular scaffolds
were identified. Both the Ea ωB97X-D3 and the ΔH Rad-6-RE
data sets comprise forward and reverse reactions, so that special
care was taken to enforce that each pair of forward and reverse
reactions was placed in the same set (indicated by “dir. scaffold”

in Table 1). Otherwise, the test set error of a model is
unrealistically low and does not reflect the true model
performance. The Ea SNAr and yield phosphatases data sets
contained identical reactions at different conditions (solvents or
enzymes), so that a random split on unique reactions was
performed to ensure that identical reactions were placed in the
same set (indicated by “random+” in Table 1). Random splits
were performed on the remaining data sets (Ea E2/SN2 and
log(k) rate constants) since they consisted of too few scaffolds to
perform a meaningful scaffold split. A random split was
furthermore performed on the Pistachio data set. For the
USPTO-1k-TPL data set, the split into training and test data was
taken from ref 52, and the training set was split into training and
validation sets randomly.

■ RESULTS AND DISCUSSION

Table 2 summarizes the performances of the CGR GCNN
developed in this study, Grambow’s dual GCNN,34 and the best
performing fingerprint model (FFN on either the Bert, ISIDA,
Morgan Diff, or Morgan Concat fingerprints). A full list of test
performance (MAE, RMSE, and R2 scores) of all default and
optimized models on all tasks is available in the Supporting
Information. The CGR approach outperforms all other models
both with its default hyperparameters, as well as after
hyperparameter optimization for all data sets. We also attempted
to make comparisons to the reaction data presented in ref 46
(ΔH Rad-6-RE), but for technical reasons discussed in the SI, it
is difficult to fairly compare the methods on this particular data
set. In all systems, the default hyperparameters are close to the
ideal hyperparameters, indicating that even the small, compact
default model is able to learn complex target properties. In the
following, we analyze the performances on each target in detail.

Table 2. Comparison of Performances and Respective Number of Trainable Parameters of Regression Tasks between the CGR
Graph Convolutional Model of This Study, Grambow’s Dual GCNN of Ref 34 and the Best Performing FFN on Reaction
Fingerprintsa

Data set unit CGR default CGR opt Grambow default Grambow opt best FP opt

Model performance MAE
Ea ωB97X-D3 (pretr. B97-D3) kcal/mol 4.84 ± 0.29 4.25 ± 0.19 6.35 ± 0.26 5.26 ± 0.15 7.55 ± 0.48
Ea E2/SN2 kcal/mol 2.64 ± 0.10 2.65 ± 0.09 2.76 ± 0.08 2.86 ± 0.07 3.00 ± 0.10
Ea SNAr kcal/mol 0.85 ± 0.12 0.91 ± 0.11 1.04 ± 0.17 0.94 ± 0.21 0.98 ± 0.13
ΔH Rad-6-RE eV 0.16 ± 0.01 0.13 ± 0.01 0.40 ± 0.01 0.08 to 0.43b 0.65 ± 0.01
log(k) rate constants unitless 0.41 ± 0.05 0.41 ± 0.02 0.60 ± 0.05 0.45 ± 0.04 0.59 ± 0.06
Yield phosphatases unitless 0.062 ± 0.005 0.063 ± 0.006 0.077 ± 0.004 0.066 ± 0.007 0.066 ± 0.007

Model performance RMSE
Ea ωB97X-D3 (pretr. B97-D3) kcal/mol 7.63 ± 0.43 6.88 ± 0.38 9.11 ± 0.51 7.98 ± 0.37 11.80 ± 0.78
Ea E2/SN2 kcal/mol 3.59 ± 0.09 3.61 ± 0.07 3.74 ± 0.13 3.83 ± 0.11 4.10 ± 0.17
Ea SNAr kcal/mol 1.22 ± 0.16 1.25 ± 0.14 1.46 ± 0.23 1.36 ± 0.26 1.43 ± 0.20
ΔH Rad-6-RE eV 0.28 ± 0.02 0.25 ± 0.02 0.55 ± 0.03 0.14 to 0.56b 0.88 ± 0.02
log(k) rate constants unitless 0.66 ± 0.29 0.66 ± 0.24 1.00 ± 0.14 0.76 ± 0.26 1.03 ± 0.08
Yield phosphatases unitless 0.103 ± 0.007 0.103 ± 0.008 0.115 ± 0.006 0.108 ± 0.010 0.107 ± 0.010

