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Current immuno-oncotherapeutic protocols that inhibit tumor immune evasion have
demonstrated great clinical success. However, the therapeutic response is limited only to
a percentage of patients, and the immune-related adverse events can compromise the
therapeutic benefits. Therefore, improving cancer immunotherapeutic approaches that
pursue high tumor suppression efficiency and low side effects turn out to be a clinical
priority. Novel magnetite nanoparticles (MNPs) exhibit great potential for therapeutic and
imaging applications by utilizing their properties of superparamagnetism, good
biocompatibility, as well as the easy synthesis and modulation/functionalization. In
particular, the MNPs can exert magnetic hyperthermia to induce immunogenic cell death
of tumor cells for effective antigen release and presentation, and meanwhile polarize tumor-
associated macrophages (TAMs) to M1 phenotype for improved tumor killing capability,
thus enhancing the anti-tumor immune effects. Furthermore, immune checkpoint
antibodies, immune-stimulating agents, or tumor-targeting agents can be decorated on
MNPs, thereby improving their selectivity for the tumor or immune cells by the unique
magnetic navigation capability of MNPs to promote the tumor killing immune therapeutics
with fewer side effects. This mini-review summarizes the recent progress in MNP-based
immuno-oncotherapies, including activation of macrophage, promotion of cytotoxic T
lymphocyte (CTL) infiltration within tumors and modulation of immune checkpoint
blockade, thus further supporting the applications of MNPs in clinical therapeutic protocols.

Keywords: magnetite nanoparticles, macrophages, cytotoxic T lymphocytes, immune checkpoint blockade,
cancer immunotherapy
INTRODUCTION

Immuno-oncotherapy aims to activate the patient’s immune system to recognize and kill tumor
cells (1). Immunotherapeutic approaches date back to ancient Egypt, with the observation that
tumors could be cured with bacterial infections, an event that we now attribute to immune
activation. The modern immunotherapy of cancer started with Willian B. Coley at the end of the
org October 2021 | Volume 12 | Article 7014851
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19th century with his “Coley’s toxin”, a mixture of killed bacteria,
which non-specifically activated the immune responses, thereby
resulting in tumor regression. Coley’s toxin is still used in clinical
trials, and pharmaceutical companies are interested in
developing modern vers ions of i t (2 , 3) . Current
immunotherapies include several approaches for the non-
specific stimulation of innate immune mechanisms on the
same line as Coley’s toxin (such as the use of BCG in bladder
cancer) (4), and strategies aiming at triggering specific anti-
tumor immunity. These include the development of cancer
vaccines, adoptive cell therapy, and checkpoint inhibitors (5).
Indeed, immuno-oncotherapy based on immune checkpoint
inhibitors has revolutionized the therapy of advanced and
metastatic tumors, leading to an unprecedented rate of cure
(6). However, all these therapies need further development and
optimization. For instance, non-specific immunological
stimulation is often associated with substantial inflammation
(the Coley’s toxin therapy was dubbed the “fever therapy”), and
the therapy with checkpoint inhibitors that releases the block of
immunity leads to uncontrolled reactions that can substantially
affect the patient’s own organism and causes the unwanted
immune-related adverse events (irAEs) (7). In addition, in
particular for immuno-oncotherapies aiming at activating
specific anti-tumor immunity, the therapeutic approach is
effective only for a limited number of patients, which
depended on the degree of the immunogenicity for various
tumor types (8). In an effort to improve the efficacy and safety
of the immuno-oncotherapy, many studies have focused on the
use of engineered nanoparticles (NPs) (9–12). In this context,
magnetite nanoparticles (MNPs) are already in use for medical
purposes, e.g., in iron replacement therapy and magnetic
resonance imaging (MRI), approved by the US Food and Drug
Administration (FDA) (13, 14). The European Medicines
Agency (EMA) has also approved the use of iron oxide NPs
(NanoTherm®) for the treatment of intermittent glioblastoma
multiforme (15). The suitability of MNPs as drug delivery system
is based on a number of promising properties, which include
their good superparamagnetism and biocompatibility, the easy
synthesis and surface modulation/functionalization, and the
magnetic hyperthermia and navigation capability (16–18).
Based on these characteristics, MNPs can be also applied for
theranostics and have been studied for a wide number of new
medical applications in oncotherapy. Thus, this brief mini-
review tries to report the recent promising applications of
MNPs in cancer immunotherapies.
MNPs IN TUMOR IMAGING

