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SUMMARY

Dual-specificity tyrosine-(Y)-phosphorylation-regu-
lated kinases (DYRKs) play key roles in brain devel-
opment, regulation of splicing, and apoptosis, and
are potential drug targets for neurodegenerative dis-
eases and cancer. We present crystal structures of
one representativemember of each DYRK subfamily:
DYRK1A with an ATP-mimetic inhibitor and
consensus peptide, and DYRK2 including NAPA
and DH (DYRK homology) box regions. The current
activation model suggests that DYRKs are Ser/Thr
kinases that only autophosphorylate the second
tyrosine of the activation loop YxY motif during pro-
tein translation. The structures explain the roles of
this tyrosine and of the DH box in DYRK activation
and provide a structural model for DYRK substrate
recognition. Phosphorylation of a library of naturally
occurring peptides identified substrate motifs that
lack proline in the P+1 position, suggesting that
DYRK1A is not a strictly proline-directed kinase.
Our data also show that DYRK1A wild-type and
Y321F mutant retain tyrosine autophosphorylation
activity.

INTRODUCTION

The dual-specificity tyrosine-phosphorylation-regulated kinases

(DYRKs) are an evolutionarily conserved family of kinases with

five human members (DYRK1A, DYRK1B, DYRK2, DYRK3,

and DYRK4). They belong to the CMGC family of serine/threo-

nine (S/T) kinases and are categorized as class I (DYRK1A and

DYRK1B) and class II (DYRK2, DYRK3, and DYRK4) DYRKs.
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The best-studied member of the DYRK family is DYRK1A, owing

to its role in the pathology of Down syndrome and the early onset

of neurodegeneration. DYRKmembers have been clearly shown

to participate in important signaling pathways that control post-

embryonic neurogenesis, developmental processes, cell sur-

vival, differentiation, and death (Arron et al., 2006; Mercer

et al., 2005; Tejedor et al., 1995). In addition, recent studies

show DYRK1A and DYRK2 phosphorylate NFATc, countering

the effect of calcium signaling and maintaining inactive NFATc

(Arron et al., 2006; Gwack et al., 2006; Lee et al., 2009).

The first evidence for the key role of DYRK1A in neural prolif-

eration and neurogenesis of the developing brain was provided

by mutational analysis of the DYRK Drosophila ortholog mini-

brain (mnb), where loss-of-function mutations resulted in

reduced brain size (Tejedor et al., 1995). DYRK1A is localized

in the Down syndrome (DS) critical region of chromosome 21

that has been linked to the development of DS phenotypes

when triplicated (Delabar et al., 1993; Sinet et al., 1994). Indeed,

triplication of the DYRK1A locus in DS results in overexpression

of DYRK1A in the fetal as well as adult brain and strongly impli-

cates DYRK1A in neurodevelopmental alterations linked to some

DS pathologies and disease predispositions (Dowjat et al.,

2007). These links prompted studies on the role of DYRK1A in

age-associated neurodegeneration and suggested DYRK1A as

a target for the development of inhibitors (Mazur-Kolecka

et al., 2012; Park et al., 2009). The bindingmodes of the inhibitors

INDY and Harmine in DYRK1A have recently been published

(Ogawa et al., 2010).

Apart from the well-studied DYRK1A isozyme, studies have

provided evidence for the roles of DYRK1B in the development

of various sarcomas (Deng et al., 2006) and in skeletal muscle

differentiation (Deng et al., 2003, 2005). DYRK2 is reported to

regulate key developmental and cellular processes such as neu-

rogenesis, cell proliferation, cytokinesis, and cellular differentia-

tion (Taira et al., 2007; Woods et al., 2001; Yoshida, 2008).

Notably, DYRK2 may function in DNA damage signaling
reserved
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Figure 1. Domain Arrangement of Human DYRK Family Kinases

The construct boundaries for the crystallized DYRK1A andDYRK2 proteins are

indicated. NLS, nuclear localization signal; PEST, PEST domain. See also

Figure S1.
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pathways, because it phosphorylates p53 at Ser46 in response

to DNA damage, which induces cellular apoptosis after geno-

toxic stress (Taira et al., 2007). In addition, ataxia telangiectasia

mutated was shown to phosphorylate nuclear DYRK2 upon DNA

damage, which appeared to enable DYRK2 to protect itself from

degradation that occurs due to its association with MDM2 under

normal conditions (Taira et al., 2010). Emerging studies show

DYRK2 has important roles in protein proteolysis, proteosomal

degradation, and tumor progression (Varjosalo et al., 2008;

Maddika and Chen, 2009; Taira et al., 2012). As for

DYRK3 and DYRK4, their physiological functions remain poorly

understood.

All DYRKs contain a conserved catalytic kinase domain pre-

ceded by the DYRK-characteristic DYRK homology (DH) box

(Figure 1A; for a sequence alignment, see Figure S1 available on-

line). DYRKs rapidly autoactivate during folding by phosphoryla-

tion on the second tyrosine residue of the conserved activation

loop YxY motif (Tyr321 of DYRK1A). This tyrosine corresponds

to the secondary activation loop phosphorylation site in the

TxY motif in MAPKs. It was reported based on studies with

Drosophila melanogaster DYRKs that this phosphorylation event

occurs in ciswhile DYRK is still bound to the ribosome, and sub-

sequently DYRKs lose tyrosine phosphorylation ability and retain

only S/T phosphorylation ability (Lochhead et al., 2005). For the

human DYRK1A, mutation of Tyr321 or dephosphorylation did

not abolish kinase activity (Adayev et al., 2007).

DYRKs were initially assumed to be proline-directed S/T

kinases with specificity for proline and arginine at P+1 and

P�3 positions, respectively (Himpel et al., 2000). However,

further investigations revealed DYRK cellular substrates (e.g.,

synuclein; Kim et al., 2006) with a wide variation in phosphoryla-

tion motifs (Aranda et al., 2011).

