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Abstract We present a new scheme to calculate isotope
effects. Only selected frequencies at the target level of
theory are calculated. The frequencies are selected by an
analysis of the Hessian from a lower level of theory. We
obtain accurate isotope effects without calculating the full
Hessian at the target level of theory. The calculated
frequencies are very accurate. The scheme converges to
the correct isotope effect.
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Introduction

In catalysis isotope effects have been used to identify the
reaction mechanism and understand the interactions be-
tween the ligands and the receptor [1]. Two chemically
identical systems are investigated, which differ only by the
mass of one or more atoms. The two systems are called
isotopologes. The kinetic isotope effect is the ratio of
reaction rates of the two isotopologes. It can provide unique
information about the structure of the transition state, which
plays an important role in distinguishing between possible
mechanisms. Equilibrium isotope effects are calculated

from the ratio of the equilibrium constants. This analysis
turned out to be a useful tool for describing atomic
interactions between reactants and the catalytic sites during
the binding step of the catalysis [2]. Isotope effects are
experimentally accessible using different techniques and
methods [3]. If a reaction is composed of several steps,
which is usually the case in enzymatic processes, a
complementary tool is needed to interpret and understand
the experimental data.

The observed isotope effect is the net effect, a weighted
sum of each of the separate steps. Computational tools have
the power to provide information about each of the steps.
They can be used to predict the isotope effect for an
assumed reaction mechanism or binding mechanism. The
results can then be compared with experimental data.
Modeling of enzymatic processes is a challenging task.
Compromises on the way from model preparation to the
calculation of the isotope effect is required. The most
commonly used scheme is the quantum mechanics/molec-
ular mechanics (QM/MM) hybrid method. Here, the
reaction center is treated quantum mechanically, using
either DFT or semiempirical methods. The rest of the
system is treated classically, using available force fields.

Theoretical predictions of isotope effects date back as
early as the 1960s. Based on the isotope effects theory of
Bigeleisen and Goeppert-Mayer [4] model calculations
using so-called cutoff models were proposed by Wolfsberg
and Stern [5] and later by Sims and coworkers [6]. Due to
the phenomenon that isotope effects depend on structure
and bonding changes primarily in the regions of molecule
close to the isotopically-substituted position Stern and
Wolfsberg validated their procedure [7] for various cyclic
and acyclic structures [5]. The initial studies used bond
orders and tabulated force constants to describe isotope
effects. The model was refined by the use of molecular
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mechanics to generate force fields and the inclusion of bond
energies in the model. The new method was implemented
in the BEBOVIB program [8]. The software predicts kinetic
isotope effects based on the structure of the reactant and the
transition state of a reaction. Different protocols were
proposed for creating an appropriate transition state model
[9–11]. However user-defined force constants and bond
orders were often the source of apparent failure of the
method.

Along with the technological boom in computer science
observed over the last decades more reliable quantum
mechanical calculations became feasible. Electronic struc-
ture calculations as well as algorithms for transition state
location started to replace the BEBOVIB method. A
number of studies have appeared showing discrepancies
between the results obtained from BEBOVIB and quantum
calculations [12–14].

Using the Teller-Redlich rules [15] the equilibrium or
kinetic isotope effect can be solely calculated from the
wave numbers of the reactant and products. This equation is
known as the Bigeleisen-Mayer equation [16].

IE ¼ IF nRi;L

n o
; nRi;H

n o� �
� IF�1 nPi;L

n o
; nPi;H

n o� �
: ð1Þ

It is a product of the isotope factor (IF) for the reactant
(R) and the inverse of the IF of the product (P). The term
isotope factor (IF) is introduced in this paper, because we
focus on only one factor without calculating the full isotope
effect. The rationale is that if we can calculate the IF of,
say, the reactant we can also calculate the IF of the product
or transition state, since the formula is identical. The
isotope factor is calculated from the wave numbers of the
light isotopologe ({νi,L}) and the heavy isotopologe ({νi,H})
according to

IF ni;L
� �

; ni;H
� �� � ¼ 9

ni;H � sinh ni;Lh= 2kTð Þ� 	
ni;L � sinh ni;Hh= 2kTð Þ� 	 � ð2Þ

Here h is the Planck constant, k is the Boltzman constant
and T is the temperature in Kelvin. Only in the case of the
kinetic isotope effect the IF is slightly different. For the
imaginary frequency of the transition state the sinh of the
wave numbers are dropped. This means that only a factor of
nTS;H
nTS;L

appears, where the nTS is the absolute value of the
imaginary frequency.

