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Media influence people’s perceptions of reality broadly and of technology in particular.

Robot villains and heroes—from Ultron to Wall-E—have been shown to serve a specific

cultivation function, shaping people’s perceptions of those embodied social technologies,

especially when individuals do not have direct experience with them. To date, however,

little is understood about the nature of the conceptions people hold for what robots are,

how they work, and how they may function in society, as well as the media antecedents

and relational effects of those cognitive structures. This study takes a step toward

bridging that gap by exploring relationships among individuals’ recall of robot characters

from popular media, their mental models for actual robots, and social evaluations of an

actual robot. Findings indicate that mental models consist of a small set of common and

tightly linked components (beyond which there is a good deal of individual difference),

but robot character recall and evaluation have little association with whether people

hold any of those components. Instead, data are interpreted to suggest that cumulative

sympathetic evaluations of robot media characters may form heuristics that are primed

by and engaged in social evaluations of actual robots, while technical content in mental

models is associated with a more utilitarian approach to actual robots.
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INTRODUCTION

Media influence people’s perceptions of reality broadly (Gerbner and Gross, 1976) and of
technology in particular (Nisbet et al., 2002). Robot villains and heroes—from Ultron to
Wall-E—serve a specific cultivation function, shaping people’s perceptions of those embodied social
technologies (e.g., Mara et al., 2013), especially when individuals do not have direct experience
with them. To date, however, little is understood about the nature of the conceptions people
hold for what robots are, how they work, and how they may function in society—as well as the
media antecedents and relational effects of those cognitive structures. This study takes a step
toward bridging that gap by partially replicating and extending one of the few empirical works
in this domain (Sundar et al., 2016) to explore the relationships among individuals’ recall of robot
characters from popular media, their mental models for robots, and social evaluations of an actual
robot. Findings suggest that mental models rely on a small set of common and tightly linked
components (beyond which there is a good deal of individual difference), but robot character recall
and evaluation have little association with whether people hold any of those components. Instead,
data are interpreted to suggest that cumulative sympathetic evaluations of robot media characters
may form heuristics that are primed by and engaged in social evaluations of actual robots, while
technical content in mental models is associated with a more utilitarian approach to actual robots.
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REVIEW OF LITERATURE

The prevalence of robot characters in popular media invites
questions about the role that exposure to and evaluation of those
characters may play in fostering people’s understanding of robots,
as well as fostering attitudes toward them and varied intentions
to engage them. These potentials are perhaps best considered
through the lens of media’s influence onmental models for agents
and interactions, as well as how those models may contribute to
our understandings of social encounters.

Mental Models as Ways of Knowing Robots
Mental models (MMs) are dynamic cognitive frameworks
representing spatial, systemic, causal, or situational phenomena:
structures of symbolic “tokens” that signify perceptible or
abstract entities. Those relational structures correspond to
given situations that they collectively represent (Rickheit and
Sichelschmidt, 1999), such that MMs serve as interpretive
frames for immediate experience (Craik, 1943). In other words,
mental models are sets of ideas for what the world is, how
it works, how it unfolds, or what happens in it, and these
ideas are used to describe, explain, and predict events or
things in the world. Just as one may use MMs of the actual
world to guide engagement of fictional worlds (e.g., Krakowiak
and Oliver, 2012; McGloin et al., 2015), MMs derived in
whole or part from media experiences may be used to guide
engagement of actual situations or agents. Understanding MMs’
antecedents, formation processes, characters, and effects requires
consideration of both MM contents (what are the cognitive
frameworks’ constitutive tokens?) and MM structure (how are
tokens related to one another?).

The question of MM content is a matter of the knowledge
held in one’s internal representations of a phenomenon and
the degree to which that knowledge corresponds with the
actual phenomenon. MMs may contain tokens representing
abstract or concrete elements and those representations may
be objectively true, actually false, or constitute variably reliable
heuristics (Byrne, 2005). The content of MMs is gleaned over
time through personal and/or mediated experience (Seel and
Strittmatter, 1989); that content may more or less resemble the
actual phenomenon represented as MMs always capture only
a limited representation, ranging from similarity or analogy
(being like the thing) to isomorphism (being as the thing;
Johnson-Laird, 1983). Altogether, MMs are token-assemblages
representing distinct possibilities for a situation (Johnson-Laird
and Byrne, 2002) and the likelihood of a particular MM guiding
one’s interpretation of a situation depends on its accessibility.
That is, a MM may be invoked when one of its components is
made salient by some priming element of an immediate situation
(see Roskos-Ewoldesen et al., 2004). For example, if a person
consumes repeated media depictions of silver, humanoid robots
then “silver” and “humanoid” may become deeply ingrained
components of that person’s MM for robots.