Model size:
Ea ωB97X-D3 (pretr. B97-D3) 378,601 10,371,601 361,801 24,877,601 72,747,201
Ea E2/SN2 378,601 2,817,101 361,801 16,754,401 334,801
Ea SNAr 380,401 1,661,401 361,807 8,278,201 6,396,001
ΔH Rad-6-RE 378,601 10,371,601 361,801 20,035,401 6,381,601
log(k) reaction rates 378,601 6,393,701 361,801 8,269,801 7,363,201
Yield phosphatases 444,001 6,692,001 362,019 6,390,001 6,387,101

aIntervals correspond to the mean and standard deviation of five folds. Best performance per data set is highlighted in bold. bSee SI for details on
the Rad-6-RE model performance.
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Prediction of Activation Energies. The performance of
the CGR model for the prediction of computational and
experimental activation energies was evaluated on three different
data sets. The first data set, Ea ωB97X-D3, is by far the largest
and most diverse data set, comprising about 24,000 computa-
tional activation energies for various elemental reactions in the
forward and reverse direction. Its wide range of target values (0−
205 kcal/mol) makes an accurate prediction extremely
challenging, so that we consider the observed lowest errors of
about 4 kcal/mol a success nevertheless. The corresponding
high R2 score of 0.94 validates this observation. For comparison,
a model predicting the mean of the data set for each data point
would possess a mean absolute error of about 25 kcal/mol and
an R2 score of 0. Figure 3 depicts the performance measured via
the R2 score (with values closest to 1 indicating best
performance) of various default and optimized architectures,
where the CGR model clearly outperforms other models.
Analogous figures with the MAE and RMSE are shown in the
Supporting Information. All fingerprint models perform rather
poorly, highlighting the inability of reaction fingerprints to
encode certain details of a transformation especially for diverse
data sets, even despite the large sizes of some of the optimized
models. We furthermore note that the obtained performance of
the dual GCNN model differs from the results in ref 34 due to
the different, more rigorous data splits used in this study. As
mentioned in the previous section, placing forward and reverse
reactions in different data splits, so that some of the reactions in
the test set also appear in the training set (but in reverse
direction), can severely overestimate model performance. The
errors reported in Table 2 and Figure 3 thus provide a more
accurate estimation of the true predictive power of Grambow’s
dual GCNN model than the numbers reported in ref 34.

The second data set, Ea E2/SN2, only comprises two chemical
transformations, namely, E2 and SN2 of different electrophiles
and nucleophiles. It spans computational activation energies of
0−65 kcal/mol and possesses only a few thousand data points.
The baseline performance of a model predicting the mean of the
data set for each data point is about 11 kcal/mol. This reduction
in target range and chemistry helps all models to perform better
regarding RMSE and MAE, but also regarding the R2 scores, as

depicted in Figure 4. Again, the CGR approach outperforms all
other models but by a smaller margin. Also, the fingerprint
models feature a comparatively better performance than with
the previous data set, since the possible chemical trans-
formations are very few, and differences in the activation
energies can be related to the fingerprints of reactants and
products more straightforwardly.

