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A B S T R A C T   

Diffuse large B-cell lymphoma (DLBCL) stands as the most prevalent subtype of non-Hodgkin’s 
lymphoma and exhibits significant heterogeneity. Various forms of programmed cell death (PCD) 
have been established to have close associations with tumor onset and progression. To this end, 
this study has compiled 16 PCD-related genes. The investigation delved into genes linked with 
prognosis, constructing risk models through consecutive application of univariate Cox regression 
analysis and Lasso-Cox regression analysis. Furthermore, we employed RT-qPCR to validate the 
mRNA expression levels of certain diagnosis-related genes. Subsequently, the models underwent 
validation through KM survival curves and ROC curves, respectively. Additionally, nomogram 
models were formulated employing prognosis-related genes and risk scores. Lastly, disparities in 
immune cell infiltration abundance and the expression of immune checkpoint-associated genes 
between high- and low-risk groups, as classified by risk models, were explored. These findings 
contribute to a more comprehensive understanding of the role played by the 16 PCD-associated 
genes in DLBCL, shedding light on potential novel therapeutic strategies for the condition.   

1. Introduction 

Diffuse large B-cell lymphoma (DLBCL) is a type of non-Hodgkin’s lymphoma [1], accounting for approximately 30 % of malignant 
lymphomas. DLBCL patients treated with R–CHOP have the potential for cure [2]. However, the treatment outcomes may vary 
considerably due to the high heterogeneity of DLBCL. Despite the presence of traditional clinical features (such as age, Eastern 
Cooperative Oncology Group (ECOG) performance status, Ann Arbor stage, and lactate dehydrogenase (LDH) level), patients with 
identical clinical characteristics may experience different treatment outcomes [3]. The advent of high-throughput sequencing tech-
nology enables the molecular exploration of DLBCL pathogenesis, leading to the identification of potential therapeutic targets. 

According to the triggering mechanisms, cell death primarily occurs in two ways. Accidental cell death is an uncontrolled biological 
process, while programmed cell death (PCD) involves complex regulations and various mechanisms. Previous research has confirmed 
the roles of these PCD-related genes in tumor prognosis [4] and non-tumor diagnostics [5]. Various patterns of PCD play a crucial role 
in tumor progression. This paper categorizes 16 common modes of cell death, including apoptosis, necroptosis, ferroptosis, pyroptosis, 
netotic cell death, entotic cell death, lysosome-dependent cell death, parthanatos, autophagy-dependent cell death, oxeiptosis, and 
alkaliptosis. 

Apoptosis is a process where the body eliminates injured and unwanted cells, morphologically characterized by cell membrane 
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blistering, cell shrinkage, and the formation of apoptotic vesicles. Importantly, it does not trigger an inflammatory response [6]. 
Necrotizing apoptosis involves irreversible cell damage due to various pathological processes, ultimately leading to cell death [7]. 
Pyroptosis relies on caspase-1 to form plasma membrane pores, releasing pro-inflammatory cytokines and causing cell lysis. It is a vital 
process in the body’s defense against inflammation and pathogenic microorganisms [8]. Iron death results from iron overload and 
ROS-dependent accumulation of lipid peroxides [9]. Cuproposis, distinct from oxidative stress-related cell death, is induced by 
intracellular copper [10]. Reticulocyte death is a form of PCD caused by extracellular traps released from neutrophils [11]. Parthanatos 
is a PARP1-dependent, cystitis-dependent cell death pathway [12]. Lysosome-dependent cell death occurs when altered lysosomal 
membrane permeability leads to the release of seed hydrolases into the cytoplasm [13]. Autophagy is characterized by cytoplasmic 
vacuolization, autophagic vesicle formation, and material removal via lysosomes [14]. Alkaliptosis, a recently discovered type of PCD, 
involves cell regulation through alkalinization [15]. Oxeiptosis is a caspase-independent apoptosis-like cell death pathway induced by 
ROS [16]. The majority of PCDs have been shown to participate in biological pathways influencing the development and progression of 
a wide range of cancers. 

Previous research has confirmed the roles of certain PCD-related genes in DLBCL. For instance, Xiong et al. investigated the pre-
dictive significance of autophagy-related genes for the survival probability and drug resistance in DLBCL [17]. Wang et al. developed a 
novel prognostic model for DLBCL based on iron death-related genes [18]. However, there has been no study to date that utilizes other 
PCDs or all PCDs to construct a prognostic model for DLBCL and identify crucial prognostic genes. 