To understand the molecular mechanism of DYRK1A activa-

tion, the roles of Tyr321 phosphorylation and regulatory ele-

ments located N-terminal to the catalytic domain, as well as

substrate recognition, we determined the structure of the phos-

phorylated DYRK1A and DYRK2 catalytic domain and N-termi-

nal regulatory DH box sections. The autophosphorylation

behavior of DYRK1A was analyzed, and the substrate specificity

of DYRK1A, DYRK1B, and DYRK2 was investigated using a

novel mass spectrometry methodology (Kettenbach et al.,

2012). The structure of a ternary substrate complex of DYRK1A,

the ATP-mimetic inhibitor DJM2005, and a consensus substrate

peptide (RARPGT*PALRE) reveals how DYRK1A recognizes
Structure 21
substrates and provides a model for the structure-based design

of selective DYRK inhibitors.

RESULTS

Structures of the DYRK1A and DYRK2 Catalytic Domain
and DH Box
The crystal structures of DYRK1A and DYRK2 comprising the

catalytic kinase domain and DH box were determined. The

DYRK1A structure was determined from a construct expressing

residues 127–485 of human DYRK1A (National Center for

Biotechnology Information [NCBI] genInfo identifier [gi] number

18765758). Residues Val135–Lys480 comprising the DH box

and kinase domain were resolved in the electron density. The

structure was determined in complex with the ATP-competitive

inhibitor (S)-N-(5-(4-amino-2-(3-chlorophenyl)butanamido)-1H-

indazol-3-yl)benzamide (DJM2005) at 2.40 Å resolution (Fig-

ure 2A; Table 1). The inhibitor DJM2005 was kindly provided

by the laboratory of Kevan Shokat; the chemical structure is

shown in Figure S2.

The DYRK2 structure was determined from a construct ex-

pressing residues 74–479 of human DYRK2 (NCBI gi number

4503427). Residues Gly74–Pro470 comprising NAPA1 (N-termi-

nal autophosphorylation accessory 1), NAPA2, DH box, and

kinase domain were resolved in the electron density, as well as

part of the N-terminal purification tag. The structure was deter-

mined in the absence of inhibitor (apo form) at 2.36 Å resolution

(Figure 2B; Table 1).

For both DYRK1A and DYRK2 the entire catalytic domain was

well ordered, including a long hairpin-like structure for the N-ter-

minal DH box and an active kinase conformation with a fully or-

dered activation segment (Figure 2). Mass spectrometry showed

that the purified DYRKs were heterogeneously phosphorylated

in solution (data not shown). However, the electron density

maps only showed clear evidence of phosphorylation of

DYRK1A at the second tyrosine of the dual-phosphorylation

motif YxY (Tyr321) and double phosphorylation of DYRK2 at

Ser159 of the glycine-rich loop and Tyr309 of the activation

loop. The other phosphorylation sites might either have had

low occupancy or were located in unstructured regions of the

protein.

The DYRK1A and DYRK2 structures superimpose with a

root-mean-square deviation (rmsd) of 1.03 Å over 297 Ca atoms

(using chain A of the DYRK1A structure). In DYRK1A, the ATP-

mimetic inhibitor DJM2005 binds to the ATP binding site, form-

ing three hydrogen bonds with the hinge backbone and an

additional two hydrogen bonds from the inhibitor’s primary

amine with the side chains of Asn292 and the DFG motif aspar-

tate Asp307 (Figure 2C). There is also an electrostatic interac-

tion via an ion (modeled as chloride) linking an inhibitor amide

nitrogen to the backbone nitrogen of Asp307 from the DFG

motif, and hydrogen bonding via a water molecule to the back-

bone carbonyl of Glu291. There are various favorable hydropho-

bic interactions with DYRK1A active site residues, including at

the entrance to the ATP site, where the side chain of Tyr243

packs against the inhibitor’s phenyl ring. All of the DYRK1A res-

idues involved in hydrogen bonding to the inhibitor are

conserved in DYRK2 (Figure S3); there are, however, some po-

tential differences in the hydrophobic interactions, such as the
, 986–996, June 4, 2013 ª2013 Elsevier Ltd All rights reserved 987



Figure 2. Structures of DYRK1A and DYRK2

(A) Structure of DYRK1A kinase domain and DYRK

homology box with the inhibitor DJM2005 bound in

the ATP binding site. The DH box and CMGC-spe-

cific inset are shown in magenta and the activation

segment in orange.

(B) Similar view of DYRK2 showing the NAPA region

and DH box in magenta.

(C) Active site of DYRK1A with inhibitor DJM2005

bound. Part of strand b1 has been removed for

clarity. The inhibitor is colored yellow, the protein is

colored as in (A), and hydrogen bonds are shown as

dashed red lines.

See also Figure S3.

(D) Correlation of the binding of various kinase in-

hibitors (measured by DTm) to DYRK1A and DYRK2

showing that whereas some inhibitors bind both

proteins, the active site differences allow for

DYRK1A- or DYRK2-specific inhibitors.
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replacement of Tyr243 with Met233 in DYRK2 as well as differ-

ences at the back of the pocket and the hydrophobic residue

preceding the DFG motif. Analysis of changes in DYRK1A and

DYRK2 temperature shift values (DTm) in the presence of a set

of potential kinase inhibitors showed only weak correlation,

and therefore that it is possible to have DYRK1A- or DYRK2-

specific inhibitors, as shown by some of the inhibitors screened

that give changes in Tm with only DYRK1A or only DYRK2

(Figure 2D).

Interestingly, the inhibitor’s primary amine also interacts with a

sulfate molecule from the DYRK1A crystallization buffer that is

found in a similar location as an autophosphorylated serine res-

idue in DYRK2 (pS159; Figure S3). This sulfate is also bound by

the side chains of Asp307 of the DFG motif, Ser169 of the

glycine-rich loop, and Lys289 of the catalytic loop, and is in a

similar position as that of a hydrolyzed g-phosphate from ATP

bound to PKA (Protein Data Bank [PDB] ID code 1RDQ; Yang

et al., 2004) or a bound phosphate in the structure of Haspin

with a 5-iodotubercidin ligand (PDB ID code 3IQ7; Eswaran

et al., 2009). Addition of negatively charged groups to inhibitors

to exploit this conserved binding pocket may help inhibitor

design for some of these kinases.