The third data set, Ea SNAr, is different from the first two data
sets in three regards. First, it is very small, comprising only a few
hundred reactions. Second, it is very narrow, spanning only
values between 13 and 42 kcal/mol, which enables even a simple
baseline model predicting only the mean of the distribution to
perform, seemingly, well with a mean absolute error of about 3
kcal/mol. Third, additional input beyond the reaction itself is
provided, namely, five solvent descriptors to characterize the
employed solvent and the computational activation energy.
Figure 5 depicts the performance of all studied models as
measured by the R2 score, where the CGR approach leads to
highest scores but is not significantly better than the optimized
Grambow dual GCNN model. In the literature, Gaussian
process regression on a large set of quantum-mechanically

Figure 3.Comparison of test set R2 scores between different models for
the ωB97X-D3 computational activation energy data set with
pretraining on B97-D3 activation energies. Error bars correspond to
the standard deviation between five folds. Best model system
highlighted in red; line corresponds to best performance.

Figure 4.Comparison of test set R2 scores between different models for
the E2/SN2 computational activation energy data set. Error bars
correspond to the standard deviation between five folds. Best model
system highlighted in red; line corresponds to best performance.

Figure 5.Comparison of test set R2 scores between different models for
the SNAr experimental activation energy data set. Error bars correspond
to the standard deviation between five folds. Best model system
highlighted in red; line corresponds to best performance.
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derived descriptors for this data set yielded a mean absolute
error of 0.77 kcal/mol.20 The CGR GCNN approach comes
reasonably close to this benchmark (MAE of 0.85 kcal/mol, R2

of 0.93), taking into account that it only learns from the reaction
graphs and does not feature any quantum-mechanical
descriptors apart from the solvent information and the
computed Ea’s. The requirement for quantum-mechanical
descriptors as input can greatly increase the computer time
required to make a prediction, but it may be possible to avoid
this by building a model for predicting the quantum-mechanical
descriptors as was done recently by Guan et al.61

A comparison of the performance of the CGR architecture to
the dummy baselines across the three data sets yields another
interesting insight. Even with very little data (Ea SNAr), the CGR
model can still produce a relatively lowMAE, at approximately a
third of the error of the dummy model. Adding more data, the
MAE decreases to a fourth of the dummy model MAE (Ea E2/
SN2), or even a sixth (Ea ωB97X-D3), with further reduction
expected for more data points. An evaluation of model
performance with training set size for the Ea ωB97X-D3 data
set without pretraining is shown in Figure 6 for the default CGR
and dual GCNNmodels. The CGR GCNNmodel performance
does not level off, indicating that the model may achieve
chemical accuracy if a sufficiently large data set was provided. A
simple extrapolation predicts the model to achieve chemical
accuracy with 5−10million data points, which is not out of reach
in light of the current advances in high-performance computing.
In contrast, the dual GCNNmodel levels off slightly, and even if
linear behavior is assumed, it would only reach chemical
accuracy at 100−300 million data points.

Prediction of Rate Constants. R2 scores for predicting rate
constants (at 1000K) are shown in Figure 7, where again the
CGR GCNN outperforms other approaches with an R2 score of
0.90 and an MAE of 0.41 kcal/mol. We note that the errors are
reported for the logarithm of the rate constant, so that an MAE
of 0.4 corresponds to deviations of about 2.5 in units of cm3

mol−1s−1 (bimolecular) or s−1 (unimolecular). This is well
within or even below the accuracy of the rates at the employed
level of theory, M06-2X/MG3S (compared to more elaborate
computational results utilizing CCSD(T)-F12/RI calculations
with the cc-VTZ-F1256 and cc-VTZ-F12-CABS57 basis sets,
see ref 49).
Prediction of Reaction Yields.A different picture arises for

the prediction of reaction yields (Figure 8). All models perform
about equally well and are only slightly better than a dummy

baseline model (with an R2 of 0) predicting the mean of the
distribution. The CGR approach outperforms other models by a
slight, nonsignificant margin, but overall, all model perform-
ances are rather mediocre. Since the data set contains only 157
substrates in combination with 218 enzymes, and the enzymes
were merely one-hot-encoded, the subprime performance is not
surprising. In other words, the models can pick up relations for
the different substrates well but is hampered by the crude
encoding of the protein information.