The question of robot MM structure is a matter of how those
knowledge tokens are associated and how those associations give
rise to the overall structure of themodel. For both considerations,
if we think of MMs as comprising individual nodes (tokens)

that are linked together in a network (i.e., a connectionist
approach; see Medler, 1998) then it is useful to draw from
network principles to consider links among held ideas (see
Woods, 1975). From this frame, individual tokens may serve
as links between other parts of the MM (signaling conceptual
or functional bridging) and may be variably central to the MM
(signaling importance to the phenomenon). Associations may
exist between more- or less-similar tokens (signaling copacetic
or tensioned relations), may be directed or reciprocal (signaling
influence balances or differentials), and may be singular or
multiplex (signaling simple or complex relations). The MM
structure, overall, may be more or less dense (signaling greater or
lesser cohesion of the parts of theMM) and, relatedly, may feature
structural gaps (signaling conspicuous lapses in understanding
or opportunities for exploration). Because of these potential
linkages among knowledge tokens within a MM, if a situation
offers a cue that causes a person to access one part of that
network, it may result in the “spreading activation” of other
parts of that MM network (see Collins and Loftus, 1975, p. 407;
Krcmar and Curtis, 2003). To extend the previous example: if the
repeated media images of silver, humanoid robots also frequently
depict them performing violent actions, then “violence” may also
become deeply ingrained in theMM for robots. When the person
holding that MM actually encounters a silver, humanoid robot
(primes that activate those portions of the MM), the violence
components of the MM may in turn be activated such that the
person assumes that robot will be violent—even if it gives no
indication of harming anyone.

Understanding MMs for robots as a social technology is
of central importance to understanding this form of human-
machine communication because humans make decisions about
communicative action based on their conscious or preconscious
cognitions of social others—no matter whether these social
others are human or non-human (Nass and Yen, 2010). For
instance, one may be more or less likely to engage another
person based on self-sameness or difference (Liviatan et al., 2008),
stereotypes and norms (Bargh, 2006), or more general patterns
of relational facts (Fox, 1967), and many such human-human
relational dynamics are mirrored in human-machine relations
(Nass et al., 1994; Spence et al., 2014; Bowman and Banks, 2019).
However, social robots also deviate from humans in appearance
(Duffy, 2003), signals of intelligence and agency (Ullman et al.,
2014), and ability to adapt to novel communication scenarios
(Salem et al., 2015) so it is necessary to take a step back and
consider the nature and structure of held MMs for robots. This
is especially important because MMs for robots may be invoked
in a range of applied communication scenarios, engendering
implications for interaction design to varyous ends. For instance,
social robots may serve learning or socialization goals that do not
rely on a profound technological understanding of their mental
architecture—such knowledge even might be detrimental to their
purpose. Alternately, it may be important for humans to have a
clear and accurate MM of robots as technical systems, especially
in high-stakes collaboration contexts (Phillips et al., 2011).

Extant research has focused on inferences of people’s MM
content based on their estimations of a robot’s knowledge (Lee
et al., 2005), social or visual ratings (Powers and Kiesler, 2006),
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quantified trait evaluations (Kiesler and Goetz, 2002) or on
assumptions about MM content used to manipulate interaction
experiences (Kwon et al., 2016). One study focused on children’s
understanding of robots as having animistic cognitive, affective,
and behavioral characteristics, however the questions eliciting
that understanding were specific to a single co-present robot
(Beran et al., 2011). Thus, in considering the nature of MMs
for robots, it is first necessary to inductively discover the nature
of human-held MMs for robots, broadly. To that end, this
investigation first asks: (RQ1) What is the (a) content and (b)
structure of people’s mental models for actual social robots?