To address this gap, we obtained transcriptome data for DLBCL and its control group from the GEO database (https://www.ncbi. 
nlm.nih.gov/geo/). Subsequently, we extracted the expression levels of 16 PCD-related genes from previous studies. Subsequently, 
single-factor Cox regression analysis was performed on PCD-related genes. In this analysis, the expression levels of PCD-related genes 
were used as independent variables, while survival time was considered as the dependent variable for regression analysis. Hazard 
ratios (HR) and corresponding p-values were calculated for each gene. After extracting PCD-related genes significantly associated with 
prognosis, a risk model was constructed based on Lasso-Cox regression analysis. In Lasso-Cox regression, a Lasso penalty was applied to 
identify 16 important PCD-related genes associated with survival risk and to construct a risk model capable of predicting patient 
survival. 

Additionally, RT-qPCR was performed to validate the mRNA expression levels of the diagnosis-related genes. The validity of the risk 
model was assessed by generating KM (Kaplan-Meier) survival and ROC curves on an external test set. Nomogram models were also 
developed using prognosis-related genes and risk scores from the risk models. We evaluated differences in immune cell infiltration 
abundance and the expression of immune checkpoint-associated genes between high- and low-risk groups. Finally, interaction net-
works of prognosis-related genes with miRNAs were constructed separately. 

2. Method 

2.1. Data acquisition 

In this study, "diffuse large B-cell lymphoma" and "GEO" were used as keywords to search the relevant literature of diffuse large B- 
cell lymphoma in NCBI, and the relevant data of diffuse large B-cell lymphoma were collected from the literature. In multiple datasets, 
GSE10846 and GSE31312 contained more samples, clinical survival information, and clinical staging, and ultimately, GSE10846 and 
GSE31312 were used for subsequent analyses. Transcriptome data for DLBCL (GSE10846 and GSE31312) were retrieved from the GEO 
database. Specifically, the GSE10846 dataset comprises transcriptomic data for 414 DLBCL patients, while the GSE31312 dataset 
encompasses transcriptomic data for 498 DLBCL patients. The specific preprocessing steps were as follows: we utilized the averesps(.) 
function from the limma package to average the expression levels of duplicated genes [19], followed by standardizing the data using 
the normalizeBetweenArrays(.) function. We retained the genes contained in both GSE10846 and GSE31312 datasets. Additionally, 
samples with survival time and survival status were retained for analysis. GSE10846 retained 385 patients, and GSE31312 retained 
470 patients. Additionally, the survival data of patients from GSE10846 and GSE31312 are provided in the Supplementary Material 
files "GSE10846.clinical.xlsx" and "GSE31312.clinical.pdf", respectively. Among them, GSE31312 (300 alive, 170 dead, median sur-
vival time was 35.023 months) includes information such as follow-up time, survival status, survival time, age, gender, etc., while 
GSE10846 (237 alive, 151 dead, median survival time was 2.405 year) includes survival status, survival time, age, gender, Stage. 

In the subsequent analysis, we utilized the DLBCL transcriptome data from GSE10846 and GSE31312 as the training and testing 
sets, respectively. The training set was employed for screening prognostic genes and constructing the risk model, while the testing set 
was used for validating the predictive performance of the risk model. Finally, a total of 1254 genes related to programmed cell death 
(PCD) were collected. The list of PCD-related genes is provided in the supplementary material file "PCDgene.txt." 

2.2. Selection of prognostic genes and enrichment analysis 

In this study, based on single-factor Cox regression [20], 28 genes significantly associated with prognosis (p-value <0.00001) were 
selected from 1254 PCD-related genes in the training set transcriptome data. The False Discovery Rate (FDR) is a statistical method 
used to control the number of false positives in experiments. In this step, we introduced the False Discovery Rate (FDR) [21] to assess 
the reliability of single-factor Cox regression analysis. Subsequently, the R package clusterProfiler was used to perform Gene Ontology 
(GO) enrichment analysis, and significant pathways involved in prognosis-related genes were screened using the hypergeometric 
distribution. In the screening process, the Benjamini-Hochberg correction (also known as FDR correction) was introduced to adjust the 
original p-values, ensuring the accuracy and reliability of statistical significance when conducting multiple hypothesis tests. Finally, 
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significant pathways with corrected p-values less than 0.05 were retained. 
Subsequently, we employed the R package ggplot2 to visually represent the results of the GO enrichment analysis [22]. Additionally, 

we conducted a Metascape enrichment analysis utilizing the Metascape database (https://metascape.org/gp/index.html#/main/ 
step1) [23]. 