When analyzing Eq. 2 we realize that the factors in the
product assume the value one, if the wave number of the
light and heavy isotopologe are equal. This is often the
case, since only a few wave numbers are affected, if one or
a few atoms are replaced by their heavier isotope. As a
consequence, only a small number of wave numbers
contribute to the isotope factor, and, hence, to the isotope
effect.

Wave numbers are calculated from the eigenvalues of the
matrix of second derivatives, also known as Hessian. The
calculation of the Hessian is a time consuming task when
enzymatic reactions with thousands of atoms are investi-
gated. Moreover, QM/MM schemes usually do not allow
for the analytic calculation of the Hessian. Consequently,
the Hessian is calculated by the finite difference method.
This makes the evaluation of the full Hessian practically
impossible. Currently, an approximation to calculate the
isotope effect in enzymatic reactions is used. A set of atoms
is chosen, usually the atoms in the QM part. Then the
second derivatives are calculated for only these atoms.
These second derivatives form only part of the full
Hessian, hence the name partial Hessian approach.
Diagonalization of the partial Hessian gives approximate
vibrations and wave numbers. From the approximate
wave numbers approximate isotope factors and isotope
effects are calculated.

When calculating the isotope effect two approximations
are made. The first is the chosen level of theory. This is true
for any kind of calculation and always needs to be
addressed. The second approximation is the calculation of
the Hessian. In this paper we address the latter approxima-
tion. We propose a new scheme to calculate the isotope
factor for a target level of theory. We selectively calculate
only those wave numbers that contribute to the IF. We do
this by first identifying the contributing wave numbers from
an analysis of the Hessian from a lower level of theory. The
corresponding vibrational modes of the identified wave
numbers are then used to calculate the contributing wave
numbers at the target level of theory. The details of our
scheme are explained in section Theory.

In Section Results we show the results obtained with
the new scheme for a test system. We show that our
scheme converges to the right isotope factor from below.
Our scheme gives accurate wave numbers. We also
compare our scheme to the partial Hessian approach. In
Section Conclusions we draw the conclusions. We find
that the partial Hessian approach is superior to our
scheme.

Theory

In this Section we explain the details of the new scheme. We
start by reviewing some basic terminology and their defi-
nitions in Subsection Terminology and definitions. The new
scheme allows us to calculate only selected frequencies. To
this end the Hessian is projected onto the space spanned by
the selected frequencies. In Subsection Projected Hessian we
review the equations for the projection of the Hessian. In
Subsection Calculation of selected frequencies we explain
how to calculate the projected Hessian without calculating
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the full Hessian. In Subsection Selection of frequencies we
explain how we select the frequencies onto which the
Hessian is projected. Finally, we put all pieces together in
Subsection The new scheme. For completeness we also
present the partial Hessian approach in Subsection Results.

Terminology and definitions

Consider the matrix of second derivatives, also known as
Hessian,

ðHÞij ¼
@2E

@Ri@Rj
� ð3Þ

Here E is the total energy. The indices i and j run from 1
to 3N, where N is the number of atoms in the system. Each
of the Ri represents the displacement of one atom in x, y or
z direction. For example, R1 represents displacement of the
first atom in x direction, R2 represents displacement of the
first atom in y direction and so on. The Hessian as in Eq. 3
is expressed in cartesian basis. It is a 3N×3N matrix. We
can find the eigenvectors and eigenvalues according to

H � qi ¼ liqi ð4Þ
The qi are the eigenvectors and li are the eigenvalues.

Since the Hessian is symmetric it is guaranteed that we find
3N pairs of eigenvectors and eigenfunctions.

From now on we will call the eigenvectors, {qi}
vibrations of the molecule. The vibrations show the
movement of the molecule. They can be visualized by
standard visualization software. Each vibration is associated
with a wave number, which is calculated from the
eigenvalue, li. The wave number is a measure for the
energy of that particular vibration. The pair of vibration and
associated wave number we will call frequencies.

Projected Hessian

eH ¼ B � BT � H � B � BT : ð5Þ

The projected Hessian eH is a M × M matrix. Let us
examine the special case, where the vectors {bi} span the
complete space and M = N. In this case the projected
Hessian, eH , and the original Hessian, H, are identical.
Consequently, the eigenvectors and eigenvalues will be
identical, too.