Media Cultivation of Robot Mental Models
and Social Judgments
In 1976, in the course of laying out Cultivation Theory,
Gerbner and Gross argued that television as a “new symbolic
environment” was likely to be “the chief source of repetitive and
ritualized symbol systems cultivating the common consciousness
of the most far-flung and heterogenous mass publics in history”
(p. 174). More than 40 years later, print and television are joined
by myriad digital technologies in contributing to the shared and
disparate understandings of an arguably evenmore heterogenous
public. Although the framework originally attended to television,
print and electronic media also help shape social realities through
consumption volumes, convenience, accessibility, and (to some
degree) narrative. These dynamics, as espoused in that theoretical
framework, may all apply to both older and new forms of
media (Morgan et al., 2015) despite increasing content and
format heterogeneity.

The ways that media shape social realities can perhaps be
best understood in terms of their contributions to humans’
MMs for the world. Roskos-Ewoldesen et al. (2004) argue
that specific media representations (depicted events comprising
time, space, causality, intentionality, and agents; Zwann, 1999)
are mentally indexed during media consumption, giving rise
to cognitive representations of situations that—with greater
cognitive accessibility and greater alignment with extant MMs—
guide how we interpret events in our immediate world. From
this frame, MMs are enduring but dynamic cognitive structures
(Roskos-Ewoldesen et al., 2004) that intercede the direct
consumption of media representations and the application of
those representations to everyday life experiences. For instance, if
a person with no immediate experience with artificial intelligence
(AI) has consumed repeated representations of AI as digitally
embodied and variably distributed (as is the case with Cortana in
the videogameHalo, the Puppet Master in the mangaGhost in the
Shell, and Wintermute in the cyberpunk classic Neuromancer),
those properties are likely core to that person’s MM for AI; upon
encountering an actual, physically embodied robot they may
have difficulties recognizing that robot as artificially intelligent
in any way. MMs for discrete characters and character tropes
materially contribute to knowledge structures, including lay
theories about social agents and interactions (Schneider, 2001)
as people make source-agnostic, heuristic evaluations during
interactions (Shrum, 1998). If robots MM components are
formed and reinforced by repeated exposures to similar (or

similarly experienced) media representations, they may become
chronically accessible from memory; those highly accessible
concepts may become even more accessible for a short period of
time when primed by cues in immediate exposures to an actual
robot (see Roskos-Ewoldsen et al., 2009).

These social-evaluation individual effects and cultural shifts
have been explored in cultivation research in relation to varied
social judgments across varied populations (see Morgan and
Shanahan, 2010 and for a review). For instance, heavier media
consumption has been linked to more traditional gender-
role attitudes among Japanese viewers (Saito, 2007), more
unfavorable evaluations of Latino criminality in line with
higher represented Latino criminality (Mastro et al., 2007), and
differential rationales for socioeconomic differences among Black
and White communities (Buselle and Crandall, 2002). Given (a)
observed links between increased consumption of media and
negative evaluations of non-majority populations, in line with
disproportionately negative representations of those populations
and (b) frequent popular-media representations of robots in
popular culture as foils for what it means to be properly human
(as othered fascinations, slaves, and artificialities; Kakoudaki,
2014), it is prudent to consider how the accessibility of robotic
media characters may be associated with how people hold
cognitive representations for actual robots as they exist in
the world. Following, this study queries: (RQ2) What is the
relationship between (a) recall and (b) evaluation of robot
characters and the content of people’s mental models for
actual robots?

Further, robots are often represented as agentic entities in
popular media; such depictions present opportunities for social
agency to be incorporated into MMs and, following, for those
cognitive structures to influence social evaluations in anticipation
of or during actual encounters with robots. Regarding potentials
for media-character exposure to influence social judgments of
robots, it could be that salience of characters from past exposures
signals the accessibility of the construct of “robot” as represented
across exposures (cf. Sundar et al., 2016, in line with Roskos-
Ewoldesen et al., 2004). It could also be that mere exposure effects
manifest, with more frequent exposures to robot characters
beget more positive attitudes toward actual robots independent
of any particular recollection (cf. Zajonc, 1980). Considering
potentials for MM influence on social judgment, it may be that
through indexed robot representations’ perceived iconicity (the
interpreted likeness of a representation of a thing and the thing
itself; see Alexander, 2010) functions as a cognitive framework
or small-scale model of social reality (Craik, 1943) that grounds
possibilities for a robot-as-agent and how it will behave. For
instance, a MMwith a central functional component (i.e., a robot
is a weapon or a tool) could be a ground that reflects lower
perceived social agency.