2.3. Approaches to screening for prognosis-related genes 

This study employed univariate Cox regression analysis to conduct a screening for genes associated with DLBCL prognosis. FDR 
(False Discovery Rate) is a statistical method used to control the number of false positives occurring in experiments. In this step, we 
introduce False Discovery Rate (FDR) to assess the reliability of single-factor Cox regression analysis [21]. 

Additionally, KM survival analysis was performed on prognosis-related genes using the R package survival [24]. A significant 
difference in survival was considered when the p-value for survival between the high-risk and low-risk groups was less than 0.05. 

2.4. Methods for constructing prognostic models 

The Lasso algorithm was employed, utilizing the R package glmnet to conduct Lasso-Cox regression analysis on the training set and 
construct a risk model [25]. In Lasso-Cox regression, the lasso algorithm is employed for feature selection on survival data to build a 
model predicting survival risk. The core idea of the Lasso algorithm is to introduce an L1 regularization term on top of ordinary least 
squares regression, which is the sum of the absolute values of coefficients. By adjusting the regularization parameter, the lasso al-
gorithm can shrink some coefficients to zero, achieving the goal of feature selection. We utilized the Lasso-Cox regression method to 
construct a risk model for calculating the risk scores of each patient. Subsequently, we divided patients into high-risk and low-risk 
groups based on the median values of these risk scores. Thus, the entire sample was divided into two groups, and KM survival 
curves were computed for each group to assess the survival differences between different risk groups. The method for calculating risk 
scores provided by the risk model is as follows. 

Risk score=
∑n

1
Coefficient (RNAi)×Expression (RNAi) (2-1)  

In our study, the log-rank test was employed to assess the survival differences between different risk groups. KM survival analysis and 
ROC analysis were performed using the survivalROC package in R. The risk model demonstrated its ability to provide and validate the 
model effectively. We put the main code in the "Code" folder of the supplementary material. 

2.5. Construction method of the nomogram model 

We first sequentially utilize univariate Cox regression and multivariate Cox regression analyses to screen independent prognostic 
models from clinical factors and risk scores. The introduction of False Discovery Rate (FDR) measures the reliability of the results. 
Subsequently, based on the independently selected prognostic factors, a column line chart model is constructed. Specifically, we 
developed a nomogram model utilizing the R package rms that relies on prognosis-related genes and risk scores. The accuracy of the 
nomogram model was evaluated using a calibration curve. Furthermore, we appraised the clinical utility of the nomogram model 
through decision curve analysis (DCA). 

2.6. The analysis of immune infiltration and immunotherapy 

In this paper, we employed the ssGSEA algorithm [26] to evaluate the abundance of 22 immune cell infiltrates in DLBCL samples. 
Additionally, we conducted a comprehensive analysis, employing Spearman correlation analysis, to investigate the relationships 
among risk scores, prognosis-related genes, and immune cells. The threshold p-value for significance for the association between the 
risk score and immune cells was 0.001. The threshold for the remaining correlation analyses was p-value <0.05. Utilizing the R 
package estimate [27], we calculated scores for the tumor microenvironment matrix, immune response, and tumor purity. Lastly, we 
explored differences in the expression of genes associated with immune checkpoints and HLA genes between high- and low-risk groups 
as classified by the risk model. When calculating the Spearman correlation coefficient between immune infiltration and the expression 
of prognostic genes, and evaluating the differential expression of immune checkpoint sites and HLA genes among high and low-risk 
group samples, False Discovery Rate (FDR) was introduced to control the false positive rate resulting from multiple comparisons. 

2.7. Drug sensitivity analysis 

The R package oncoPredict was used to obtain drug sensitivity (IC50 values) for 138 compounds in high- and low-risk groups [28]. 
The IC50 values between the two groups were considered to be significantly different when the p-value was less than 1e-13. 

2.8. Interaction network construction of prognosis-related genes and miRNAs 

In this study, miRNAs and transcription factors interacting with diagnosis-related genes were queried using the miRTarBase 
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database (http://mirtarbase.cuhk.edu.cn/php/index.php) [29]and the TargetScan database (http://www.targetscan.org/vert_72/), 
respectively. Subsequently, an interaction network was constructed. 

2.9. Statistic analysis 

In this paper, bioinformatics analysis and statistical analysis were completed based on R software (v4.0.2). The Wilcoxon-test was 
used for statistical analysis of differences. Specifically, we utilized the Wilcoxon test to compare the expression levels of immune 
checkpoint markers, HLA genes, ESTIMATE Score, Immune Score, and Stromal Score between samples from high and low-risk groups 
for significant differences. The Kaplan-Meier log-rank test was employed to analyze survival differences between high and low-risk 
groups. The Spearman correlation coefficient was calculated to assess the correlation. Specifically, we evaluated the correlation be-
tween immune cell infiltration abundance/immune function scores and prognostic genes in the training and testing datasets. 