Prediction of Reaction Classes.We furthermore explored
the performance of the CGR GCNN approach on classification
tasks, here the classification of reactions into their respective
name reactions. To this aim, we predict the names of reactions of
two data sets, a preprocessed and cleaned version of Pistachio
containing 937 class names, as well as a recently published
benchmark, USPTO-1k-TPL, containing 1000 class names.
Figure 9 depicts the top-1 accuracy (fraction of test reactions
where the correct name is ranked highest) and top-3 accuracy
(fraction of test reactions where the correct name is found within
the three highest ranked predictions), depending on the size of
the training set. Since the reactions in both data sets are not

Figure 6.Mean absolute errors of the CGRGCNNmodel on subsets of
the Ea ωB97X-D3 data set without pretraining.

Figure 7.Comparison of test set R2 scores between different models for
the computational rate constants data set. Error bars correspond to the
standard deviation between five folds. Best model system highlighted in
red; line corresponds to best performance.

Figure 8.Comparison of test set R2 scores between different models for
the experimental phosphatase reaction yield data set. Error bars
correspond to the standard deviation between five folds. Best model
system highlighted in red; line corresponds to best performance.
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balanced (leaving groups are not reported on the product side),
the performance of Grambow’s dual GCNN approach could not
be evaluated. We instead compare the observed accuracy to a
recent benchmark of Schwaller et al. (red line in Figure 9), who
achieved a 98.9% top-1 accuracy on USPTO 1k TPL with their
state-of-the-art transformer model.52 They furthermore report
98.2% accuracy on Pistachio name reactions but preprocessed
and cleaned the data differently, so that no direct comparison is
possible. We note that the reaction input to the transformer
model does not rely on atom mapping, so that the model learns
from less information. The CGR approach outperforms the
transformer model, but due to the differences in representation
(no atom mapping vs atom mapping), a direct comparison is
somewhat biased. Nevertheless, the observed accuracies of the
CGR GCNN model indicate that it can learn to predict name
reactions easily and that imbalanced reactions do not hamper
model training.
Limitations. The CGR GCNN approach developed in this

study thus provides a high-performing and flexible alternative to
other architectures, such as dual GCNN and FFNs on various
fingerprints. It is more flexible than the dual GCNN model in
that it can treat imbalanced reactions. However, like the dual
GCNN architecture, it relies on correct atom mapping of
reactions, which increases the work load on preprocessing steps
of databases significantly. Incorrect atom mappings add noise to
the data, so that the quality of a prediction depends to some
extent on the quality of the atom mapping of both training and
test data.

■ CONCLUSIONS
We have introduced, benchmarked, and validated the use of
CGRs as a suitable reaction representation to graph-convolu-
tional neural nets. The resulting CGRGCNNs outperform other
current approaches on a wide variety of data sets and prediction
tasks. Furthermore, they perform well with a very limited model
size, allowing for rapid training and evaluation. We could thus
successfully extend the use of GCNNs from molecules to
reactions, creating small and convenient models for the
prediction of various reaction properties. We expect the
developed representation and architecture, as well as the
atom-mapped data sets made available along with this article,
to seed further developments in the emerging field of reaction
property prediction.

■ DATA AND SOFTWARE AVAILABILITY
The CGR GCNNmodel architecture is available on GitHub on
the master branch of Chemprop.45 Data sets 1, 3, and 8 are
available from the literature,20,46,52 and were used as provided.
Data sets 2, 4, 5, and 6 are available on GitHub.53 Data set 7 is
proprietary and thus not freely available but does not provide an
integral part of this study since it only complements data set 8.
For all data sets except 7, we furthermore provide the data splits
used in this study, as well as the trained CGR GCNN default
models, along with instructions on how to create predictions.53
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