Let us now consider the case where M<3N, i.e., the
vectors {bi} do not span the complete space. From the

projected Hessian, eH , we can calculate its eigenvectors eqi
and eigenvalues eli via Eq. 4. A result of the projection is
that 3N − M eigenvalues will be zero. The question is
whether (some of) the remaining eigenvalues and
corresponding eigenvectors are also eigenvalues and eigen-
vectors of the original Hessian, H. The answer is that all
eigenvectors qi that lie in the space spanned by B will be in
the set of eqif g. The corresponding eigenvalues eli will be
identical to the eigenvalues li. The remaining eqi and eli are
only approximations to the exact qi and li.

Calculation of selected frequencies

Let us assume we have a set of M orthonormal vectors,
{bi}. We are interested in eigenvalues of the Hessian
projected onto the space spanned by {bi}. The question is
how do we practically do this, without first calculating the
full Hessian, which appears in Eq. 5.

To this end let us examine the product of the Hessian
with one of the vibrations, H bi. The expression for the ath
element reads,

H � bið Þa ¼
X3N
j

@2E

@Ra@Rj
bi;j ð6Þ

¼ @2E

@Ra@bi
ð7Þ

¼ @

@bi

@E

@Ra
: ð8Þ

In the above equations bi, j is the jth element of the vector
bi, i.e., the displacement of the j-th cartesian coordinate. In
Eq. 7 we performed the summation of Eq. 6. Going to Eq. 8
we used the fact that the order of differentiation can be
reversed. We obtain an expression that represents the
directional derivative of the gradient. In other words, the
multiplication H · bi, and hence H · B, can be done by the
finite difference method. The remaining matrix multi-
plications in Eq. 6 are straight forward.

Selection of frequencies
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In this Subsection we describe how to identify the
frequencies that contribute to the isotope factor (IF) in
Eq. 2. More precisely, we give an order for the frequencies
in which the contribution decreases. We assume in this
Subsection that we have the vibrations, qLi , and wave
numbers, nLi , of the light isotopologe. Likewise we have the
vibrations, qHi , and wave numbers, nHi , of the heavy
isotopologe. In a first step, we match the vibrations of

In this Subsection we consider projected Hessians. Let us
assume we have a set of M orthonormal vectors {bi}. We
collect the vectors in a matrix B. The projection of the
Hessian, H, onto the space spanned by the vectors bi results
in the projected Hessian eH . It is calculated as



In a second step we evaluate the contribution of each of
the vibration pairs to the isotope factor. Please recall that

IF ui;L
� �

; ui;H
� �� � ¼ 9

ni;H � sinh ni;Lh= 2kTð Þ� 	
ni;L � sinh ni;Hh= 2kTð Þ� 	 : ð9Þ

We calculate the contribution of each vibration pair to
the isotope factor by

IFi ¼
ni;H � sinh ni;Lh= 2kTð Þ� 	
ni;L � sinh ni;Hh= 2kTð Þ� 	 : ð10Þ

Many of the contributions, IFi, will be one, and hence
will not contribute to the isotope factor. The rest of the
vibration pairs will fall into two groups. Some will have a
contribution IFi larger than one. Some of them will have a
contribution IFi smaller than one.

We can now make three lists of vibration pairs. First, we
have the lists of vibration pairs that give a contribution IFi

smaller than one. Within this list we order the vibration
pairs by ascending IFi. Then there is a list of vibrations with
contribution IFi larger than one. Within this list we order
the vibration pairs by descending IFi. Finally, we have a list
of vibration pairs that do not contribute at all.

The new scheme

In this Subsection we explain how the new scheme works.
Assume we have a system, whose geometry has been
optimized to a minimum with a given level of theory. The
level of theory we will call target theory (TT). The goal is
now to obtain the isotope factor for this system at the TT.
First, we choose a lower level of theory (LL). We calculate
the Hessian of our system at LL in the geometry optimized
at TT. We are fully aware, that the frequencies calculated
from this Hessian are not physical, since the Hessian is
evaluated at a non-stationary point. This does not mean
much in our case, since the Hessian is used only to obtain
an orthonormal set of vibrations, regardless if they have a
physical interpretation or not.

From the Hessian calculated at LL we calculate the
vibrations and wave numbers. According to the procedure
described in Subsection Selection of frequencies we obtain
three lists of LL vibrations. We discard the list of LL
vibrations that do not contribute to the LL isotope factor (IF).
Typically, the list with LL vibrations that contribute a factor
of smaller than one is short. The list with LL vibrations that
contribute a factor of larger than one is much longer.