The C-terminal lobe reveals several unique features that

define the DYRK family. The MAP kinase characteristic inser-

tion observed in the C lobe of DYRKs (Figure 2) is extended
988 Structure 21, 986–996, June 4, 2013 ª2013 Elsevier Ltd All rights reserved
in comparison with other CMGC family

members such as CLK1, CLK3 (Bullock

et al., 2009), GSK3b (Dajani et al., 2001),

or MAPKs (Canagarajah et al., 1997). In

DYRK1A, this insert forms an elaborate

subdomain of 40 residues comprising

two short helices followed by an antipar-

allel b sheet that is conserved in vertebrate

DYRK1 family members but not in

Drosophila mnb. In DYRK2, this insert

also forms a distinctive subdomain with

two short helices and three short antipar-

allel b sheets. Along with the structural

divergence between DYRK1A and DYRK2
in this insertion, this region is also the place of greatest diver-

gence among the other DYRK family members.

Regulatory Role of the N-Terminal Region
Deletion of the entire region of DYRK1A N-terminal to the kinase

domain (1–148) has been shown to decrease catalytic activity

(Himpel et al., 2001). In Drosophila, the DH box was required

for phosphorylation of SNR1 by DYRK2 but not by DYRK1 (Kin-

strie et al., 2006). With Drosophila DYRKs, the NAPA regions are

required for the transient intramolecular tyrosine kinase activity

of DYRKs (Kinstrie et al., 2010) and are conserved across a

wide range of eukaryotes, including for Trypanosoma brucei

DYRK2, where the NAPA1 and NAPA2 regions are required for

tyrosine autophosphorylation (Han et al., 2012). In the following

analysis, the DH boxes and NAPA regions are those defined by

Kinstrie et al. (2010).

In both DYRK1A and DYRK2, the N-terminal region containing

the DH box is positioned on top of the N-terminal lobe of the

kinase domain and forms a large network of interactions with

all five strands of the N lobe b sheet, providing considerable sta-

bilization (Figures 3A and 3B). The most highly conserved resi-

dues in the DH box are those essential for stabilization of its

folded state, in particular the two central tyrosines, Tyr140 and

Tyr147, in DYRK1A (Figure 3A). This compact folded DH box

appears essential for the formation of tertiary structure in the



Table 1. Data Collection and Refinement Statistics

DYRK1A-Inhibitora DYRK1A-Inhibitora-Peptide DYRK2

PDB ID code 2VX3 2WO6 3K2L

Crystallization conditions 4% (v/v) PEG 300, 0.1 M Li2SO4,

0.1 M Tris, pH 8.5

0.2 M sodium formate, 20% (w/v)

PEG 3350, 10% ethylene glycol

1.26 M (NH4)2SO4, 0.2 M Li2SO4,

0.1 M Tris, pH 8.5

Space group C2 P65 P42212

No. of molecules in the asymmetric

unit

4 2 1

Unit cell dimensions

a, b, c (Å) 264.2, 65.1, 140.3 168.4, 168.4, 62.4 84.3, 84.3, 148.5

a, b, g (�) 90.0, 115.44, 90.0 90.0, 90.0, 120.0 90.0, 90.0, 90.0

Data Collection

Beamline SLS X10SA Diamond I02 Diamond I03

Resolution range (Å)b 27.24–2.40 (2.53–2.40) 55.13–2.50 (2.64–2.50) 42.19–2.36 (2.49–2.36)

Unique observationsb 85,770 (12,458) 35,283 (5,093) 22,801 (3,275)

Average multiplicityb 3.4 (3.2) 7.5 (6.9) 6.2 (6.4)

Completeness (%)b 99.9 (99.9) 100.0 (100.0) 99.8 (100.0)

Rmerge
b 0.10 (0.82) 0.18 (0.57) 0.08 (0.90)

Mean (I)/s(I)b 9.5 (1.9) 10.8 (3.7) 12.2 (2.1)

Refinement

Resolution range (Å) 26.00–2.40 40.00–2.50 42.19–2.36

R value, Rfree 0.19, 0.23 0.19, 0.23 0.23, 0.29

Mean protein B values (Å2) 53 23.1c 33.8c

Mean ligand B values (Å2) 46 (inhibitor) 34 (inhibitor)

71 (peptide)

Rmsd from ideal bond length (Å) 0.014 0.014 0.014

Rmsd from ideal bond angle (�) 1.52 1.53 1.60

Ramachandran outliers (%)

Most favored (%)

0.15 0.0 0.0

96.1 96.3 95.0
aThe inhibitor structure is shown in Figure S2.
bValues within parentheses refer to the highest resolution shell.
cResidual after TLS parameterization.
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remainder of the N terminus, especially for class II DYRKs, which

have NAPA1 and NAPA2 regions (Figure 3C). Although many of

the DH box interactions are conserved between DYRK1A and

DYRK2, we observed more hydrogen-bonding interactions in

the DYRK1A structure. In particular, in DYRK1A, the central tyro-

sine, Tyr147, interacts with the DYRK1A equivalent of the NAPA2

region, Glu153 and Trp155. These residues are not present in the

standard NAPA2 region of DYRK2, and DYRK2 does not have an

equivalent interaction between the DH box and NAPA2 regions

(Figure 3B). Recent evidence suggests phosphorylation of

DYRK1A at Tyr145 and Tyr147 may have important regulatory

roles (Kida et al., 2011). Tyr145 is solvent exposed, but phos-

phorylation of Tyr147 would change its interactions significantly,

although it is not possible to predict whether this would be favor-

able or unfavorable, because pTyr147 could maintain interac-

tions with Arg231 and replace the interactions of Glu153.