Indeed, past work has suggested that both manipulated
narratives and ostensible MMs shape and order observations of
and interactions with robots, especially in ambiguous encounters
(Powers and Kiesler, 2006). Greater recollection of robot
characters from film (particular humanlike robots for which
sympathy was felt) was associated with lower anxiety toward
robots (Sundar et al., 2016). More generally, narrative framing of
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robots may enhance perceived usefulness and adoption intention
(Mara et al., 2013) and reduce uncanny responses (Mara and
Appel, 2015) independent of robot morphology (Rosenthal-von
der Pütten et al., 2017). Building on that work, the present study
seeks to consider the potential for characters andMMs to directly
influence interactions: RQ3: (How) are (a) character recall and
(b) mental models for robots associated with social judgments of
an actual robot?

METHODS

To address the posed research questions, an online survey was
employed, inclusive of a partial replication of Sundar et al.
(2016) design for elicitation of salient robot characters. An
approximately nationally representative sample of U.S. residents
(US Census Bureau, 2010) was recruited via Qualtrics sampling
service. Among all participants (N = 410) were 50.5% female,
48.8%male,0.7% non-binary, andM= 46 (SD= 16.93) years old.
They were 58.8%White/Caucasian, 15.1%Hispanic, 10.2% Black,
4.6% Asian, and 11.3% comprised other single or multiracial
identifications. Highest education completed included: 1.5% less
than high school, 12.9% high-school diploma or equivalent,
24.1% some college but no degree, 13.9% associate degree,
27.6% bachelor’s degree, 20% graduate degree. Geographically,
34.9% live in the southern region of the United States,
18.3% in the northern, 22.4% in the midwestern, and 24.4%
in the western. For annual household income, 17.1% made
<$25,000, 23.4% earned $25,000-$50,000, 18.8% earned $50,000-
$75,000, 13.2% $75,000-$100,000, and 27.5% earned $100,000
or more.

The survey took approximately 30min to complete, and
participants were paid by the sampling service for their
participation. During initial data review, cases were removed
when participants did not pass the audiovisual check, were
speeding (having completed the survey in less than half standard
deviation from the mean time), or were likely bots as signaled
by unintelligible, illogical, or data-mined open-ended responses.
Those removed cases were replaced with purposively sampled
cases to ensure sample representativeness.

After completing informed consent documentation, the
survey progressed through demographics capture for descriptives
and quota sampling followed by an audiovisual access check
to ensure participants could see and hear the video stimulus.
Next, participants were asked to give open responses to questions
eliciting their mental models for social robots. After that,
participants were asked to (by memory only) name robot
characters from different media forms (i.e., print, film/tv, and
interactive media). Finally, participants were asked to view a
video of an actual robot and then to respond to established scales
for social impressions of that robot, as described below. This
ordered procedure permits cautious inferencing of the ways that
salient media characters (from past exposures) may implicitly
influence unprimed explanations of what robots are that, in turn,
may serve as a ground for judgments of actual robots. Complete
instrumentation, data, and analysis documentation is available
via online supplements: https://osf.io/4npgh/.

Mental Model Elicitation and Analysis
Participants responded to three broad questions: What is a
robot? What does a robot look like? and How does a robot
work? Participants responded to the three questions with answers
ranging from 3 to 430 words in length (M = 57.49, SD = 47.55).
Cases were retained for analysis if participants answered at least
one of the three questions. Because MMs are proverbial black
boxes—the cognitive structures of interest exist only in people’s
minds and they are usually not comprehensively or accurately
accessible or expressible—these questions functioned as MM
elicitations. Specifically, in the production of verbal or written
language, a person takes internal knowledge and externalizes
it, translating the non-linear MM into a linear sentence that
can be understood by another (Rickheit and Sichelschmidt,
1999). In this translation, words in the sentences represent
knowledge tokens, and the grammar of the sentence signifies
the relationships among the words—and so among the tokens
(Johnson-Laird, 1981). Following, the structure of a MM may
be inferred by eliciting descriptions of a phenomenon and
identifying patterns in the words and relations among them
(Sowa, 1992).