Currently, FDA has approved various MNPs for clinical imaging,
including Ferumoxide (19), Ferumoxtran-10 (20, 21),
Ferumoxsil (22), Ferucarbotran (23), Ferumoxytol (24, 25), and
Magtrace (26). However, some of these MNPs have a low
performance–price ratio, and some have been withdrawn from
the market because of poor clinical results. Therefore, an
increasing number of studies have investigated the optimized
Frontiers in Immunology | www.frontiersin.org 2
MNPs to improve the imaging efficiency. Bai et al. (27) reported
that the modification with a tumor-targeting peptide (cRGD, a
molecule targeting the integrin avb3 overexpressed by
endothelium cells of angiogenic tumor vessels) on MNPs could
facilitate the effective accumulation of MNPs into the tumor of
mice, thus improving the efficiency on MRI application.
Moreover, MNPs can be conjugated with other imaging
components to realize multi-modal imaging (28). Li et al. (29)
incorporated superparamagnetic iron oxide (SPIO) NPs into 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(poly-
ethylene glycol)-5000] (DSPE-PEG5k) nanomicelles, which were
further conjugated with a near-infrared fluorescence dye (Cy5)
and the tumor-targeting peptide bombesin (Bom, used to target
the overexpressed G protein-coupled receptors in various
malignancies). These nanomicelles could target mouse MDA-
MB-231 breast cancer and perform both MRI by the inner SPIO
as well as the near-infrared fluorescence imaging by the Cy5 dye
(29). These promising outcomes of MNPs in tumor imaging
strategies demonstrated their advantages of easy surface
modification and functionalization, and these properties could
be further integrated into immuno-oncotherapeutic strategies.
Recent studies of exploiting MNPs to enhance the efficacy of
immunotherapy will be highlighted and discussed in the
following paragraphs (30).
MNPs FOR ENHANCING MACROPHAGE
ANTI-TUMOR ACTIVITY

Macrophages are the very important component of the innate
immune system and first-line defense cells against pathogens and
cancers (31). Macrophages are both surveillance and scavenging
cells that patrol the tissue and recognize/eliminate senescent,
anomalous, and dead cells, and activate effector cells to kill, ingest,
and degrade pathogens and tumor cells after having initiated an
inflammatory process. The activities of macrophages are mainly
influenced by the developmental origin, tissue of residence, and
acute microenvironmental cues (32). Although the capacity as
antigen-presenting cells (APCs) is weaker than the dendritic cells
(DCs), tumor-associated macrophages (TAMs) could re-activate
primed T cells by cross-presenting tumor antigens in the tumor
microenvironment (TME) rather than in the draining lymph node,
thereby contributing to the adaptive immunity in addition to their
main role in innate immune responses (33). Besides, the tumor-
killing functionality of TAMs should also be ideally achieved
through various mechanisms, e.g., the phagocytosis of tumor
cells, secretion of cytokines (e.g., IFNg and TNFa), production of
inducible nitric oxide synthase, and induction of anti-tumor
inflammation (33, 34). Unfortunately, phagocytosis is partially
deactivated owing to the developed escaping mechanism of
overexpressing “do-not-eat-me” signal on tumors (35).
Furthermore, the most representative TAMs are pro-tumorigenic
M2-like phenotype cells, which suppress the anti-tumor capacity of
the M1-like phenotype cells, and contribute to the tumor growth,
tumor immune evasion, and metastasis (36). Therefore, a bunch of
investigations that aim to promote the phagocytosis and the M1
October 2021 | Volume 12 | Article 701485
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polarization of the TAMs by the application of MNPs have
been undertaken.