As well as the stabilization provided by the N-terminal region,

the 11 residues of the DH box itself interact with the loop linking

aC with b3, providing stabilization to an ‘‘aC-in’’ active kinase

conformation by fixing the N-terminal end of aC in position and

so preventing aC from moving outward, as sometimes seen in
Structure 21
inactive kinase structures (Figure 3A). Interestingly, the interac-

tion appears not to be charge dependent, unlike for the interac-

tion of the N-terminal hairpin of CLK3 (Bullock et al., 2009) with

the kinase N-terminal lobe (Figure S4).

The DYRK2 NAPA1 and NAPA2 regions, which are separated

in sequence, fold together into a small domain that stabilizes the

N-terminal lobe of the kinase domain (Figures 3C and 3D). The

larger NAPA1 region folds around the five residues of the

NAPA2 region. As with the DH box, the most highly conserved

residues (marked in Figure 3D) are those forming the core of

this folded subdomain, in particular His144 and Tyr147 from

NAPA2. It is notable that the residues on the end of strand b4

(DYRK2: Phe218, Phe220, Arg221), which interact with the

NAPA2 region (Figure 3D), are conserved across all human

DYRKs (Figure S1). For DYRK1A, an early folded intermediate

is implicated in enabling transient Tyr autophosphorylation in

cis (Lochhead et al., 2005). The presence of small N-terminal do-

mains (DH/NAPA1/NAPA2) capable of folding independently

and that stabilize the kinase domain may explain how during

translation a stabilized and catalytically active conformation

can be achieved before translation is complete.
, 986–996, June 4, 2013 ª2013 Elsevier Ltd All rights reserved 989



Figure 3. The N-Terminal NAPA and DHBox

Regions

The DH box region is in dark blue, the NAPA1 re-

gion for DYRK2 is in green, and the NAPA2 regions

for DYRK1A and DYRK2 are in cyan. Residues in

these motifs that are highly conserved across

DYRK kinases from different species (Kinstrie

et al., 2010) are labeled.

(A) DH box region of DYRK1A.

(B) DH box region of DYRK2.

(C) Overview of the N terminus of DYRK2 showing

NAPA and DH box motifs.

(D) NAPA1 and NAPA2 regions of DYRK2 showing

their folded, assembled state.

See also Figure S4.
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The DYRK Activation Segment Is Stabilized by Tyr
Phosphorylation
The structures of DYRK1A and DYRK2 both show a completely

ordered activation segment in a similar conformation (Figure 2).

The second tyrosine of the YxY dual-phosphorylation motif

(DYRK1A: Tyr321; DYRK2A: Tyr309) is the main mediator of a

network of interactions that stabilize the active conformation,

including with Arg325 and Arg328 (numbering for DYRK1A)

that precede the APE motif, and with the backbone carbonyl of

the catalytically important Gln323 (Figure 4A).

Related CMGC kinases such as ERK2 have a TxY motif, and

phosphorylation of the first residue of thismotif, the threonine, al-

lows formation of salt bridges with the arginine of the usually

conserved activation segment HRDmotif, neutralizing its charge

(Canagarajah et al., 1997; Dajani et al., 2001). However, in all

DYRK kinases, the HRD arginine is replaced by a cysteine, sug-

gesting that phosphorylation of the primary phosphorylation site

is not required for activity. In both DYRKs, the HCD motif

cysteine (DYRK1A: Cys286; DYRK2: Cys274) is within range of

potential disulfide-bond formation with a cysteine at the begin-

ning of the activation loop (DYRK1A: Cys312, 4.4 Å distant;

DYRK2: Cys300, 4.2 Å distant), raising the possibility that

DYRK kinase activity might be regulated by the cellular redox

state (Figure 4A). No disulfide bonds were observed in the

crystallized proteins, which were prepared under reducing

conditions.

Comparison with the diphosphorylated ERK2 structure (PDB

ID code 2ERK) reveals only small differences in the overall acti-

vation loop conformation, mainly due to sequence and loop

length variations (Figures 4A and 4B). However, the positions

of the TxY/YxY motifs are well conserved. The primary phos-

phorylation site pT183 in ERK2 links aC (Arg68) with the activa-

tion segment and with the catalytic loop, the HRD motif. In

DYRKs, the first tyrosine residue (DYRK1A: Tyr319; DYRK2A:

Tyr307) forms a hydrogen bond with Gln199 from aC. Therefore,
990 Structure 21, 986–996, June 4, 2013 ª2013 Elsevier Ltd All rights reserved
there is an interaction with aC that is inde-

pendent of phosphorylation; neverthe-

less, the direct contribution of DYRK1A

Tyr319 toward catalytic activity and tyro-

sine autophosphorylation has been found

to be negligible (Himpel et al., 2001). The

phosphate moiety of the second YxY

motif tyrosine is therefore the major acti-
vation loop phosphorylation site for DYRKs; it forms similar inter-

actions as those of the secondary phosphorylation site of ERK2

at Tyr185.

DYRK1A Autophosphorylates Serine and Threonine as
Well as Tyrosine In Vitro
The intact mass spectra of purified DYRK1A and DYRK2 clearly

indicated multiple phosphorylation states. We coexpressed

DYRK1A with l-phosphatase in bacteria, yielding DYRK1A

singly phosphorylated at Tyr321. This protein was subjected to

autophosphorylation in vitro, generating up to three additional

phosphorylation sites after the reaction ran to completion, as

measured by mass spectrometry. The resulting sites were map-

ped by liquid chromatography-tandem mass spectrometry

(LC-MS/MS) (Table 2; Figure S5); sites were identified at

Tyr140 and Tyr159 in the DH box region, Tyr177 in b2 of the

N-terminal lobe, Ser310 immediately C-terminal of the DFG

motif, Tyr319 of the YxY motif, and Tyr449 located near the

C terminus of the molecule (Figure 5C). To rule out that tyrosine

autophosphorylation was due to the short construct used for

crystallization, we generated additional constructs of DYRK1A

1–485 and 37–485 and again looked for autophosphorylation

sites. LC-MS/MS confirmed Tyr autophosphorylation on

Tyr111, which was not present in the shorter constructs. The

mapped sites demonstrate the capability of DYRK1A to auto-

phosphorylate on tyrosine after the formation of mature, folded

protein in vitro, which is contradictory to previous data based

on experiments with D. melanogaster DYRKs, which reported

tyrosine phosphorylation as a one-time-only event during trans-

lation (Lochhead et al., 2005). However, these data agreewith re-

ports of weak Tyr phosphorylation observed by Adayev et al.

