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Abstract: The surface modification technology of carbon fibers (CFs) have achieved considerable
development, and it has achieved great success in improving the interfacial shear strength (IFSS)
of the polymer matrix. Among them, MXene (Ti3C2Tx) functionalized CFs have been proven to
improve the interface performance significantly. Unfortunately, the results on the microscopic scale
are rarely applied to the preparation of macroscopic composite materials. Herein, the process
of MXene functionalized CFs were attempted to be extended to short carbon fibers (SCFs) and
used to strengthen epoxy materials. The results show that the cross-scale reinforcement of MXene
functionalized SCFs can be firmly bonded to the epoxy matrix, which significantly improves the
mechanical properties. Compared to neat epoxy, the tensile strength (141.2 ± 2.3 MPa), flexural
strength (199.3± 8.9 MPa) and critical stress intensity factor (KIC, 2.34± 0.04 MPa·m1/2) are increased
by 100%, 67%, and 216%, respectively.

Keywords: MXene Ti3C2Tx; functionalization; short carbon fibers; epoxy-matrix composites; cross-
scale reinforcement; mechanical properties

1. Introduction

Carbon fibers (CFs) have a series of advantages, such as high specific strength, high
specific modulus, high fatigue resistance, high corrosion resistance, and low linear coef-
ficient of thermal expansion, so it is an ideal structural material for reinforcing polymer
matrix [1–4]. In order to improve the wettability of CFs surface with polymer to form a solid
interface, researchers have used various methods to modify the surface of CFs to improve
the surface polarity (polar component [5]) or surface roughness (dispersion component [6])
of carbon fibers [7–14]. Our previous work [15] reported a method of using MXene (T3C2Tx)
to functionalized CFs, which the MXene connected to acid-treated CFs (ACFs) through
hydrogen bonding. In this way, the polar component and dispersion component of the CFs
were increased at the same time, and the IFSS was increased by 186%.

MXene is a transition metal carbide and nitride with a graphene-like structure 2D
materials [16–18]. Due to the unique 2D layered structure, large specific surface area, excel-
lent mechanical properties, rich surface functional groups, and light transmittance [19–21],
excellent electrical conductivity [22], MXene has been widely used in the field of reinforced
polymer composites [23–30]. The general formula of MXene is Mn+1XnTx (n = 1, 2, 3 or
4), M refers to early transition metals, and X refers to C or N element [31–34]. The Tx in
the formula represents the surface terminations, such as O, OH, F, and/or Cl, which are
bonded to the outer M layers [35–38]. The surface activity of MXene is extremely high, and
it can form a strong chemical bond with the epoxy matrix [39]. Therefore, MXene is an
ideal material for modifying the interface properties of CF/epoxy composites.
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Although the interface combination of modified CFs and polymer have been improved,
it is still challenging to re-weave them into bundles or cloth for further applications. The CFs
products pre-woven into the finished products are inaccessible to the modified substance
due to the overlap between the fibers, which greatly reduces the modification effect.
Therefore, short carbon fibers (SCFs) or surface-modified SCFs have attracted attention
in the field of polymer reinforcement [40–45]. Reinforcing the epoxy resin with low-load
SCFs have practical significance because the viscosity of the resin can be maintained at an
acceptable level.

The present paper attempts to extend the successful surface modification method of
continuous CFs to SCFs for epoxy reinforcement. ACFs were prepared into acid-treated
SCFs (ASCFs) to prepare ASCFs/epoxy composites with different ASCFs contents. Simul-
taneously, ASCFs were functionalized by MXene (T3C2Tx) to obtain the surface-modified
cross-scale reinforcement. After finding out the most suitable load of ASCFs, the epoxy-
matrix composites with the same amount of ASCFs functionalized by MXene were prepared.
The results show that an appropriate amount of ASCFs can improve the mechanical proper-
ties of epoxy resin. On this basis, the ASCFs functionalized by MXene can further enhance
the mechanical properties. The characterization results of the fracture indicate that the
MXene functionalized ASCFs have a stronger bond with the epoxy matrix. Compared to
the neat epoxy, the tensile strength, flexural strength and critical stress intensity factor (KIC)
of composites can be increased to 100%, 67% and 216% at the maximum, which has a good
application prospect.