We now use the LL vibrations obtained in the previous
step. First we choose all LL vibrations from the short list,
which contribute a factor smaller than one. We calculate
their directional derivative as described in Subsection
Calculation of selected frequencies. Subsequently, we
calculate the approximate TT vibrations and approximate
TT wave numbers according to Section Projected Hessian.
From the approximate TT wave numbers we can calculate
the approximate TT isotope factor. Now we start an
iteration. The first LL vibration from the long list, which
contributes a factor larger than one, is added to the set of
orthonormal vectors {bi}. Its directional derivative is
calculated according to Subsection Calculation of selected
frequencies. The directional derivative is joined with the
previously calculated directional derivatives. The approxi-

obtain an additional approximate TT vibration and approxi-
mate TT wave number, while the previous approximate TT
vibrations and approximate TT wave numbers change. We
calculate the new approximate TT isotope factor. We continue
this iteration until convergence of the approximate TT IF to
the desired accuracy is reached.

The set-up of our scheme has two advantages. Firstly, it
will inevitably converge to the correct result. If we feed all
LL vibrations to the algorithm of Subsection Calculation of
selected frequencies we will obtain the exact TT vibrations
with exact TT wave numbers. This is because all LL
vibrations form a complete orthonormal basis. Consequently,
the projection performed in Eq. 5 will leave the Hessian
unaltered. Secondly, our scheme gives a lower bound to the
TT isotope factor at each step. This is because we first
include all LL vibrations that give a factor of less than one.
The remaining LL vibrations will only yield larger TT
isotope factors.

Partial Hessian approach

In the partial Hessian approach the approximate wave
numbers are calculated according to Subsections Projected
Hessian and Calculation of selected frequencies. The
vectors bi are chosen to be unit vectors with zeros
everywhere but one entry is one. Per atom there are three
vectors bi. Each of the three represents a displacement of
the chosen atom in x, y or z direction. For example,
choosing the jth atom means inclusion of the vectors with a
one at position 3 · (j −1)+1, 3 · ( j−1) + 2 and 3 · ( j−1)+ 3.

Results

We applied our scheme to oxamate bound in the active site
of lactate dehydrogenase (LDH) from the rabbit muscle
(PDB ID 3H3F1). The system is shown schematically in
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the two isotopologes. This is done by calculating the
overlap < qLi jqHi > and pairing those vibrations which
show the largest overlap. From now on we assume that the
index i is chosen such that the i-th vibration of the light
isotopologe, qLi , has largest overlap with the ith vibration of
the heavy isotopologe, qHi .

mate TT vibrations and wave numbers are calculated. We



Fig. 1. It contains 139 atoms. Oxamate inhibits the LDH
activity to catalyze the reversible conversion of pyruvate to
lactate in the presence of nicotinamide adenine dinucleotide
NADH cofactor. The full system has previously been
investigated [17–19].

For the calculations of the isotope factor (IF) we labelled
the two carboxylic oxygen atoms (O1 and O2 in Fig. 1) of
the oxamate with the isotope 18O. We performed a
geometry minimization at B3LYP/6-31G* level of theory
[20–23]. This level represents our target theory (TT). For
comparison we also calculated the full Hessian at the
optimized geometry. We chose AM1 [24–26] as our low
level of theory (LL). We calculated the full Hessian with
AM1 in the geometry optimized with B3LYP/6-31G*. We
used ISOEFF [27] to match the LL vibrations as described
in Subsection Selection of frequencies. The AKIRA [28]
code was used to perform the algorithm described in
Subsection Projected Hessian and Calculation of selected
frequencies. All electronic structure calculations were
performed with Gaussian [29].

Results from the exact frequencies

First we analyze how many TT frequencies are necessary to
obtain the correct IF. We use the TT Hessian for the
analysis described in Subsection Selection of frequencies.
This represents the ideal case. We know already all TT
vibrations and TT wave numbers. We only put them in
order and calculate the IF for a subset of TT wave numbers.
Table 1 shows the results of oxamate in the active site of
LDH. The first column shows the number of TT wave
numbers. The second column shows the error in % to the
correct IF value of 1.209. In total there are 411 frequencies
in this system.

We see that the IF indeed converges from below. For an
accuracy of -7% approximately 20 vibrations are needed.
With 60 vibrations we obtain an accuracy of -1%. With about
150 vibrations the error reduces to -0.1%. An error of -0.01%
is achieved with approximately 250 vibrations.