Because MMs rely on a wide range of knowledge sources
and because each model can be vastly different from the next,
they are inherently “messy, fuzzy . . . ill-defined, and essentially
unbounded” and require a constraining the considered domain
(Sanford and Moxey, 1999, p. 60). To constrain participant’s
considerations of robots, the questions’ emphases on robots’
nature, appearance, and function were selected because they
reflect current understandings of individual differences in
human-robot interactions as a function of visual, behavioral,
and perceptual markers of ontological categorization (Kahn
et al., 2011). These data were aggregated for each participant as
representative of accessible portions of that person’s MM, and
then the response corpus for all participants was first analyzed
in aggregate and then by individual respondent. This analysis
was conducted using Leximancer: a semantic network analysis
(SNA) tool that conducts semantic extraction (induction of
concepts via constitutive keywords, the meanings of which are
inferred through co-occurrence with other words) followed by
relational extraction (coding of text segments as featuring the
concept and subsequent count of concept frequencies’ relative
co-occurrence; Smith and Humphreys, 2006). In other words, it
induces the meaning of specific words and higher-order concepts
by their context and then calculates the probability of finding
a second concept given the presence of the first. Leximancer
is an appropriate tool for this analysis because it facilitates
identification of both semantic and structural patterns in texts
(here, in elicited MM-indicative texts).

Robot Character Recall Validation
For character recall, participants were asked to name by memory
as many robot characters and their source titles as possible, up
to three characters each for print, film/tv, and interactive media
(randomly ordered). Where the name or the title could not be
recalled, participants were asked to provide a description or
synopsis. Recalled robot characters were validated by ensuring
that a character of that name or description was present in that
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title by comparison against Wikipedia articles, fan synopses, or
the media text itself (in that order, progressing as necessary
for confirmation). For descriptions or synopses, the information
given was used to make a similar validation to the extent possible.
When the character could not be validated, it was removed from
analysis; the potential for false invalidation due to incomplete,
vague, or insufficient descriptions is acknowledged as a limitation
of this study. Through this process, it became clear that some
participants named actual, manufactured robots (rather than
fictional characters) that they had seen depicted in different
media. Because answers indicated thatmost recalled actual robots
were experientially associated with media representations (e.g.,
“the ones in the Verizon commercial”), all actual robots were
retained as valid for inclusion in recall measures.

Actual Robot Stimulus
Participants were shown a video of a “real robot named Ray”
(RoboThespian by Engineered Arts, with the default model’s rigid
face and default male voice). The video is publicly available and
produced by the robot’s manufacturer (Engineered Arts, n.d.) and
was edited by the researcher to remove branding information.
Therein, the robot answers the question ‘Are you a real robot?’ by
describing the things it can do and asking viewers what they think
as to whether or not he is real (see supplements for the complete
video). A page timer prevented progressing in the survey until
after the video had played completely.

Measures
Mental Model Metrics

Each keyword was a node and co-occurrences among them
were ties. The strength of the tie is the number of co-
occurrences. Constellated keywords make up concepts, and
constellated concepts make up the larger network. Statistics can
then be calculated for the nodes (keywords/concepts), ties (co-
occurrences), and the network structure as a whole. Specific
measures are explained in relation to specific results in the
next section.

Recalled Characters

The number of all valid robots was summed for each participants’
total recall (M = 6.63, SD = 1.63, range 4–9). Medium-
specific counts were: screen, M = 2.10, SD = 1.07 (commonly
R2D2/C3PO, Terminator, WALL-E, Transformers); print, M =

0.61, SD = 0.91, (commonly Cyborg, C3PO); interactive, M
= 0.42, SD = 0.83 (commonly Mega Man, R2D2, WALL-E,
Terminator); actual, M = 0.36, SD = 0.80 (commonly Alexa,
Roomba, Siri). Following Sundar et al. (2016) original design,
each character was rated via single seven-point Likert-style items
for its perceived badness/goodness and degree of felt sympathy
for the character.

Social Evaluations of Actual Robot

Participant reactions to the actual robot video were captured
using established scales. Mental capacity was measured using
an early version (Malle, personal communication) of the
Robot Mental Capacities Scale (Malle, 2019), with 20 items
encompassing three dimensions: affective capacity (α = 0.96, M
= 2.42, SD = 1.56), social-moral capacity (α = 0.94, M = 3.06,

SD = 1.68), and reality interaction capacity (α = 0.70,M = 5.02,
SD = 1.48). Moral capacity was measured using the Perceived
Moral Agency Scale (Banks, 2018), with 10 items composing two
dimensions: moral capacity (α = 0.91, M = 3.11, SD = 1.72)
and programming dependency (α = 0.75,M = 5.81, SD = 1.38).
Trust was measured using the Multi-Dimensional Measure of
Trust (Ullman andMalle, 2018;Malle, 2019): reliability/capability
trust (α = 0.88, M = 4.98, SD = 1.28) and ethical/sincerity trust
(α = 0.92, M = 4.00, SD = 1.60). Willingness to engage with
the actual robot was evaluated via a hypothetical invitation to
collaborate with the robot on a project and a binary yes (accept)
or no (decline) response. All items were otherwise measured via
seven-point Likert-style scales.