2. Experimental
2.1. MXene Functionalization of SCFs

Comprehensive details regarding all of the materials and the preparation of Ti3AlC2
and Ti3C2Tx are provided in our earlier papers [39,46,47]. At first, the carbon fibers (T300C,
3K, diameter 7 µm, density 1.76 g·cm−1, Toray Industries Inc, Tokyo, Japan) were cleaned
with refluxed acetone (Sinopharm Chemical Reagent limited corporation, Shanghai, China)
at 60 ◦C for 96 h to remove any polymer sizing and pollutants and yield untreated CFs. The
untreated CFs were then oxidized in concentrated nitric acid (HNO3, 68 wt.%, Sinopharm
Chemical Reagent Limited Corporation, Shanghai, China) at 80 ◦C for 4 h. Subsequently,
the carbon fibers were taken out and washed several times with de-ionized water (resistivity
> 18 MΩ cm, prepared in a laboratory) until pH approached 7. Next, the obtained fibers
were dried in a vacuum furnace to yield ACFs. The ACFs were mashed and ground in
an agate mortar, and passed through a 325-mesh sieve 3 times. The sieved powders were
washed with de-ionized water, then centrifuged at 3500 rpm for 5 min. After the precipitate
was thoroughly dried, the ASCF with a clean surface and an average length of ~20 µm were
obtained. Finally, the ASCF was immersed in a solution with a concentration of MXene of
1 mg mL−1 for 15 min, washed with de-ionized water after being taken out and dried in a
vacuum oven to obtain MXene functionalized ASCFs, as shown in Figure 1.

2.2. Synthesis of Composite

DGEBA (SINOPEC Baling Company, Yueyang, China) and MTHPA (Tianjin Chemical
Co., Tianjin, China) were mixed in a mass ratio of 100:85. After the mixture was softened
at 80 ◦C, ASCFs were added and ultrasonicated for 1 h. The 0.3 wt.% 2,4,6-Tris (dimethy-
laminomethyl) phenol (Tianjin Chemical Co., Tianjin, China) was added after the ultrasonic
treatment, and then it was cured in a vacuum drying oven at 90 ◦C for 1 h and 110 ◦C for
4 h. According to the different addition amounts of ASCFs, epoxy-matrix composites with
mass fractions of 1%, 2%, 3% and 4% were prepared and denoted as C1/epoxy, C2/epoxy,
C3/epoxy and C4/epoxy, respectively. According to the results of tensile and flexural tests,
the cross-scale reinforcements contain 2 wt.% ASCFs were added to DGEBA/MTHPA to
prepare the MXene-functionalized ASCF/epoxy composite and denoted as C2M/epoxy.
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Figure 1. Schematic representation of MXene functionalized ASCFs.

2.3. Characterization

Thermogravimetric analyses (TGA, NETZSCH STA 449F3, Selb, Germany) of neat
epoxy and composites were carried out under a nitrogen atmosphere from 25 to 790 ◦C at
a heating rate of 10 ◦C min−1. The storage modulus and loss factor (tan δ) as a function
of temperature were determined via single cantilever mode of the dynamic mechanical
analyzer (DMA, TA Q800, New Castle, DE, USA) in the temperature range from 25 to
200 ◦C at 3 ◦C min−1 under air atmosphere, frequency of 1 Hz, and maximum amplitude
of 0.1%. The specimen dimension was kept at 30.0 mm long × 10.0 mm wide × 5 mm
thick. The glass transition temperature was obtained by using the maximum tan δ. The
Micro-morphology of specimens was gold-coated and observed at 5 kV by scanning
electron microscope (SEM, JEOL JSM-7600F, Tokyo, Japan). Moreover, energy dispersive
spectrometer (EDS, Oxford INCA X-Act, Oxford, UK) was utilized to analyze the mapping
of elements.