The expression of the cell surface integrin-associated protein
CD47 (ubiquitously expressed on normal cells) is abundantly
expressed on most tumor cells and creates a “do-not-eat-me” signal
through bindingwith the signal-regulatory protein alpha (SIRPa) on
macrophages (37–39). SIRPa is a regulatorymembrane glycoprotein
expressed on the macrophage membrane that accumulates at a
phagocytic synapse between macrophages and tumor cells upon
CD47 binding (37, 40). Thus, the blockade of the CD47–SIRPa
interaction by anti-CD47 antibody could restore the macrophage-
mediated phagocytosis against tumor (Figure 1) (41–43).
Accordingly, a combined immunotherapeutic approach was
proposed by using indocyanine green and sepantronium bromide
co-loaded mesoporous silica NPs for photothermal and
chemotherapy with primary tumors. This approach induced a
primary tumor destruction that facilitated tumor antigen release
and presentation for specific cytotoxic T lymphocyte (CTL)
generation (44). Furthermore, MNPs coated by a silica layer
conjugated with anti-CD47 antibody were subsequently
magnetically guided to be accumulated at metastatic tumor sites to
block the interaction of tumor-expressed CD47 with macrophages.
As a consequence, macrophages recognized and destroyed/
phagocytosed metastatic tumor cells in synergy with activated
CTLs (44). In addition, the Fc portion of some CD47 antibody
could also drive macrophage for the antibody-dependent cellular
phagocytosis (ADCP), which could further strengthen the
macrophage-mediated anti-tumor activity (45). However, since
CD47 is an essential molecule for protecting normal cells from
macrophage attack, strategies for CD47 inhibition need to be very
precisely targeted to tumor cells in order to avoid severe collateral
damage, as observed with anti-CD47 antibody infusion that causes
thrombocytopenia or anemia (35, 45, 46).

The use of plasma membrane-coated biomimetic NPs was
applied for a precise inhibition of tumor CD47 binding to
macrophages (47, 48). The MNPs could be coated with
membrane from genetically engineered cells that overexpressed a
SIRPa variant for CD47 binding and showed a 50,000-fold
Frontiers in Immunology | www.frontiersin.org 3
increased binding affinity. These biomimetic MNPs efficiently
accumulated in the TME under external magnetic field guidance
and specifically blocked the macrophage-inhibiting CD47–SIRPa
binding between tumor cells andmacrophages (49). Suchmagnetic
navigation approach with MNPs decreases the risk of inducing
severe side effects through enhanced tumor targeting. In addition, it
is known that the TME can bias the infiltrating TAMs towards a
tumor-promoting M2-like phenotype (50), thereby inhibiting the
cytocidal and antigen-presenting capacity ofM1macrophages (51).
There are evidences that MNPs could promote the re-polarization
of TAMs towards an M1 functional phenotype, which resulted in
the activation of the macrophage for tumor killing (49, 52).
Ferumoxytol, one of the FDA-approved MNPs, was found able to
upregulate the expression of M1-related genes (CD86 and TNFA)
and todecrease expressionofM2-relatedgenes (CD206 and IL10) in
a murine macrophage-like leukemia cell line in vitro (52). In vivo,
experimental tumors were restricted in their growth by treatment
with ferumoxytol and showed an increased number of M1-like
infiltrating macrophages in comparison to the untreated tumors
(52). Other studies also exploited MNPs for inducing M1
polarization of TAMs, as recently shown with polymeric NPs
coated with a membrane of LPS treated macrophage, and
encapsulating Fe3O4 NPs and the imiquimod (Toll-like receptor 7
agonist, a strongmacrophage activator),whichwere able topolarize
TAMs towards M1 and achieve a concomitant restriction of
experimental tumor growth (53). The membrane was prepared by
the LPS stimulated macrophages to specifically target TAMs
without direct M1 polarization effects that can be verified from
the macrophage polarization results of PLGA-ION (PI) and
membrane-coated PLGA-ION (PI@M) NPs. The CD80
expression in PI was 67.55% vs. 74.31% in PI@M. The higher M1
polarization of PI@M may be attributed to the enhanced
internalization caused by the coated membrane camouflage and
targeting capacity. Furthermore, vitamin C (Vc) was applied to
eliminate the polarization capacity induced from the ROS pathway
of enhancing p300/CBP acetyltransferase activity and promoting
p53 acetylation by iron overload (54). Despite the fact that the ROS
level of Vc+PI@M was reduced to 0.69-fold compared to the sole
A B

FIGURE 1 | Macrophage-mediated phagocytosis regulated by the CD47–SIRPa pathway. (A) The CD47–SIRPa interaction inhibits macrophage-mediated
phagocytosis on tumor cells. (B) The interaction of CD47–SIRPa can be blocked by the anti-CD47 antibody to restore the macrophage-mediated phagocytosis
against tumor cells. SIRPa, signal-regulatory protein alpha; CD47, cluster of differentiation 47.
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PI@Mtreatment,CD80 expression inPI@M(74.31%) andVc+PI@
M (73.24%) was still in a similar range, indicating that the M1
polarization was mainly caused by MNPs rather than the ROS by-
product. Besides, a recent study indicated that, after taking a large
amount of iron, macrophages could be polarized to M1 type by
inhibiting the ERK phosphorylation (55). However, this
mechanism still needs to be further investigated and
confirmed critically.