RESULTS

To address the question of content and form of mental models
for robots, patterns were first identified in the aggregate corpus
of robot descriptions given that cultivated MMs are engaged
here as a cumulative social phenomenon. Then, individual-
level MM content was considered in relation to recalled robot
characters/ratings and trust outcomes. This is an appropriate
approach because it is highly unlikely that there can be some kind
of “canonical form” among individual MMs that would permit
clear comparisons across individuals (Woods, 1975, p. 16) such
that using the aggregate model as a benchmark is more valid than
comparing among individuals.

Content and Structure of the Aggregate
Model for Robot Knowledge (RQ1)
The semantic network analysis procedure using topical cluster
mapping (see supplements for a complete analysis narrative)
resulted in the induction of 25 keywords present in at least
5% of the data units (two-sentence blocks) across the corpus.
To determine the most appropriate network model for further
analysis, degrees of model granularity were explored: 0%
granularity treats all individual keywords as distinct concepts
and 100% granularity treats all keywords as comprising a
single concept. Through iterative consideration of data in 10%
granularity increases (see supplements for all iterations), the 40%
granularity model was selected as most interpretable in relation
to the research question and relevant literatures (Figure 1).
Interpretability is defined here as a balance of specificity (level
of detail toward comprehensive address of the research question)
and coherence (each concept’s keywords coalesce elegantly
around a central and easily discerned idea).

The six concepts (i.e., clusters of identified keywords) were
interpreted by comparing the induced keywords and concepts
against the specific word-use instances to consider the contextual
meaning of each keyword in relation to the other keywords
in the induced concept. The concept was then considered in
relation to extant literature for theoretical context and naming.
This process resulted in the collapsing of two concepts because
one was a subset of another through exemplification: Exemplars
of manufacturing robots and robotic vacuums were common
illustrations of robots principally focused on exemplifying ideas
about Performance. The resulting six broad concepts in mental
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FIGURE 1 | Aggregate semantic network map of robot nature, appearance, and function descriptions. Labeled network nodes are keywords identified by analysis

software; bubbles are concepts induced by the software and interpreted by the author. Circle sizes only indicate conceptual boundaries and are not indicative of

prevalence.

model content (RQ1a) and their constitutive keywords (in
parentheses) are:

1) Performance (n = 609 data units in the corpus, inclusive of
the integrated exemplar concepts): design for, fulfillment of,
or ability to execute tasks, especially those that are complex or
repetitive (tasks, perform, machine, used, capable, assembly,
complex, line, manufacturing, vacuum). Although some
highlighted performance in relation to talking or interacting
(in line with Breazeal et al., 2004), most performance-
related language highlighted task performance in a vague
sense characterized by autonomous and intelligent action, but

nearly always at the behest of humans (in line with Bryson,

2010).
2) Relational Ontology (n = 517): the intersection of non-

human status or traits and the mimicry of, displacement

of, association with, creation/design by, or control of, or

operation by humans (human [inclusive of person/people],

mechanical, device, artificial, physical). This complex concept
comprises the intersection of the kind of thing robots are in

relation to humans—and what they are not—encompassing
appearance, behaviors, relations, and influences. In some
cases, the sentiment distinguished humans and robots, some

likened them, and some expressed a tensioned combination
of similarity and dissimilarity (see Kahn et al., 2011).

3) Programming (n = 431): the coded inputs, informational
resources, operating framework, and functional/subjective
potentials, often according to the aims or imaginings
of human designers (programmed, functions, designed,
information). The presence of this component is in line with
definitions of robots as engineered machines (e.g., Lin et al.,
2011)—that they are made by someone or something and
the nature of this making has fundamental influence on what
robots do and how they do it. Often in tandemwith a program
as the ground for robot functioning, participants frequently
mentioned information as the input, resource, or output of
that functioning; information-focused functions are preferred
by some people as a way of designating robot-appropriate jobs
(Takayama et al., 2008).