The tensile and flexural tests were performed at room temperature using an Instron
3367 mechanical testing machine (Instron Co. Ltd., Canton, MA, USA) following ISO
527-1:1993 and ISO-178-2010, respectively. Standard dumbbell-shaped specimens (75.0 mm
long × 12.5 mm wide × 2.0 mm thick) with a length of the narrow region of 25 mm were
prepared for tensile testing at a rate of 1.0 mm min−1. Rectangular specimens (60.0 mm
long × 8.0 mm wide × 3.0 mm thick) were used for flexural testing and loaded with a
span of 48 mm at a crosshead speed of 2.0 mm min−1. The elastic modulus was calculated
by the ratio of the stress difference (σ2–σ1) to the corresponding strain difference (ε2–ε1),
i.e., ε2 = 0.25% and ε1 = 0.05%. Similarly, the flexural modulus was also calculated by the
ratio of the stress difference (σfM2–σfM1) to the corresponding strain difference (εfM2–εfM1),
i.e., εfM2 = 0.25% and εfM1 = 0.05%. At least five specimens were tested under each set of
conditions. The flexural strength (σfM) and flexural strain (εfM) was calculated by using
Equation (1) [48] and Equation (2) [48] as follows:

σfM =
3FL
2bh2 (1)

εfM =
6sh
L2 (2)
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where F is the maximum load of the load-displacement curve for bending specimens, L is
the span, b is the width of the sample, s is the deflection, h is the thickness of the sample.

The fracture toughness values of the composites were determined following ISO
13586:2000 standard using single-edge-notched bend (SENB) specimens (60.0 mm long
× 8.0 mm wide × 3.0 mm thick). A sharp notch was machined at the midpoint of each
specimen (4 mm in depth), and a natural pre-crack was generated by tapping a new razor
blade into the notch. SENB specimens were also tested by Instron 3367 using a three-point-
bending rig. Owing to the brittle nature of epoxy, the test speed was set to 0.5 mm min−1

to achieve sufficient loading time before the end of each test. The critical stress intensity
factor (KIC) was calculated by using Equation (3) [49] as follows:

KIC = f (a/w)
FQ

h
√

w
(3)

where FQ is the maximum load of the load-displacement curve for SENB specimens, h is the
thickness of the specimen, w is width, and a denotes a sharp crack of length between 0.45 w
and 0.55 w. The f (a/w) is related to the geometry of the sample and can be calculated by
using Equations (4) and (5) [49] as follows:

f (a/w) = 6α1/2 1.99− α(1− α)
(
2.15− 3.93α + 2.7α2)

(1 + 2α)(1− α)3/2 (4)

α = a/w (5)

The critical energy release rate (GIC) was calculated as Equation (6) [50]:

GIC = K2
IC

(
1− ν2

E

)
(6)

where E is the elastic modulus of the MXene/epoxy composites, ν denotes Poisson’s ratio
of DGEBA/MTHPA system, and the value of 0.29 was used [51].

3. Results and Discussion

The SEM images in Figure 2a,b show the morphology of ASCFs and MXene func-
tionalized ACSFs, respectively. As shown in Figure 2a, the diameter and the length of
the ASCFs prepared in this work are approximately 7 µm and 10–40 µm (average ~20
µm), respectively. The surfaces of the ASCFs are clean and have ravine-like characteristics
after acid treatment [6]. In our previous work [15], the optimal solution concentration
(1 mg mL−1) was determined when using MXene to functionalize ASCFs, so MXene does
not accumulate too much on ASCFs at this concentration, as shown in Figure 2b. MXene is
covered in a thin layer on most ASCFs to form cross-scale reinforcements, and MXene is
warped in some places. As shown in Figure 2c,d, ASCFs and MXene functionalized ACSFs
exhibited totally different surface morphologies, and EDS data confirmed the composition
of the scaly wrinkles presented on the surface of ASCFs as Ti3C2Tx layers.

TGA was utilized to investigate the thermal stability of each composite under a
nitrogen atmosphere (Figure 3). All TGA curves exhibited one main degradation stage.
The sharp mass loss in the range of 350–450 ◦C is mainly due to the decomposition of
the epoxy matrix. The residual masses of all ASCF/epoxy composite samples at 790 ◦C
are proportional to the ASCF’s load. The residual mass of C2M/epoxy is slightly larger
than that of C2/epoxy. Besides the increase of residual mass due to the addition of MXene
itself, the epoxy cannot be completely decomposed at a temperature of 800 ◦C, then MXene
causes more char adhesion residue [52,53].
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Figure 2. SEM images for (a) ASCFs and (b) MXene functionalized ACSFs. High-magnification SEM images and EDS
results of (c) ASCFs and (d) MXene functionalized ACSFs.