(2007) using a specific pTyr antibody. The distant location of

many sites from the active site also suggests that most of these

phosphorylations were carried out in trans rather than in cis.

Although all the identified phosphorylation sites are conserved



Figure 4. Activation Loop and Active State

Stabilization

Comparison of the activation segment arrange-

ments of (A) DYRK1A, activation segment in

orange, and (B) dual-phosphorylated ERK2, acti-

vation segment in green. The ERK2 structure is

from PDB ID code 2ERK. Both DYRK1A and ERK2

have a completely ordered activation loop and

glycine-rich loop, and active aC conformations.

The activation loop in dual-phosphorylated active

ERK2 forms an extensive hydrogen-bonding

network around pT183. Phosphorylated Y185 is

also stabilized through an extensive interaction

network that is similar to the pY321 network

formed by DYRK1A.
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within the DYRK family and also across various species, the Tyr

phosphorylation is weak, and any physiological significance of

phosphorylation at these phosphorylation sites is yet to be es-

tablished. Interestingly, phosphorylation on Tyr145 and Tyr147

has recently been identified as a modification that determines

nuclear localization of DYRK1A in neurons (Kida et al., 2011).

To analyze the importance of Tyr321 phosphorylation for

activity, we also measured autophosphorylation kinetics for a

DYRK1A Y321F mutant. This mutant was not phosphorylated

after coexpression with l-phosphatase, but under the same

in vitro reaction conditions we observed autophosphorylation

activity (Figures 5A and 5B). To verify the activity of our DYRK1A

126–485 constructs and the suitability of the consensus peptide

used for cocrystallization (see below), we measured activity of

the 126–485wild-type and Y321Fmutant in an in vitro assay (Fig-

ure S6). Y321F had 72% of wild-type activity against the

consensus peptide, in general agreement with previous activity

measurements on other DYRK1A constructs (Himpel et al.,

2001). To assess the importance of pTyr321 for DYRK1A stabil-

ity, we measured DTm data for DYRK1A 126-485 wild-type and

Y321F; the Y321Fmutantmelted at an approximately 12�C lower

temperature compared to wild-type (Figure 5D).

The Phosphorylation Substrate Recognition Motifs of
DYRKs
Initially, DYRKs were considered to be proline-directed kinases

with a similar recognition motif as ERKs. However, subsequent

biochemical studies identified substrates with a variety of recog-

nition sequences. We employed an in vitro kinase substrate

screening method using naturally occurring substrates from

HeLa cells (Kettenbach et al., 2012) to identify the substrate

recognition motifs for class I and II DYRKs, DYRK1A and

DYRK2. The results showed that DYRK1A phosphorylates sub-

strates exclusively on serine or threonine residues, on peptides

that have smaller hydrophobic residues at the P+1 position (Fig-

ure 6A). Another notable preference observed was arginine at

P�2 to P�4, positions poised for occupying the C lobe electro-

negative pocket. In the case of DYRK2, proline is strongly

preferred at P+1, recognizing S/TP motifs and S/TPxP motifs,

but the arginine preference at P�2 to P�4 is not as strong as

with DYRK1A (Figure S7). Arginine at P�3 has been previously

shown to be more favorable than at P�2 on a small selection

of artificial peptides with DYRK2 and DYRK3 (Campbell

and Proud, 2002). On a larger set of nonendogenous peptides,
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preference for P�3 arginine was shown to be a feature of

DYRK1A but not DYRK2 or DYRK4 (Papadopoulos et al., 2011).

The substrate specificities identified from HeLa cell extracts

correlate well with previous studies that have identified DYRK1A

substrates such as Tau (Ryoo et al., 2007; Liu et al., 2008), am-

phiphysin (Murakami et al., 2006), and caspase 9 (Seifert et al.,

2008) that conform to the above definition (proline at P+1 posi-

tion and arginine at P� positions), whereas other studies report

substrates such as spliceosomal protein SF3b1 (de Graaf et al.,

2006) that contain proline in the P+1 position but not basophilic

residues at P� positions. Furthermore, DYRK1A substrates

a-synuclein (Kim et al., 2006) and p53 (Park et al., 2010) do not

contain either of these substrate specificity determinants, indi-

cating the flexibility of DYRK1A in substrate recognition.

Ternary Complex Structure of DYRK1A Comprising
Consensus Substrate Peptide
To further explore the substrate recognition of DYRKs, we deter-

mined the crystal structure of the ternary complex of DYRK1A

with the consensus substrate peptide RARPT*PALRE and

DJM2005 (Figure 6B). Although several consensus peptides

were used in cocrystallization experiments, crystals were only

obtained with this substrate peptide. Electron density for 8 of

the 11 peptide amino acids was visible, from P�4 Ala to P+3

Leu. The peptide binds in an extended conformation in the cleft

formed by the activation segment and catalytic loop. There were

no major protein conformational changes upon peptide binding.