4) Morphology (n =192): consisting of single or multiple
parts or materials comprising a variably anthropomorphic
form (arms, parts, take [the form of], metal). This MM
component often featured general reference to “parts”
(moving, interconnected, electrical, mechanical) or to specific
parts (wires, gears, motors, sensors) that are manipulated
in use or interconnected in construction. These descriptions

Frontiers in Robotics and AI | www.frontiersin.org 6 May 2020 | Volume 7 | Article 62

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Banks Robot Media Cultivation

were sometimes offered in tandem with (though sometimes
instead of) notes about their composition of metal or
plastic; mentioned forms ranged from single arm to an
anthropomorphic or zoomorphic body, as well as to function-
related morphologies (Yanco and Drury, 2004).

5) Computer (n = 141): containing, controlled by, or working
in tandem with computational technology (computer).
Although some participants described robots as being
computers, being like computers, or containing computers,
most referenced computers as controllers of the robots—as
something apart from but intimately linked to its functioning.
This may be interpreted as a form of perceived bicameralism
(cf. Jaynes, 1976) in which the mechanical (present in the
Morphology concept above) is the situated doer-of-things
while the computational is the thinker- or decider-of-things.

6) Commands (n = 40): directives received and followed,
usually delivered by or on behalf of human programmers
or users (commands). Further illustrative of the perceived
(or perhaps desired) centrality of humans to robot behavior,
participants described robots as operating in response to
commands received from a human or an ostensibly human-
designed computer. Response to directives was represented as
mandatory (“on command”) or elective, as coming in varied
modalities (voice, text, button-pushing), and as instigating
task performance. The appearance of commands as robot
MM components may suggest a valuation of (or at least a
defaulting to) human control over robots (see Gunkel, 2012).

In the course of this analysis, concepts were induced using
the weighted values of keywords (how often those words occur
within concepts compared to how often they occur elsewhere)
as a measure of the contribution of the word to the induced
concept (see Leximancer, 2005). However, in considering the
structure of this network model (RQ1b), the unweighted number
of links among concepts (the number of times that words
from each concept co-occur within a data unit) were used
because that metric considers rote co-occurrence (as a language-
structure characteristic) and not semantic content of participants’
language. The unweighted co-occurrence network was analyzed
using SocNetV v2.5 (an open-source network visualization tool;
SocNet, 2019). The resulting network model was analyzed for
node, tie, and overall network statistics. See supplements for
graph visualization and complete analysis outputs.

Regarding the overall network of 25 nodes and 260 edges
(linked a total of 2,870 times in the corpus), the global
clustering coefficient is the average of each node’s proportion
of actual links compared to possible links, indicating how
tightly-knit the network is (0 is completely unlinked and 1
is a completely linked network). The measure is interpreted
here as the extent to which the aggregate model is a collection
of cohering ideas overall (a higher value, such that it can be
said to be a model of something) vs. representing disparate
and only loosely connected ideas (a lower value, such that the
model is only a representation of multiple loosely collected
things). The global clustering coefficient was 0.899 indicating a
fairly tightly cohering keyword network since it approaches a
value of 1.

For individual keywords, node degree (the number of links
it has to other nodes) ranged from 1 to 699. Additionally, node
centrality statistics indicate how powerful nodes are within the
aggregate model. Here, these measures are used to discern how
impactful a keyword (representing a component of a MM) is in
relation to other keywords. Degree centrality is the simple sum of
ties a node has with other nodes, interpreted here as the tendency
for certain MM components to be more or less co-activated
with other components. The components tasks, programmed,
human, perform, and machine have the greatest degree centrality
(Table 1). Betweenness centrality is the tendency of a node to sit
on the shortest path between two other nodes, interpreted here
as the extent to which a keyword may be co-activated with other
pairs of keywords and linking them together in a MM. Only a
few keywords had any measure of betweenness centrality: tasks,
human, programmed, machine, and performed, suggesting those
are the concepts that tend to bind together other concepts in
participant language. Eigenvector centrality is a node’s degree
centrality proportional to the degree centrality of neighboring
nodes, here signaling that a MM component is frequently co-
activated with other components and/or is linked to keywords
that frequently co-activate with other components. In other
words, a high EC value (range 0–1) suggests a keyword represents
a directly and/or indirectly influential MM component. In the
robot MM network, physical, taking (form of), manufacturing,
designed, and device had the highest values, suggesting that those
components—though not as frequently mentioned—are most
often linked to the network’s most central keywords. Indeed, a
review of data units reveals that in relation to their most common
keyword link, each of those often serves as a modifier or modified
word: physical performance, taking human form, manufacturing
tasks, designed to complete tasks, and a mechanical device.