Figure 3. TGA plots of neat epoxy, ASCF/epoxy composites and MXene functionalized ASCF/epoxy composites under a
nitrogen atmosphere.

Storage modulus is an index reflecting the elastic properties and influenced by the
interfacial interactions between the filler and resin matrix of polymer composites [54]. As
shown in Figure 4a, the incorporation of ASCFs leads to the increased storage modulus in
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the low-temperature range (25–70 ◦C). The addition of rigid fillers increases the storage
modulus. In the range of room temperature to 140 ◦C, the storage modulus of C2M/epoxy
is slightly higher than that of C2/epoxy at the same temperature. This phenomenon shows
that the strength of the MXene functionalized ASCF/epoxy interface is stronger than that
of the ASCF/epoxy interface, and the loads transfer from the epoxy-matrix to the ASCFs
are more efficient.

Figure 4. Dynamic mechanical properties of neat epoxy, ACSF/epoxy composites and MXene functionalized ACSF/epoxy
composites: (a) storage modulus and (b) loss angle tangent.

Figure 4b illustrates the loss angle tangent (tan δ) of ASCF/epoxy and MXene func-
tionalized ASCF/epoxy composites, and the temperature at maximum tan δ value reflects
the glass transition temperature (Tg). Compared to the neat epoxy, the Tg values of the
composite decrease with the addition of reinforcement. Polymer composites have a large
relaxation temperature range [55–58]. Reinforcements restrict the slippage of adjacent
epoxy chains through strong interface bonding, making the connections around the rein-
forcement closer and reducing the cross-linking density of the epoxy network of the whole
composite. Although the ASCFs content of C2M/epoxy and C2/epoxy are the same, the Tg
of the former is slightly lower, which further proves the influence of solid interface on the
cross-linked network. The storage modulus value at room temperature and Tg are shown
in Table 1.

Table 1. Dynamic mechanical properties of neat epoxy, ACSF/epoxy composites and MXene func-
tionalized ACSF/epoxy composites.

Samples Storage Modulus (MPa) (RT) Tg (◦C)

Neat epoxy 2209 131.3
C1/epoxy 2795 127.6
C2/epoxy 2994 126.3
C3/epoxy 3153 125.5
C4/epoxy 3273 124.0

C2M/epoxy 3044 126.9

Figure 5a,d exhibit the typical stress-strain curves in tension, tensile strength, elastic
modulus, typical load-deflection curves in bending, flexural strength and flexural modulus
of neat epoxy, ASCF/epoxy and MXene functionalized ASCF/epoxy composites at different
filler loadings, respectively. It can be found that the addition of ASCFs enhances the
mechanical properties of the composites when compared to neat epoxy. Increasing the
ASCFs’ content first shows an increasing trend of properties, followed by a decrease. At the
ASCFs’ content of 2 wt.%, all mechanical properties of the ASCF/epoxy composites reach
maximum values. On this basis, the mechanical properties of C2M/epoxy composites are
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further improved. Compared to the C2/epoxy, tensile strength (124.6 MPa) is increased by
13% (141.2 MPa), while the flexural strength (165.7 MPa) is increased by 20% (199.3 MPa),
respectively. Compared to neat epoxy, the mechanical properties are significantly improved,
tensile strength and elastic modulus are increased by 100% and 46%, while the flexural
strength and flexural modulus are increased by 67% and 38%, respectively. The mechanical
properties for neat epoxy and its composites with different filler loadings are summarized in
Table 2. Considering the enhancement effects of commercially available SCFs [43,44,59,60],
MXene [39,61], the enhancements from the addition of MXene functionalized ACSFs are
also comparable, as shown in Table 3.