2.10. Experimental validation of prognosis-related genes 

In order to detect the mRNA expression of prognosis-related genes in blood samples of DLBCL patients, RT-qPCR was performed to 
detect the expression of diagnosis-related genes. Specifically, we divided the samples into DLBCL group and control group to detect the 
expression of AEN, DNAJC10, DNM1L, ELL3 and HIF1A genes. GAPDH was used as an internal reference. The mRNA expression level 
was calculated with the 2-ΔΔCt. All data were expressed by means ± SD, and the statistical differences between groups were tested by 
T-Test, and p-value <0.05 indicated a significant difference. In RT-qPCR analysis, primer sequences play a crucial role. Primers are 
short DNA fragments used to amplify the target DNA segments, they anneal to the ends of the target DNA sequence and guide DNA 
replication during PCR. The selection of primer sequences can directly affect the specificity, efficiency, and accuracy of PCR. Therefore, 
primer sequence information is provided in Table 1. 

3. Results 

3.1. Acquisition of prognosis-related genes 

In this section, we will provide a detailed overview of the process involved in acquiring both PCD-related genes and prognostic 
genes. The technology roadmap for this study is illustrated in Fig. 1. Specifically, we initially extracted the expression data of PCD 
genes from the training set. 

To screen for genes significantly associated with the prognosis of DLBCL, we conducted univariate Cox regression analysis on the 
expression data of all PCD-related genes in the clinical samples of DLBCL from the GSE10846 dataset, resulting in 28 significant genes 
(p-value <0.00001). The forest plot resulting from this screening is presented in Fig. 2A. A total of 28 genes, including AEN, BAK1, 
BNIP3L, DNAJC10, DNM1L, ELL3, ERP29, HIF1A, ITGA6, ITGAV, MAEL, MMP9, NLE1, PDK1, PIK3R1, PPIF, PTPRC, YWHAB, 
YWHAE, SLC1A5, ATP13A2, MLST8, POLDIP2, TBC1D14, UBQLN2, USP30, BIRC2, and ATP7A, were found to be significantly 
correlated with prognosis (p-value <0.001). FDR values corrected by Benjamin Hochberg have been placed in the Supplementary 
material. 

MetaScape analysis and GO enrichment analysis were performed on these genes. Fig. 2B represents a histogram of the significant 
pathways identified through MetaScape analysis. Fig. 2C–D depict circle and bar graphs, respectively, illustrating the significant 
pathways identified through GO enrichment analysis. These enriched pathways have been confirmed to be closely associated with the 
development of DLBCL, such as the regulation of proteolysis, malignant pleural mesothelioma, and regulation of autophagy, among 
others. The relationship between these pathways and DLBCL will be extensively discussed in the following sections. 

Table 1 
The primer sequences.  

Primers Sequence (5’→3′) 

AEN Forward GAGATCCTTAAGCTCCTGAAGG  
Reverse TCAATTCCTTCTGTCCTGTGC 

DNAJC10 Forward AGGATCTTATGAATCCTTCAGTGG  
Reverse TTGAACGTTTTCCTGGGCAC 

DNM1L Forward GTGTGCCAAAGGCAGTAAAAC  
Reverse TTGACTGGCTCCTTGTAATGC 

ELL3 Forward AGGCTATTCTGAAGGAGATGC  
Reverse TCTTGCTCCCAATCTTCTCC 

HIF1A Forward TTGGCAGCAACGACACAGAA  
Reverse TCGAAGTGGCTTTGGCGTTT 

GAPDH Forward CGCTAACATCAAATGGGGTG 
TGCCAGCCCCAGCGTCAAAG  Reverse  
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3.2. Results of prognostic model construction for 16 PCD-related genes 

In this section, we provide a detailed overview of the construction process of the prognosis model and the validation results for 
differences in survival and prognosis between high and low-risk groups. Specifically, based on Lasso-Cox regression analysis, 16 genes 
were further selected from 28 significant genes to construct the risk model. Fig. 3A–B illustrate the distribution of Lasso coefficients 
and the partial likelihood deviation plots during the construction process. The dashed line on the left side of Fig. 3A corresponds to a 
lambda.min of 16, leading to the selection of 16 genes for building the prognosis model. Fig. 3B depicts the coefficient distribution, 
where each line represents a gene, and their endpoints indicate the corresponding coefficients. The final risk scoring formula is shown 
below. 