The hydroxyl group of the P0 threonine forms hydrogen bonds

with the catalytic loop aspartate (Asp287) and the highly

conserved Lys289 of the catalytic loop flanking region and

Ser324 of the activation loop (Figure 6D). The P+2 leucine and

P+3 alanine bind against a hydrophobic pocket formed by

Phe196 from aC and Phe170 from the glycine-rich loop, explain-

ing the preference for hydrophobic residues at these substrate

positions. The P+1 proline was bound adjacent to the catalyti-

cally important Gln323 (Wiechmann et al., 2003) and also against

the aromatic ring of pTyr321 (Figure 6E). The small size and lack

of charge in this pocket explains why only substrates with small

aliphatic residues at P+1were acceptable. The P�3 arginine was

bound in a negatively charged pocket formed byGlu291, Tyr327,

Tyr246, and Glu353 (Figures 6E and 6F). Interestingly, it faces to-

ward the activation segment in the C lobe, not the glycine-rich

loop, but stabilizes the aD helix through the interactions with

Tyr246 on aD. However, the binding pocket is extended and
, 986–996, June 4, 2013 ª2013 Elsevier Ltd All rights reserved 991



Table 2. Phosphopeptides Identified following

Autophosphorylation of DYRK1A

Sequence Residue Range

ApYDRVEQEWVAIK 176–188

IVDFGpSSCQLGQR 305–317

IpYQpYIQSR 318–325

IYQpYIQSR 318–325

LPDGpTWNLK 398–406

RAGESGHTVADpYLK 438–451

VYNDGpYDDDNYDYIVK 135–150

WM(ox)DRpYEIDSLIGK 155–167

WMDRpYEIDSLIGK 155–167

HINEVpYYAKa 106–114

Related to Figure S5.
aOnly observed for DYRK1A 1–485 or 37–485, not for DYRK1A 127–485.
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so it may also accommodate substrate arginines located in the

�2 and �4 positions, again fitting with the observed DYRK1A

substrate profile.

DISCUSSION

It has been established that DYRKs autoactivate shortly after

translation through autophosphorylation of the YxpY motif of

the activation segment (Becker et al., 1998; Becker and Joost,

1999; Lochhead et al., 2005). The DYRK structures revealed

that phosphorylation of Tyr321 stabilizes the activation segment

in a similar way to that observed for phosphorylated ERK2 (Can-

agarajah et al., 1997). The rapid autoactivation of DYRK kinases

immediately after translation raises the question of how DYRK

activity is regulated. Mouse models and truncations of DYRK1A

in patients with microcephaly demonstrated that deregulation of

DYRK1A activity has severe phenotypic consequences (Fotaki

et al., 2002;Møller et al., 2008). Several reports point to transcrip-

tional regulation, and the presence of PEST sequences (Figure 1)

suggests a quick turnover (Maenz et al., 2008; Arron et al., 2006).

The current model suggests that Tyr321 phosphorylation is a

‘‘one-time-only’’ event that happens during maturation of

DYRK1A while bound to the ribosome. For class II DYRKs

(DYRK2, 3, and 4), this process requires the N-terminal NAPA

regions, which are absent/modified in class I DYRKs (DYRK1A

and 1B). The DYRK2 structure shows how the DH box and

NAPA regions bind across the N-terminal lobe of the kinase

domain, via significant conserved interactions at the kinase

domain loops between b3 and aC and between b4 and b5.

Thus, the DH box and NAPA regions come together to form a

domain that can fold before translation of the kinase domain is

complete and assist in the folding of the kinase domain. Presum-

ably, this enables a partially folded intermediate with the previ-

ously observed transient tyrosine kinase capability.

However, our data, with human enzymes as opposed to the

D. melanogaster enzymes used previously (Lochhead et al.,

2005), also showed that tyrosine autophosphorylation can occur

weakly in vitro and is not restricted to the Tyr321 site (DYRK1A)

and that this activity is independent of Tyr321 phosphorylation,

although a possible caveat is that the constructs used were

the same as those used for crystallization, and not the full-length
992 Structure 21, 986–996, June 4, 2013 ª2013 Elsevier Ltd All rights
protein. In vitro autophosphorylation at Tyr111 has been re-

ported previously (Himpel et al., 2001), but mutation of this res-

idue was shown to have no influence on catalytic activity.

Tyr111 is located N-terminal to the DH box and was not included

in the construct used for the crystal structure. The importance of

phosphorylation of Tyr321 and Tyr319 for activity has been re-

ported by several groups (Himpel et al., 2001; Lochhead et al.,

2005). These studies showed that Tyr321 is the main phosphor-

ylation site observed in recombinant protein expressed in both

bacteria and eukaryotic cells. Mutation Y321F dramatically re-

duces catalytic activity, whereas Y319F does not alter activity

(Adayev et al., 2007; Wiechmann et al., 2003). Some other muta-

tions (e.g., double mutants Y319Q/Y321Q and Y319H/Y321H)

also retain considerable activity (Adayev et al., 2007). The

DYRK1A structure provides explanations for these observations,

as the mutations to polar side chains would still allow the activa-

tion segment to retain favorable polar interactions with residues

that coordinate pTyr321 (Arg325, Arg328, Glu366). By analogy,

the activity of nonphosphorylated Tyr321 (Adayev et al., 2007)

is also explained by the continued ability of Tyr321 to retain

some favorable polar interactions that would stabilize an active

conformation of the activation loop.

Substrate peptide profiling did not reveal any tyrosine phos-

phorylation, suggesting that tyrosine kinase activity is limited to

autophosphorylation events. Comparison of the DYRK1A sub-

strate complex with substrate-bound tyrosine kinase structures

shows little similarity, and the substrate binding site in DYRK1A

has the typical appearance of those in S/T kinases. Kinase auto-

phosphorylation has been shown to frequently target noncon-

sensus sequences (Pike et al., 2008; Oliver et al., 2007). More-

over, our data revealed that DYRK1A S/T phosphorylation

activity is not stringently proline directed and that substrates

with small hydrophobic residues such as valine or alanine in

the P+1 position can be recognized.