Thus, MNPs have proven useful for enhancing the
macrophage anti-tumor activity, both in inducing the M1 re-
polarization of TAMs and as carriers of inhibitors on tumor
CD47 “do-not-eat-me” signal. Although these preliminary
results are promising, future research will have to overcome
several issues before successfully using MNPs as macrophage
activators in cancer immunotherapy. These encompass the
heterogeneity of MNP effects on macrophages (56) [may show
no activation effects on human primary cells (57)], the need for
very accurate tumor targeting to avoid the risk of severe off-target
autoimmune and self-destructive effects (which is also the major
current problem of immunotherapy with checkpoint inhibitors),
the need to reach distant metastatic tumors, and the assessment
of efficacy in non-solid tumors.
MNPs FOR TURNING “COLD” TUMOR
TO “HOT”

Besides macrophages and the innate immune cells, stimulating
CTLs could be considered as another effective approach for
improving the anti-tumor immune responses and was also
widely studied (58). A solid tumor can be defined as “cold” or
“hot”, depending on the degree and localization of tumor-
infiltrating CTLs and the immunological condition of the TME
(59, 60). The “cold” tumor exhibits an immune suppressive TME
with an inadequate CTL infiltration and the excessively activated
immunosuppressive cells, including regulatory T cells (Tregs),
myeloid-derived suppressor cells (MDSCs), and TAMs (61).
Meanwhile, the exhaustion of infiltrated CTLs can be induced
by the immune suppressive checkpoints in TME, e.g., the
programmed cell death protein 1 (PD-1)/programmed cell
death ligand 1 (PD-L1) or the cytotoxic T lymphocyte antigen-
4 (CTLA-4), which hindered the development of anti-tumor
specific CTLs responses (62). Conversely, a “hot” tumor exhibits
a high accumulation and infiltration of non-exhausted CTLs,
DCs, and natural killer cells (NKs), thus being an ideal target for
immuno-oncotherapy (58, 63). Thus, to improve the overall
response rate (ORR) of the current immuno-oncotherapy, a
growing number of MNP-based immunotherapeutic strategies
aim at turning the “cold” tumors to “hot” by enhancing the
number of infiltrating CTLs and modulation of immune
checkpoint blockade (ICB) in TME (Figure 2).

MNPs Improving CTL Tumor Infiltration
In the presence of an alternating magnetic field, MNPs can
generate a magnetic hyperthermia by converting the magnetic
energy into thermal energy, which can provoke immunogenic/
Frontiers in Immunology | www.frontiersin.org 4
inflammatory cell death in the tumor (64, 65). The hyperthermia
may induce immunogenic cell death (ICD) to release tumor-
associated neoantigens and danger-associated molecular patterns
(DAMPs), including the exposure of calreticulin (CRT), or the
release of chromatin-binding protein high mobility group B1
(HMGB1) and the adenosine triphosphate (ATP) (66).
Subsequently, the recognition and processing of the
neoantigens can be promoted and followed with an effective T-
cell priming (67). Thus, after the primary tumor elimination by
the magnetic hyperthermia of the ferromagnetic iron oxide
nanorings, the “eat-me” signal of CRT was elicited on the
surface of the immunogenic dying 4T1 tumor cells and
promoted the macrophage activation, which further enhanced
the activation and infiltration of CTLs in the re-challenged or
metastatic tumor on mice (68). Besides, as the most powerful
APCs, the activation of DCs is crucial for promoting
the infiltration of CTLs. To achieve a more effective tumor
antigen uptaken by DCs, an MNP-based vaccine has been
developed using Fe3O4 nanocluster core loading with the CpG
oligodeoxynucleotide (CpG-ODN, a Toll-like receptor 9 agonist)
and tumor cell membrane shell decorated with anti-CD205 for
preferentially DC recognition (69). These DC targeting MNPs
could extend the retention in lymph nodes by the magnetic
control for an increased DC internalization. The CpG-ODN and
the various antigens on the tumor cell membrane paved the way
of DC maturation, thus facilitating the MHC cross-presentation
and T-cell activation, eliciting a tremendous amount of CTL
infiltration and responses in the tumor (69). Besides promoting
the activation of DCs and CTLs, the possibility of binding MNPs
on the surface of CTLs to improve the tumor infiltration by a
magnetic field near the tumor site was also explored. By coating
Fe3O4 nanoclusters with the leucocyte membranes modified with
the co-stimulatory ligand CD28 antibody (aCD28) and peptide
(SIINFEKL)-loaded major histocompatibility complex class-I
(pMHC-I), the artificial antigen-presenting cells (aAPC) were
constructed that successfully targeted CTLs for stimulation (70).
Then, the CTLs that bound these nanoclusters could be
effectively directed to tumor with an increased accumulation
and infiltration facilitated upon magnetic guidance, resulting in
an enhanced tumor killing efficiency (70).