Figure 5. (a) Typical stress-strain curves in tension, (b) elastic modulus and tensile strength, (c) typical load-deflection
curves in bending, (d) flexural modulus and flexural strength, (e) typical load-deflection curves in fracture toughness,
(f) fracture toughness and critical energy release rate values of fracture toughness of ACSF/epoxy composites and MXene
functionalized ACSF/epoxy composites.
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Table 2. Mechanical and thermal properties of neat epoxy and its composites.

Samples Tensile Strength
(MPa)

Elastic Modulus
(GPa)

Flexural Strength
(MPa)

Flexural Modulus
(GPa)

KIC
(MPa·m1/2)

Neat epoxy 70.5 ± 6.5 2.6 ± 0.3 119.1 ± 7.5 2.6 ± 0.2 0.74 ± 0.03
C1/epoxy 114.1 ± 1.4 3.7 ± 0.3 153.2 ± 8.7 3.2 ± 0.2 1.78 ± 0.03
C2/epoxy 124.6 ± 2.3 3.8 ± 0.2 165.7 ± 9.1 3.5 ± 0.3 2.14 ± 0.02
C3/epoxy 116.8 ± 1.1 3.8 ± 0.3 147.1 ± 8.9 3.3 ± 0.2 2.25 ± 0.04
C4/epoxy 104.3 ± 0.8 3.7 ± 0.1 129.8 ± 8.5 3.2 ± 0.4 2.32 ± 0.02

C2M/epoxy 141.2 ± 2.3 3.8 ± 0.4 199.3 ± 8.9 3.6 ± 0.3 2.34 ± 0.04

Table 3. Comparison of the tensile strength (σ), flexural strength (σfM) and fracture toughness (KIC) of various composite
systems, and the relative increments after incorporation of commercially available SCFs and MXene (Ti3C2Tx).

Reinforcement
Filler Content

σ, Gain in σ (%),
(Matrix σ (MPa))

σfM, Gain in σfM (%),
(Matrix σfM (MPa))

KIC, Gain in KIC (%),
(Matrix KIC (MPa·m1/2))

Reinforcement Filler
and References

2 wt.% 124.6, 77, (70.5) 165.7, 39, (119.1) 2.14, 189, (0.74) ASCFs, this work

2 wt.% 141.2, 100, (70.5) 199.3, 67, (119.1) 2.34, 216, (0.74) MXene functionalized
ACSFs, this work

17.5 Vf% 102.5, 53, (67.2) - - SCFs [44]
2 wt.% - 139.4, 28, (108.7) ~0.85, 35, (0.63)

SCFs [43]3 wt.% - ~130, 20, (108.7) 0.86, 36, (0.63)
3 wt.% - 135 ± 3, -, (-) - SCFs [59]

0.7 wt.% ~47, −11, (52.86) 89.69, 30, (69) -
SCFs [60]1 wt.% 55.61, 5.2, (52.86) ~72, 4, (69) -

0.2 wt.% 106.4, 51 (70.5) 157, 32, (119.1) 1.07, 45, (0.74)
Ti3C2Tx [39]1 wt.% 76.1, 8, (70.5) 128.6, 8, (119.1) 1.41, 91, (0.74)

1.2 wt.% ~66, 24.9, (~53) - - Ti3C2Tx [61]

SEM was used to compare the fracture behavior of ASCF/epoxy composites and
MXene functionalized ASCF/epoxy composites after the tensile test (Figure 6). The tensile
fracture surfaces of C2/epoxy and C2M/epoxy composites both exhibit multi-planar
features with many tortuous cracks, which indicates that the reinforcement phase caused
the deflection of crack propagation. The crack deflection process can arouse off-plane
loading and generate new fracture surfaces, increasing the required strain energy for crack
propagation. It should be noted that there are many debonding ASCFs in the fracture
section of C2/epoxy (Figure 6a,b); however, there is no debonding reinforcement on the
fracture section of C2M/epoxy (Figure 6c,d). This failure mode observation indirectly
reflects the solid interface interaction between the cross-scale reinforcement and the epoxy
matrix, which was due to the ASCFs functionalized by MXene. For one thing, the wrinkled
MXene layers change the surface roughness of the carbon fiber and enhance the mechanical
interlock [54]; for another thing, the rich polar functional groups on the surface of MXene
not only have strong hydrogen bonding with epoxy resin [15], but also can form a chemical
bond with epoxy resin matrix [39].
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Figure 6. (a) Low-magnification and (b) high-magnification SEM images of tensile fracture surfaces of C2/epoxy; (c)
Low-magnification and (d) high-magnification SEM images of tensile fracture surfaces of C2M/epoxy.