Risk score=0.03286 × Expression(AEN) − 0.02839 × Expression(DNAJC10) − 0.3691 × Expression(DNM1L) − 0.2305

× Expression(ELL3) − 0.5697 × Expression(HIF1A) − 0.0539 × Expression(ITGA6) − 0.3320 × Expression(MAEL) − 0.3754

× Expression(MMP9) + 0.3081 × Expression(NLE1) − 0.2801 × Expression(PDK1) + 0.0663 × Expression(PPIF) − 0.0661

× Expression(PTPRC) − 0.1040 × Expression(YWHAB) + 0.1268 × Expression(ATP13A2) − 0.0497 × Expression(UBQLN2)

− 0.0182 × Expression (ATP7A)
(3-1) 

All DLBCL samples were stratified into high- and low-risk groups based on the median values of the risk scores derived from the risk 
model. The KM survival curves for the risk models on the training and test sets are presented in Fig. 3C–D, respectively. As evident from 
the graphs, there is a significant difference in survival rates between the high- and low-risk groups. Figs. S1A–B showcase the ROC 
curves predicting the survival of DLBCL samples at 1, 3, and 5 years in the training and test sets. The ROC values for the training set 
were 0.782, 0.812, and 0.815 for 1, 3, and 5 years, respectively. Similarly, the ROC values for the test set were 0.636, 0.640, and 0.651 
for 1, 3, and 5 years, respectively. We also calculated the trend of the Concordance index over time in both the training and testing 
datasets (Fig. 3E–F). 

We conducted a comprehensive evaluation of the risk model’s performance. Initially, we generated expression heat maps for the 

Fig. 1. The technological process diagram.  

H. Feng et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e30831

6

identified risk genes in both high- and low-risk groups, the populations for which the risk model was developed. Fig. 4A–B depict the 
expression heatmaps in the training and test sets, respectively, revealing substantial differences in gene expression between the two 
groups. Our study results demonstrate a significant association between the high-risk group and adverse clinical outcomes in both the 
training and testing datasets (Fig. 4C–F). Notably, an increase in the risk score corresponds to a higher number of sample points in the 
high-risk group. Furthermore, we applied Principal Component Analysis (PCA) downsizing to the expression data of 28 genes in the 
two risk groups, resulting in a two-dimensional scatter plot represented in Fig. 4G–H. The graphs demonstrate that samples within the 
same group exhibit close proximity, whereas those from different groups are distinctly separated. To further evaluate the accuracy of 
the risk model in predicting progression-free survival (PFS), KM and ROC analyses were performed using the GSE31312 expression 
data and PFS survival data and are presented in Fig. S1 in the Supplementary Material. 

3.3. Nomogram model construction and GSEA analysis 

In this section, we conducted an independent prognosis analysis on DLBCL samples and constructed a nomogram model based on 
risk scores and clinical factors, aiming to further analyze the independent impact of risk scores and clinical factors on prognosis. 
Initially, through univariate Cox regression analysis, gender, age, stage, and risk score were identified as factors significantly asso-
ciated with the prognosis of DLBCL patients (Fig. 5A). Subsequently, based on multivariate Cox regression analysis, age, stage, and risk 
score were identified as independent prognostic factors (Fig. 5B) and used to construct the nomogram model (Fig. 5C). FDR values 
corrected by Benjamin Hochberg have been placed in the Supplementary material. The decision curve analysis (DCA) curve in Fig. 5D 
and the calibration curve in Fig. 5E indicate that the nomogram model has excellent predictive performance. Fig. 5F shows that the 

Fig. 2. Results of univariate Cox analysis and enrichment analysis of PCD genes. A is a forest plot obtained from univariate Cox regression analysis. 
B is the bar graph of metascape analysis of prognosis-related PCD genes. C and D are the circle chart and column chart of GO enrichment analysis. 
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Fig. 3. Risk models constructed with prognostic correlation genes and model performance validation. A shows the partial likelihood deviation plots. 
B is the distribution of LASSO coefficients. C and D are the KM survival curves for the risk models on the training and test sets, respectively. E and F 
are line plots illustrating the relationship between survival time and Concordance index in the training and testing datasets, respectively. 
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AUC of 1-year, 3-year and 5-year survival predicted by this model reached 0.790, 0.816 and 0.825, respectively. To identify differences 
in pathway involvement between high and low-risk groups, GSEA analysis was conducted to identify the Top 5 pathways involved in 
samples from both high and low-risk groups (Fig. 6A–B). The relationship between these pathways and DLBCL will be elaborated in the 
discussion section. These findings underscore the potential of the prognostic nomogram model to provide valuable prognostic in-
formation for DLBCL. 