MNPs Modulating Immune Checkpoint
Blockade
Based on the current progress in immuno-oncotherapy, ICB
therapy, e.g., PD-1/PD-L1 and CTLA-4, has exerted a major
therapeutic effect on patients with advanced cancers (71).
Immune checkpoints exhibit crucial functions in adjusting the
balance of immune homeostasis and preventing T-cell-mediated
autoimmune diseases, while they are also found hijacked by the
tumor for suppressing the anti-tumor immune responses (72,
73). The PD-1 on T cells can be activated by binding its ligand
PD-L1 on tumors, resulting an exhausted condition of infiltrated
CTLs. CTLA-4, a new immunoglobulin superfamily candidate
on T cells (including CD4, CD8, and Treg cells), restrains the co-
stimulatory signals of CD28-CD80/86 by competitively binding
with CD80/86 on antigen-presenting cells (65, 74). In clinical
October 2021 | Volume 12 | Article 701485
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practice, anti-PD-1/PD-L1 and anti-CTLA-4 therapy proved
effective for restoring the anti-tumor T-cell-mediated immune
responses (75). However, ICB therapy only shows limited ORR
with commonly associated irAEs, which limited its clinical
application (76). Therefore, the combinational immuno-
oncotherapy based on the multi-functional MNPs attracts
considerable attention because of the immuno-stimulation
effects of magnetic hyperthermia and the drug delivery
capability of immuno-stimulatory adjuvant or checkpoint
antibodies for the improved activation of CTLs and the
accumulation of ICB antibodies (77).

The magnetic hyperthermia induced by MNPs could cause
tumor ablation and the release of neoantigens. With the help of
imiquimod (a toll-like receptor 7 agonist), CTLs were then
effectively activated (78, 79). Thus, a further combinational
approach by applying immune checkpoint antibodies, such as
anti-CTLA-4 for Treg suppression or anti-PD-1/PD-L1 to
restore exhausted CTLs, could be used for the synergistic
oncotherapy to eliminate primary tumor and inhibit tumor
metastasis, or even to generate a robust immunological
memory for tumor recurrence prevention without noticeable
Frontiers in Immunology | www.frontiersin.org 5
systemic toxicity (78, 80). Beside the combination with
checkpoint inhibitors separately, conjugating checkpoint
inhibitors on MNPs demonstrated a better tumor targeting and
treatment efficiency. The checkpoint inhibitor (anti-PD-L1) and
CTL activators (anti-CD3 and anti-CD28) could be conjugated
on the fucoidan-dextran-coated iron oxide NPs for an improved
tumor accumulation by the magnetic guidance (81). These
MNPs mediated ICB therapy-enhanced PD-L1 blockade and
promoted CTL activation that prolonged the median survival
time of tumor-bearing mice from 32 to 63 days with minimized
adverse events owing to a much lower anti-PD-L1 dosage used
than the soluble anti-PD-L1 treatment (81). Remarkably, the
superparamagnetic iron nanoclusters were armed with PD-1
antibody by TME pH-sensitive bond and successfully bound
on CTLs in vitro. These MNP/CTL cells could be magnetically
guided to the solid tumors in mice for improved CTL infiltration
and tumor killing, and further aided with PD-1 antibody release
through acid-mediated MNPs, for a synergistically enhanced
immuno-oncotherapy with minimal side effects (82).