Fracture toughness of ASCF/epoxy composites with different filler loadings and
C2M/epoxy composites were evaluated by the SENB method, as shown in Figure 5f.
The fracture toughness value is positively correlated with the amount of ASCFs added.
C2M/epoxy has the largest fracture toughness value (2.34 MPa·m1/2), which is 9% higher
than C2/epoxy (2.14 MPa·m1/2), and is significantly 216% higher than neat epoxy (0.74
MPa·m1/2). The propagation of crack is severely hindered through the fillers, which leads
to the dissipation of higher fracture energy in composites. Further, the critical energy
release rate (GIC) of C2M/epoxy has increased dramatically by ~650% than neat epoxy.

Figure 7 shows SENB flexural fracture surfaces of the C2/epoxy and C2M/epoxy
composites. A large number of debonded reinforcements can be seen on both fracture
surfaces. Still, unlike C2/epoxy (Figure 7a,b), the residual resin can be seen around the
fibers in C2M/epoxy (Figure 7c,d), which indicates that the MXene functionalized ASCFs
are more firmly bonded to the resin matrix.
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Figure 7. (a) Low-magnification and (b) high-magnification SEM images of SENB flexural fracture surfaces of C2/epoxy;
(c) Low-magnification and (d) high-magnification SEM images of SENB flexural fracture surfaces of C2M/epoxy.

As shown in Table 2, for neat epoxy, the flexural modulus of elasticity is equal to the
tensile modulus of elasticity, but the flexural strength is much higher than tensile strength.
Different from the three-point stress state of the bending test, any defects in the parallel
section of the tensile specimen can lead to the failure of the specimen, so that the fracture
surface may appear in any part of the parallel section of the specimen. However, the failure
of the bending sample often occurs in the center of the sample under the action of the upper
indenter, which is less affected by the defects than in the tensile test, that is why the flexural
strength is greater than the tensile strength. Under the action of the reinforcing phase,
although the flexural modulus and elastic modulus of the composite materials are slightly
different, the trend and regular pattern of the two are consistent. In general, similar results
can be seen in related reports on epoxy resin-based composites [39,62–64]. Similarly, by
comparing the results of tensile strength, flexural strength and fracture toughness, it can be
found that the same reinforcing phase content improves the two properties inconsistently,
which is also related to different test methods. The results of the tensile and flexural test
depend on the properties of the relatively large sample. Regardless of the nature of the
sample, a single defect in the sample (such as agglomerate) can cause failure. In contrast,
the sample damaged after the SEBN fracture test was carried out along the pre-crack, so it
is not easily affected by a single defect. Therefore, the morphology of the tensile fracture
surfaces of C2M/epoxy (Figure 6c,d) is completely different from that of the SENB flexural
fracture surfaces (Figure 7c,d).
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4. Conclusions

ASCFs with an average length of ~20 µm were prepared by grinding, sieving, washing
and centrifuging nitric acid-treated CFs. A cross-scale enhancement of MXene functional-
ized ASCFs were prepared by immersing ASCFs in a solution with the Ti3C2Tx concentra-
tion of 1 mg mL−1. ASCF/epoxy composites with low-loads in 1 wt.%, 2 wt.%, 3 wt.% and
4 wt.% were prepared, and the mechanical properties of the composites are the best at a
load of 2 wt.%. For comparison, the cross-scale reinforcements with ASCFs’ content of 2
wt.% were also composite with epoxy resin. The experimental results show that ASCFs
functionalized by MXene form a stronger interface interaction with the epoxy matrix,
which effectively improves the mechanical properties of the epoxy composite. In general,
continuous CFs surface modification technology has been successfully applied to SCFs
reinforced epoxy, providing a technical route with high-performance application prospects.
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