3.4. Immune landscapes in different risk groups 

In this section, we analyzed the differences between high and low-risk groups in terms of the abundance of immune cell infiltration 
and immune function scores. Utilizing the ssGSEA algorithm, this study investigated the correlation heat map depicting the immune 
infiltration abundance of various immune cells in the training and test sets of the samples, as well as the genes related to prognosis 
(Fig. 7A, Fig. 8A). Notably, a significant correlation was observed between the majority of immune cells and genes. Fig. 7B–I presents 
scatter plots illustrating the correlation analysis between risk scores and immune cells with significant correlations in the training set. 
FDR values corrected by Benjamin Hochberg have been placed in the Supplementary material. Similarly, Fig. 8B-L depict scatter plots 

Fig. 4. Assessment of risk models. A and B are the expression heat maps of the risk genes constituting the risk model in the training and test sets, 
respectively. C and D are scatter plots reflecting the relationship between risk group assignment and risk scores in the training and testing datasets, 
respectively. E and F are scatter plots reflecting the relationship between risk scores and survival status in the training and testing datasets, 
respectively. G and H are visualizations after PCA reduction using the risk genes that make up the risk model on the training and test sets, 
respectively, with each point in the figure representing a sample. 

H. Feng et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e30831

9

of correlation analysis between risk scores and immune cells with significant correlations in the test set. Among them, multiple immune 
cell infiltration abundances/immune function scores showed a significant correlation with risk scores (p-value <0.001). In the training 
set, we confirmed a close association between risk scores and aDCs, APC_co_inhibition, DCs, iDCs, inflammation-promoting cells, pDCs, 
and Th2 cells. In the test set, we verified a strong correlation between risk scores and aDCs, APC_co_inhibition, HLA, iDCs, para-
inflammation, Th1 cells, TIL, and Treg. 

Additionally, we investigated variations in the expression of immune checkpoint-associated genes and HLA genes between samples 
from high- and low-risk groups (Fig. 9A–B). FDR values corrected by Benjamin Hochberg have been placed in the Supplementary 
material. All immune checkpoint-associated genes and the majority of HLA genes exhibited significant differences between the two 
groups. We will delve into the detailed roles of these genes in DLBCL in the Discussion section. Furthermore, we assessed differences in 
ESTIMATEScore, ImmuneScore, and StromalScore between the two groups through Estimate analysis (Fig. 9C–E). Notably, 

Fig. 5. Results of independent prognostic analysis. A and B are forest plots obtained from univariate Cox regression analysis and multivariate Cox 
regression analysis for risk scores and clinical factors, respectively. C is the nomogram model constructed from clinical factors and risk scores. D is 
the result of the DCA analysis. E is the calibration curve of the nomogram model. F is the result of the ROC analysis of the nomogram model. 

Fig. 6. GSEA analysis results. A and B are the upper five pathways obtained from GSEA analysis for the high- and low-risk groups, respectively.  
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ESTIMATEScore and StromalScore showed significant distinctions between the two groups. 

3.5. Drug sensitivity and mRNA-miRNA interaction network construction 

In this section, we aim to analyze the differences in drug sensitivity between high- and low-risk groups to guide stratified drug 
therapy for patients and identify miRNAs interacting with prognostic genes. The IC50 values of 135 compounds in the high- and low- 
risk groups were investigated using the R package "oncoPredict." We identified 16 compounds with significant differences between the 
two groups, applying a threshold of p-value <0.00001 (Fig. 10A-L). Notably, 5-Fluorouracil, AZD5153, cisplatin, and JAK1_8709 
exhibited higher sensitivity in the low-risk group. Drugs such as AZD6482, BI-2536, KU-55933, doramapimod, NU7441, and RO-3306 
may offer more effective treatment for the low-risk group. A detailed discussion of the roles of these compounds in DLBCL will be 
presented in the Discussion section. Additionally, we constructed mRNA-miRNA interaction networks (Supplementary Material 
Figs. S3–S6). Prognosis-related genes interact with various miRNAs, and the association of these miRNAs with DLBCL will be thor-
oughly examined in the Discussion section. 

3.6. Results of RT-qPCR experiment 

In this section, we conducted qPCR validation of the gene expression involved in constructing the risk model in both the DLBCL 

Fig. 7. Results of ssGSEA analysis on the training set. A is a heatmap of the correlation between prognosis-related genes and the abundance of 
immune cell infiltration obtained from ssGSEA analysis. B–I are correlation analyses between risk scores and immune cells with significant 
correlation. 
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group and the control group. As illustrated in Fig. 11A–E, when compared to the Normal Group, the serum expression levels of AEN, 
DNAJC10, DNM1L, ELL3, and HIF1A genes were markedly elevated in patients with DLBCL in the control group. 