Finally, as well as explaining the observed substrate specific-

ities, the presented structures will serve as amodel for the devel-

opment of more potent and selective ligands that might find

application in the treatment of neurodegenerative diseases.
EXPERIMENTAL PROCEDURES

Cloning

DNA for DYRK1A residues 127–485 (NCBI gi number 18765758) or DYRK2A

residues 74–479 (NCBI gi number 4503427) was PCR amplified and subcloned

into a pET-based vector carrying kanamycin resistance, pNIC28-Bsa4 (Gen-

Bank accession number EF198106), using ligation-independent cloning. The

resulting plasmids expressed the kinase domains of DYRK1A or DYRK2,

with an N-terminal hexahistidine tag and tobacco etch virus protease tag

cleavage site (extension MHHHHHHSSGVDLGTENLYFQ*SM-). DYRK1A

1–485 and 37–485 constructs were generated similarly. DYRK1A 127–485

Y321F and K188R mutants were generated by the overlapping PCR product

method.

Expression and Purification

Constructs were used to express protein in Escherichia coli BL21 (DE3) cells,

and protein was purified using standard methods (see Supplemental Experi-

mental Procedures).

Crystallization and Data Collection

All crystals were obtained using the sitting-drop vapor-diffusion method

at 4�C. Data collection statistics and crystallization conditions can be
reserved



Figure 5. Phosphomapping and Autophos-

phorylation

(A) Autophosphorylation kinetics of DYRK1A

Y321F showing electrospray ionization-MS

spectra recorded after 0 hr, 4 hr, and overnight.

(B) Phosphorylation capability of DYRK1A Y321F

mutant. The top panel shows a western blot of

DYRK1A Y321F autophosphorylation probed by

anti-phosphotyrosine antibody after the reaction

times indicated. The bottom panel shows a quan-

titative control with equal amounts of sample run

on the gel. Related to Figure S6.

(C) The autophosphorylation sites mapped for

wild-type DYRK1A are shown on the structure as

green sticks.

(D) Thermal unfolding of DYRK1A wild-type and

Y321F mutant.

See also Figure S6.
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found in Table 1. More detail is available in Supplemental Experimental

Procedures.

Structure Determination

All diffraction data were indexed and integrated using MOSFLM (Leslie and

Powell, 2007) and scaled using SCALA (Evans, 2006). All models were refined

with REFMAC5 (Murshudov et al., 2011).

The DYRK1A structure was solved by molecular replacement using Phaser

(McCoy et al., 2007) and a search ensemble of the coordinates from two CLK

kinases (PDB ID codes 2EXE and 1Z57). Four molecules were present in the

asymmetric unit and, after NCS averaging and density modification in dm

(Cowtan, 1994), the resulting phases could be utilized in ARP/wARP (Langer

et al., 2008) to autobuild the main parts of one of the molecules in the asym-

metric unit. After further model building in Coot (Emsley et al., 2010), this mole-

cule was used to generate the other three molecules for restrained refinement

with tight NCS restraints. Rebuilding and refinement (including TLS parame-

ters) resulted in the final model.

The DYRK1A peptide complex and the DYRK2 structure were both solved

by molecular replacement using Phaser, with the structure of the inhibitor-

bound DYRK1A as a search molecule.

Analysis of DTm upon Inhibitor Binding

Changes in Tm caused by small-molecule binding were correlated for 433

compounds that caused an increase in Tm of >2�C for either DYRK1A or

DYRK2 and for which a measurement was available for both proteins. The

measurements were made according to established protocols (Niesen et al.,

2007).

Autophosphorylation

DYRK1A proteins weremixedwith ATP (1mM) andMg2+ (2mM) and incubated

at room temperature. Western blot analysis of phosphotyrosine was per-

formed using rabbit anti-pTyr antibody (Cell Signaling Technology).

In-Solution Digestion

The DYRK1A protein from in vitro autophosphorylation was diluted in 100 ml of

an 8 M urea buffer (6 M urea, 2 M thiourea in 10 mM HEPES [pH 8]). The pro-

tein was reduced for 30 min at room temperature with 1 mM dithiothreitol and

then alkylated for 15 min by 5.5 mM iodoacetamide. Endoproteinase Lys-C
Structure 21, 986–996, June 4, 2013
(Wako) was added 1:100 (w/w) and the lysates

were digested for 4 hr at room temperature. The

resulting peptide mixtures were diluted 4-fold

with deionized water to achieve a final urea

concentration below 2 M. Trypsin (modified

sequencing grade; Promega) was added 1:100

(w/w) and the sample was digested overnight.

Trypsin and Lys-C activity was quenched by acid-
ification of the reaction mixtures with a 10% TFA solution to pH �2. The

peptide mixture was desalted and concentrated on a reverse-phase C18

StageTip (Rappsilber et al., 2007) and eluted with 23 20 ml of 60% acetonitrile

in 0.3% TFA.

In-Gel Digestion

The excised gel plugs with the DYRK1A protein were digested in situ with

trypsin as previously described (Shevchenko et al., 2006).

Phosphopeptide Enrichment and Analysis

Phosphopeptides were enriched using titansphere chromatography as

described previously (Olsen et al., 2006), and analyzed by online nanoflow

LC-MS/MS as described previously (Olsen et al., 2006) with a few

modifications. More detail is available in Supplemental Experimental

Procedures.

Kinase Assays

Peptide substrates were chemically synthesized by Thermo Peptides or

Generon. The phosphorylation reactions were measured using a spec-

trophotometric assay (Adams et al., 1995) in which ADP production is

coupled to NADH oxidation by pyruvate kinase and lactate dehydroge-

nase (LDH). The reaction was followed by the decrease in NADH

fluorescence (excitation 350 nm, emission 460 nm). The assay mixture

contained 30 U/ml LDH, 12 U/ml pyruvate kinase, 1 mM phosphoenol-

pyruvate, 0.2 mM NADH, 25 mM HEPES (pH 7.5), 150 mM NaCl, 5 mM

MgCl2, and DYRK1A (wild-type or mutants). The concentration of the

consensus substrate peptide (RARPGTPALRE) was 0.25 mM. After

incubation for 1–5 min, the reaction was initiated by the simultaneous

addition of 1 mM ATP. The initial reaction rate was used to compare

activities of wild-type and mutants. Control reactions in the absence of

substrate were used to detect ATPase activity for basal correction. A

K188R mutant was also measured to control for any peptide-stimulated

ATPase activity.