The presented analysis verifies our implementation.
Moreover, we see that not all exact vibrations and wave

Fig. 1 Oxamate in the active
site of LDH. O1 and O2 are
labeled with isotope 18O in the
isotope factor calculations. The
atoms O1 through H12 are
included in the partial Hessian
approach
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numbers are necessary to obtain an accurate IF. An
accuracy of 0.1% usually suffices. Hence, we need to
calculate only roughly 150 vibrations and wave numbers
for oxamate in LDH. Thus, a full Hessian analysis
calculates three times more wave numbers than necessary.
We remind the reader, that for the targeted application
analytical Hessian evaluation is not possible. Hence, the
computational time saved would be roughly a factor of
three.

Results from the new scheme

We now turn to a more realistic example. We perform a full
Hessian analysis at AM1 level of theory, which will serve
as our low level (LL). The calculated LL vibrations and LL
wave numbers are ordered according to the procedure
described in Subsection Selection of frequencies. We then
feed the ordered LL vibrations to our new scheme described
in Subsection The new scheme. The results are shown in
Table 2.

The first column of Table 2 shows the number of LL
vibrations fed into the algorithm described in Subsection
The new scheme. The second column gives the error of the
IF calculated therefrom. We see the same pattern as in the
exact example before. With 20 LL vibrations we obtain an
accuracy of -4%. About 60 LL vibrations are needed to
reduce the error to -1%. For an error of -0.1% 150 LL
vibrations are needed. Extending the number of LL
vibrations to 250 we reduce the error to below -0.01%.

Columns three, four, and five give an indication about
the accuracy of the wave numbers that are obtained. They
give the number of approximate TT wave numbers that
differ by less than 10, 25, and 50 cm−1 from the exact TT
wave numbers, respectively. We see that a large percentage
of the approximate TT wave numbers is in very good
agreement with the exact TT wave numbers. For example,

from the 150 approximate TT wave numbers 92 differ by
less than 10 cm−1. Almost all (130) differ by less than
50 cm−1, which is usually still considered to be in fair
agreement. This analysis shows that the accurate IF, that we
obtain, is not a mere coincidence. It is accurate because the
approximate TT wave numbers are accurate.

Results from the partial Hessian approach

For comparison we show results from the partial Hessian
approach in Table 3. The first column shows the number of
basis vectors. They are all multiples of three, since for each
chosen atom there are three degrees of freedom. In each
line one additional atom is included. The atoms are
included in the following order: O1, O2, C3, C4, O5, H6,
H7, H8, H9, N10, H11, H12. For comparison see also
Fig. 1.

The results are surprising, if we recall the large amount
of wave numbers needed to obtain an accurate IF (cf.
Table 1). Including only one of the labeled atoms (first row
of Table 3) the error is roughly -8%. Adding the second
labeled oxygen atom (second row of Table 3) reduces the
error to only 2.4%. In comparison, there are more than 30
exact TT wave numbers needed to obtain this accuracy (see
Table 1). Including the carbon atom that is linked to both
labeled oxygen atoms in the partial Hessian reduces the
error by an order of magnitude down to 0.2%. We see that
inclusion of only the carboxyl group of oxamate, i.e.,
calculation of nine approximate wave numbers, gives us an
accuracy equivalent to including more than 100 exact wave
numbers (cf. Table 1). What is even more surprising is that
the approximate wave numbers calculated from only the
atoms of the carboxyl group are rather inaccurate. Only one

Table 1 Results for various numbers of exact wave numbers of
oxamate in the active site of LDH. The second column gives the error
in % of the approximate isotope factor

Number of vectors Error in %

10 -16.25

20 -6.87

30 -2.73

40 -1.69

50 -1.25

60 -0.75

100 -0.28

150 -0.10

250 -0.01

300 0.00

Table 2 Results for various numbers of approximate wave numbers
obtained from the new scheme for oxamate in LDH. The second
column gives the error in % of the approximate isotope factor. The last
three columns give the number of wave numbers that show an error of
less than 10, 25 and 50 cm−1, respectively

Number of
vectors

Error in % <10 cm−1 <25 cm−1 <50 cm−1

10 -12.80 2 6 8

20 -3.95 5 10 19

30 -2.27 8 21 26

40 -1.59 10 27 36

50 -1.25 17 33 45

60 -0.82 22 43 53

100 -0.40 55 80 89

150 -0.10 92 120 130

250 0.00 166 206 223

300 0.00 247 273 278
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of the nine approximate wave numbers is accurate to within
10 cm−1 and only four are accurate to within 50 cm−1.