4. Discussion 

DLBCL is a non-Hodgkin’s lymphoma characterized by a high degree of heterogeneity. The majority of programmed cell deaths 
(PCDs) play a pivotal role in oncological diseases. Firstly, to identify genes significantly associated with the survival of DLBCL patients, 
the expression levels of PCD-related genes were extracted from the training set and subjected to univariate Cox regression analysis in 
this study, identifying 28 genes significantly associated with prognosis. Further analyses were conducted on these genes using GO and 
Metascape enrichment analyses, revealing multiple pathways closely associated with DLBCL. Apoptosis, a physiological death process, 
involves the moderate regulation of apoptosis-related signaling pathways, representing a promising strategy for cancer treatment. 
DCZ0858 has the potential to treat DLBCL patients by inactivating the JAK0/STAT1 pathway, inducing apoptosis, and causing cell 
cycle arrest in the G2/G3 phase [30]. Feng et al. demonstrated that DCZ0358 induces apoptosis and DNA damage in DLBCL cells [31]. 
Lipids and lipid metabolism play a crucial role in various non-apoptotic cell death pathways, and alterations in lipid metabolism may 
initiate mitochondrial autophagy, leading to necrotizing apoptosis [32]. Vera de Jonge et al. identified peripheral T cell and NK cell 
characteristics distinct from DLBCL patients in HGBL-MYC/BCL2 [33]. MORTALIN regulates the release of Ca2+ from the endoplasmic 
reticulum through the mitochondrial membrane and promotes the down-regulation of FAS in DLBCL cells, making it a potential drug 
for treating DLBCL [34]. 

Secondly, in order to stratify DLBCL patients, this study employed Lasso-Cox regression analysis to further refine gene selection and 
construct a risk model. The final risk model comprises 16 genes (AEN, DNAJC10, DNM1L, ELL3, HIF1A, ITGA6, MAEL, MMP9, NLE1, 
PDK1, PPIF, PTPRC, YWHAB, ATP13A2, UBQLN2, and ATP7A). Some of these genes have been confirmed to be closely associated with 
DLBCL. AEN is an apoptosis-enhancing nuclease. The protein encoded by DNM1L mediates mitochondrion and peroxisome division, 
related to cytochrome C release and the rate of caspase activation during apoptosis. Monti S et al. observed that the DLBCL cluster 
named "OxPhos" was significantly enriched in genes related to oxidative phosphorylation and mitochondrial function. There is a 
potential relationship between the imbalance of anti-apoptosis BCL2-2 and the disruption of mitochondrial membrane potential, the 
reduction of cytochrome C release, and caspase-mediated apoptosis in these tumors [35]. Broecker-Preuss M et al. investigated the 

Fig. 8. Results of ssGSEA analysis on the test set. A is a heatmap of the correlation between prognosis-related genes and the abundance of immune 
cell infiltration obtained from ssGSEA analysis. B-L are the risk scores with significant correlation and the correlation analysis between im-
mune cells. 
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impact of single nucleotide polymorphisms (SNPs) in the HIF1A gene on DLBCL and found that the HIF1A A588t SNP was associated 
with total metabolic tumor volume (TMTV) and progression time [36]. Based on a comprehensive gene expression database, Xie Y 
et al. identified MAEL as an RNA binding protein (RBP)-related gene influencing the prognosis of DLBCL [37]. The tumor microen-
vironment (TME) may play a role in DLBCL pathogenesis, and the overexpression of MMP9 in microenvironment cells may lead to 
favorable or unfavorable outcomes [38]. NLE1 is predicted to participate in the Notch signaling pathway and ribosome large subunit 
assembly, making it a potential target for treating DLBCL patients [39]. PDK1 induces the phosphorylation of PLK1, and then PLK1 
directly induces the accumulation of c-Myc protein in a PDK1-dependent manner. Therefore, Feng Y et al. investigated the expression 
of PDK1, PLK1, and c-Myc in DLBCL and found that a high expression level of PDK1 and c-Myc predicts a poor prognosis for DLBCL 
patients. However, the role of the PDK1-PLK1-c-Myc pathway in DLBCL needs further exploration in the future [40]. ATP13A2 plays a 
role in lipid homeostasis [41]. 