As these studies indicated, magnetic hyperthermia therapy
induced by functionalized MNPs can effectively promote the
A

B

C

D

E

FIGURE 2 | Some representative approaches of MNPs to turn a “cold” tumor into “hot”. (A) MNP-based magnetic hyperthermia ablation therapy is capable of inducing
tumor immunogenic cell death to promote the release of antigen for DC maturation, and the subsequent CTL activation and infiltration in the tumor. (B, C) MNPs carrying
immune agents such as agonists can be applied (B) for potentiating DCs or (C) for potentiating CTLs. (D) MNPs carrying immune agents such as antibodies can bind
CTLs, and direct them to the tumor with an improved accumulation and infiltration by the magnetic guidance. (E) The tumor accumulation of the immune checkpoint
antibody can be enhanced by the conjugation on MNPs for an improved immunosuppressive pathway modulation with fewer adverse effects. DCs, dendritic cells;
MDSCs, myeloid-derived suppressor cells; CTLs, cytotoxic T lymphocytes; Tregs, regulatory T cells; TAM, tumor-associated macrophages; NKs, natural killer cells; PD-1,
programmed cell death protein 1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T lymphocyte-associated protein 4.
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immunological stimulation, tumor infiltration of CTLs, and the
efficiency of ICB therapy. Moreover, various stimuli or ICB
antibodies can be conjugated with the MNPs for improved
targeting and immune cell activation in solid tumor. Meanwhile,
the targeting cells, such as CTLs, attached withMNPs carrying ICB
antibodyon their surface, canbemagnetically directed to tumor site
for improved tumor accumulation. Such strategy has been proved
successfully to enhance both CTL infiltration and ICB efficiency in
one shot.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Taken together, extensive progresses have been made with various
MNP platforms toward different applications for the enhanced
immuno-oncotherapy. MNPs exhibited good capabilities for
magnetic hyperthermia, magnetic navigation, and immuno-agent
delivery to enhance macrophage anti-tumor capacity, to increase
the tumor infiltration of CTLs, and to improve ICB efficiency.
Moreover, the CTLs that adhered to the MNPs carrying immune
checkpoint antibodiesobtained the ability ofmagneticnavigationas
well, which could greatly improve the CTL infiltration and ICB
effects in solid tumors. These MNP-based immunotherapies
exhibited higher anti-tumor efficiency with fewer side effects in
the experimental studies. In the future therapeutic approaches of
MNPs, the combination of these unique properties possessed by
MNPs may be the most promising strategy for successful cancer
therapeutics. The hyperthermia induced by MNPs can eliminate
tumor cells directly, which provokes the ICD from DAMPs and
antigen release for the improved anti-tumor immune responses.
Moreover, the tumor tissue-retained MNPs could polarize the
remaining TAMs to M1 macrophage as a further method to
eliminate the residual tumor effectively. Consequently, the tumor
metastasis and recurrence may be efficiently and sustainably
inhibited by the synergistic strategy. Despite these advantages,
disadvantages of high difficulty in mass production, lack of the
precise analytic methods for examining the properties, and the
complicated usage condition/equipment should be noticed for the
future MNP application in oncotherapy. Moreover, in the clinical
trials, only few MNP formulations, e.g., ferumoxytol, have shown
new progress as an MRI-enhancing agent. Meanwhile, after the
withdrawal of some MNPs in clinic, various regulations have
currently been announced by the regulatory agencies, to assure a
Frontiers in Immunology | www.frontiersin.org 6
safe, effective, and quality controllable MNPs for fundamental and
translational development. With this concern, immense
information needs to be researched to cope with the complex
challenges, e.g., nano-bio interactions in the body, crossing
physiological and tumor-specific technical hurdles, stealth
behavior against late endosomal/lysosomal system into the
tumor cytosol, and boosting the desired immunity without severe
side effects or only with short-term adverse effects. Moreover,
MNPs still have to face a number of biological barriers, such as
the “Mononuclear Phagocyte System (MPS)”, that abate the
accumulation and localization of MNPs at the targeted
tumor site, and limit their further application as efficacious
immunotherapeutic vehicles. However, as promising outcomes
have been seen from the current MNP synergetic immuno-
oncotherapy, we believe that more potential approaches will be
continuously exploited for ideal functionalized MNPs with
successful clinical achievements.
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