Determination of Peptide Phosphorylation Specificity

Peptides derived from HeLa cell-lysate digests that were phosphorylated

by DYRKs were identified as in published procedures (Kettenbach et al.,

2012).
ª2013 Elsevier Ltd All rights reserved 993



Figure 6. Substrate Binding of DYRK1A

(A) Representative panels of DYRK1A substrate specificity defining peptide residues identified using in vivo isolation. Each panel represents a separate clustering

of peptide sequences, with themost commonly observed residues at each position at the top of each letter stack. Within each clustering, the fraction of the height

occupied by each residue represents its predominance at that position.

(B) Ternary complex of DYRK1A substrate peptide and inhibitor DJM2005 bound to DYRK1A. The substrate peptide is shown bound between the two lobes of the

kinase in the binding cleft extending from the ATP site toward helix aC. The DH box and kinase domain of DYRK1A are shown as an electrostatic surface

representation, with the substrate peptide in white balls and sticks and residues of substrates labeled with reference to the phosphoacceptor residue (threonine

T0).

(C) Electron density map of the DYRK1A substrate peptide for the 8 out of 11 residues for which the density was visible in the structure, numbered with respect to

phosphoacceptor threonine T0.

(D) Close-up view of the atomic arrangement around the phosphoacceptor residue threonine T0.

(E) Close-up view of the arginine binding pocket of DYRK1A, where the arginine at position�3 of the substrate binds to negatively charged residues of the C lobe

(red-colored surface) and forms an extensive bonding network with residues from the activation loop, aD and aF.

(F) Stick representation similar to (E).

See also Figure S7.
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Kida, E., Walus, M., Jarząbek, K., Palminiello, S., Albertini, G., Rabe, A.,

Hwang, Y.W., and Golabek, A.A. (2011). Form of dual-specificity tyrosine-

(Y)-phosphorylation-regulated kinase 1A nonphosphorylated at tyrosine 145

and 147 is enriched in the nuclei of astroglial cells, adult hippocampal progen-

itors, and some cholinergic axon terminals. Neuroscience 195, 112–127.

Kim, E.J., Sung, J.Y., Lee, H.J., Rhim, H., Hasegawa, M., Iwatsubo, T., Min,

D.S., Kim, J., Paik, S.R., and Chung, K.C. (2006). Dyrk1A phosphorylates

a-synuclein and enhances intracellular inclusion formation. J. Biol. Chem.

281, 33250–33257.

Kinstrie, R., Lochhead, P.A., Sibbet, G., Morrice, N., and Cleghon, V. (2006).

dDYRK2 and Minibrain interact with the chromatin remodelling factors SNR1

and TRX. Biochem. J. 398, 45–54.

Kinstrie, R., Luebbering, N., Miranda-Saavedra, D., Sibbet, G., Han, J.,

Lochhead, P.A., and Cleghon, V. (2010). Characterization of a domain that

transiently converts class 2 DYRKs into intramolecular tyrosine kinases. Sci.

Signal. 3, ra16.

Langer, G., Cohen, S.X., Lamzin, V.S., and Perrakis, A. (2008). Automated

macromolecular model building for X-ray crystallography using ARP/wARP

version 7. Nat. Protoc. 3, 1171–1179.

Lee, Y., Ha, J., Kim, H.J., Kim, Y.-S., Chang, E.-J., Song, W.-J., and Kim, H.-H.

(2009). Negative feedback inhibition of NFATc1 by DYRK1A regulates bone

homeostasis. J. Biol. Chem. 284, 33343–33351.

Leslie, A.G.W., and Powell, H.R. (2007). Processing diffraction data with

mosflm. In Evolving Methods for Macromolecular Crystallography, Vol. 245,

R.J. Read and J.L. Sussman, eds. (Berlin: Springer), pp. 41–51.

Liu, F., Liang, Z., Wegiel, J., Hwang, Y.W., Iqbal, K., Grundke-Iqbal, I.,

Ramakrishna, N., and Gong, C.X. (2008). Overexpression of Dyrk1A contrib-

utes to neurofibrillary degeneration in Down syndrome. FASEB J. 22, 3224–

3233.

Lochhead, P.A., Sibbet, G., Morrice, N., and Cleghon, V. (2005). Activation-

loop autophosphorylation is mediated by a novel transitional intermediate

form of DYRKs. Cell 121, 925–936.

Maddika, S., and Chen, J. (2009). Protein kinase DYRK2 is a scaffold that

facilitates assembly of an E3 ligase. Nat. Cell Biol. 11, 409–419.

Maenz, B., Hekerman, P., Vela, E.M., Galceran, J., and Becker, W. (2008).

Characterization of the human DYRK1A promoter and its regulation by the

transcription factor E2F1. BMC Mol. Biol. 9, 30.

Mazur-Kolecka, B., Golabek, A., Kida, E., Rabe, A., Hwang, Y.-W., Adayev, T.,

Wegiel, J., Flory, M., Kaczmarski, W., Marchi, E., and Frackowiak, J. (2012).

Effect of DYRK1A activity inhibition on development of neuronal progenitors

isolated from Ts65Dn mice. J. Neurosci. Res. 90, 999–1010.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C.,

and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr.

40, 658–674.

Mercer, S.E., Ewton, D.Z., Deng, X., Lim, S., Mazur, T.R., and Friedman, E.

(2005). Mirk/Dyrk1B mediates survival during the differentiation of C2C12

myoblasts. J. Biol. Chem. 280, 25788–25801.
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