Thirdly, in order to explore differences in the immune microenvironment among different risk groups, we applied ssGSEA analysis 
to obtain the abundance of immune cell infiltration and immune function scores in all pathological samples. Additionally, we 
investigated the expression differences of immune checkpoint-related genes and HLA genes in two risk subgroups. Various immune 
checkpoint genes and HLA genes with significantly differential expression in both groups have been confirmed to be associated with 
the progression of DLBCL. Studies have shown that DLBCL patients with overexpression of CD274 (high-risk group) are often resistant 
to drugs such as rituximab, cyclophosphamide, and prednisolone [42]. This confirms the accuracy of the division into high and 
low-risk groups in our study. Furthermore, the expression level of CD40 in the plasma of DLBCL was significantly reduced before and 
after clinical treatment [43]. Moreover, changes in HLA are linked to DLBCL susceptibility. Alcoceba M and colleagues analyzed the 
impact of HLA-A, B, C, DRB1, and DQB1 polymorphisms on the development of 250 DLBCL patients [44]. 

Fourth, in order to explore the potential differences in clinical drug use between the two risk groups, this study conducted a drug 
sensitivity analysis and identified significant differences in the sensitivity of various drugs between the two groups. Some drugs have 
been confirmed to be effective in the treatment of DLBCL. Kong et al.’s clinical research confirmed the combined benefit of irditinib 
with the RDHAP regimen in the treatment of relapsed/refractory DLBCL [45]. Derek B Oien et al. found that in heterologous trans-
plantation models derived from DLBCL cell lines and patients, acatnib combined with AZD5153 demonstrated synergistic benefits 
[46]. Cisplatin and AZD5153 showed high expression in the low-risk group, suggesting that they may have better therapeutic effects in 
the treatment of the low-risk group. On the other hand, JQ1 might be more effective in treating patients in the high-risk group. This 
information could guide stratified drug therapy for DLBCL patients in clinical practice. 

Fifth, to explore miRNAs potentially associated with the prognosis of DLBCL, an interactive network involving prognosis-related 
genes and miRNAs was constructed in this study. The prognosis of DLBCL patients might be linked to specific miRNAs. Researchers 

Fig. 9. Analysis of immunological differences between high- and low-risk groups. A and B are differential box plots of the expression of genes 
associated with immune check loci and HLA gene expression for the high-and low-risk groups, respectively. C, D, and E are the results of the Es-
timate analysis (ESTIMATEScore, ImmuneScore, and StromalScore). 
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discovered a significant increase in serum levels of miR-15a-5p in DLBCL patients [47,48]. Sromek M et al. analyzed paired cere-
brospinal fluid (CSF) tumor samples from CNS DLBCL patients, revealing substantially reduced levels of miR-26a, miR-15a-5p, 
miR-15b-5p, miR-19a-3p, miR-106b-3p, miR-221-3p, and miR-423-5p in CSF, while these miRNAs exhibited higher levels in tumor 
samples [49]. 

Finally, the research process and results of this study are subject to certain limitations. During the construction of the prognostic 
model using Lasso-Cox regression, the sparse selection of variables may lead to different variable choices in different datasets or runs, 
challenging the stability of the model. This uncertainty could make it difficult to consistently interpret the research conclusions. 

Additionally, the penalty term in Lasso-Cox regression may cause estimates to deviate from the true values. Particularly in cases of 
high collinearity, Lasso’s coefficient estimates may tend to set the coefficients of some correlated variables to zero, introducing bias 
into the research results. When assessing immune cell infiltration abundance using the ssGSEA algorithm, it assumes that gene 
expression data are uniformly distributed across the entire gene set. However, in reality, gene expression data may not meet this 
assumption, leading to biased estimates of gene set enrichment levels. Furthermore, in situations with a small sample size, the results of 
ssGSEA may lack stability and reliability. Especially in small sample studies, the interpretation of results may be significantly affected 
by substantial uncertainty. It is worth noting that we have compiled the gene symbols and their full names related to this study and 
placed the organized table in the supplementary material file "symbol.xlsx". 

5. Conclusion 

DLBCL is a highly heterogeneous tumor. This study identified genes significantly associated with the prognosis of DLBCL and 
constructed risk models using various PCD-related genes. The two risk subgroups exhibited significant differences in immune land-
scape and drug sensitivity. In conclusion, the genes identified in relation to prognosis and the risk models developed in this paper can 
serve as valuable references for the advancement of targeted therapies and related drugs for DLBCL. 

Data availability statement 

The current dataset for the study can be found in the GEO database, which are publicly accessible, under the following Accession 
Numbers: GSE10846 and GSE31312. 

Fig. 10. Results of drug sensitivity analysis. A-L is a box plot of compounds with significantly different IC50 values between high- and low- 
risk subgroups. 
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