Inclusion of the carbonyl group (C4 and O5) and the
four hydrogen atoms that form a hydrogen bond with the
oxygens of the carboxyl group (H6, H7, H8 and H9)
reduces the error by another order of magnitude. With 27
approximate wave numbers we obtain an error of 0.04%
(compare Table 3). While the accuracy of the IF increases
the accuracy of the wave numbers does not. There is still
only one wave number accurate to within 10 cm−1 and only
seven to within 50 cm−1.

Including the remaining amine group of oxamate does
not change the error (compare last row in Table 3). The
number of approximate wave numbers that are in
agreement with the exact wave numbers rises to 17 (error
less than 10 cm−1) and 22 (error less than 50 cm−1). The
accuracy of the wave numbers may not be so surprising.
Oxamate is not covalently bound to the rest, so that the
vibrations are rather localized at oxamate. Consequently,
we recover almost all vibrations of oxamate (17 out of 18).
Nevertheless, it is surprising to see that only 24 approx-
imate wave numbers suffice to obtain an accuracy, which
is achieved only with 200 exact wave numbers (cf.
Table 1).

One may argue, that it is not the absolute value of the
wave numbers that is of importance for the IF. Rather the
shift that comes with substituting one isotope with another
is important to recover the correct IF. This is, of course, true
only to some extent. A too large error in the absolute wave
numbers must yield an incorrect IF even if the shift is
reproduced correctly. However, for small absolute errors

this is certainly true. In particular, it has been shown [30]
that the Bigeleisen-Mayer equation (cf. Eq. 1) is insensitive
to small errors in the absolute wave numbers. However, this
analysis was performed including all wave numbers. In the
case of the partial Hessian approach only a few wave
numbers are calculated. Indeed, we must conclude that
there is a large error on the calculated shifts. If there was no
error, we would not recover the correct IF, because 36
accurate wave numbers are not enough (cf. Table 1).

The reader might wonder whether the presented results
are general. Indeed, we find the same picture for
different situations. We have performed the same analysis
labeling different atoms in oxamate or even in the
residues. In each case we find the same overall picture.
Analysis of the exact TT wave numbers suggests that
many (more than 100) wave numbers are needed to
calculate the IF. Applying our scheme we accurately
reproduce the IF with roughly the same number of
approximate TT wave numbers. However, the partial
Hessian approach gives a highly accurate IF with only a
few (around 25) approximate wave numbers.

Conclusions

In this paper we suggest a new scheme to calculate the
isotope effect. We examine the scheme by calculating the
isotope factor of oxamate bound in the active site of lactate
dehydrogenase with approximate wave numbers. We
compare our results to the isotope factor calculated from
all exact wave numbers at B3LYP/6-31G*. We show that
we need equally many approximate wave numbers to
obtain a given accuracy, as exact wave numbers are needed
(cf. Table 2). We show that our new scheme converges from
below, which indicates that the calculated isotope factor is
always a lower bound. We also show that the approximate
wave numbers that we calculate are in very good agreement
with the exact wave numbers, proving that the accurate
isotope factor is not a mere coincidence. For the shown
system our scheme reduces the computational cost by a
factor of approximately three, when compared to an
evaluation of the Hessian by finite differences.

We also show results obtained by the partial Hessian
approach. The results suggest that it suffices to calculate the
partial Hessian for only a very small number of atoms,
including the labeled atoms (cf. Table 3). While these
results are in line with previous findings [5, 31] they seem
to contradict the analysis of the exact wave numbers (cf.
Table 1), which suggest that a large number of wave
numbers need to be calculated to obtain an accurate isotope
factor. At this moment we are not able to give an
explanation for the accuracy of the partial Hessian
approach.

Table 3 Results for various numbers of approximate wave numbers
obtained from the partial Hessian approach for oxamate in LDH. The
second column gives the error in % of the approximate isotope factor.
The last three columns give the number of wave numbers that show an
error of less than 10, 25 and 50 cm−1, respectively

Number of
vectors

Error <10 cm−1 <25 cm−1 <50 cm−1

3 -7.78 0 0 0

6 2.41 0 0 1

9 0.20 1 3 4

12 0.14 1 3 4

15 0.13 1 2 5

18 0.10 1 2 5

21 0.06 1 2 7

24 0.04 1 2 7

27 0.04 1 2 7

30 0.03 1 5 9

33 0.02 5 8 12

36 0.02 17 20 22
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