Regarding individual links between node pairs, tie strength is
the relative weight of the link between two nodes, evaluated here
in terms of the frequency of two nodes’ co-occurrence within
data units. Across the 260 edges, tie strength ranged from 1 to
121 (unconnected nodes were not considered in analysis), M
= 11.09, mode = 1. These values indicate that the majority of
keywords co-occur infrequently, while a small number of core
keywords are more frequently and more tightly bound together
in participants’ language.

Altogether, to address RQ1 for the aggregate model, these
metrics suggest that MMs for robots are best characterized
as constellating around a few core of components (tasks,
programmed, human, perform, machine) that are both frequently
accessed and connecting other components together in the
model. The relative infrequency and lower connectedness of
the 21 other components suggests that people’s MMs likely
vary a good deal from person to person outside of those
core components.

Robot Mental Model Content and
Character Recall/Evaluation (RQ2)
To explore individual differences in how salient media characters
may be associated with MMs for robots, the presence of
the discrete concepts in participants’ language-indicated MMs
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TABLE 1 | Semantic network node property statistics for aggregate corpus of descriptions for robot category, appearance, and function.

Keyword n Degree DC DC’ BC BC’ EC EC” Most Common Link

tasks 266 699 699 0.122 1,946.68 7.053 0.064 0.014 Perform (121)

programmed 326 661 661 0.115 1,045.52 3.778 0.070 0.015 Task (118)

human 344 607 607 0.106 1,103.30 3.997 0.067 0.014 Machine (88)

perform 170 546 546 0.095 165.10 0.598 0.096 0.021 Task (121)

machine 260 533 533 0.093 368.67 1.336 0.074 0.016 Human (88)

mechanical 143 333 333 0.058 0.00 0.020 0.108 0.023 Human (52)

functions 124 316 316 0.055 0.00 0.00 0.155 0.033 Programmed (58)

computer 141 251 251 0.044 0.00 0.00 0.216 0.047 Programmed (56)

device 87 230 230 0.040 0.00 0.00 0.249 0.054 Mechanical (41)

used 82 191 191 0.033 0.00 0.00 0.169 0.036 Programmed (20)

arms 66 141 141 0.025 0.00 0.00 0.203 0.044 Human (26)

artificial 62 140 140 0.024 0.00 0.00 0.190 0.041 Human (22)

designed 50 139 139 0.024 0.00 0.00 0.275 0.059 Task (28)

capable 41 121 121 0.021 0.00 0.00 0.182 0.039 Task/perform/machine (16)

assembly 35 111 111 0.019 0.00 0.00 0.207 0.045 Line (25)

complex 37 106 106 0.019 0.00 0.00 0.225 0.048 Machine (14)

line 27 88 88 0.015 0.00 0.00 0.188 0.040 Assembly (25)

parts 27 87 87 0.015 0.00 0.00 0.241 0.052 Programmed (11)

take 41 79 79 0.014 0.00 0.00 0.307 0.067 Human (13)

commands 40 67 67 0.012 0.00 0.00 0.148 0.032 Programmed (17)

physical 24 67 67 0.012 0.00 0.00 0.326 0.070 Perform (8)

manufacturing 25 63 63 0.011 0.00 0.00 0.288 0.062 Tasks (8)

metal 75 61 61 0.011 0.00 0.00 0.185 0.040 Human (14)

vacuum 32 59 59 0.010 0.00 0.00 0.221 0.048 Machine (8)

information 21 44 44 0.008 0.00 0.00 0.196 0.042 Programmed (8)

DC, degree centrality summed; DC’%, degree centrality standardized index [DC/(n-1)]; BC, betweenness centrality summed; BC’, betweenness centrality standardized index

[BC/((n-1)(n-2)/2)].; EC, eigenvector centrality; EC”, eigenvector centrality standardized index (EC/ΣEC). Top five standardized values for each property are presented in bold.

for robots was analyzed for associations with character recall
(RQ2a) and with goodness and sympathy evaluations of recalled
characters (RQ2b). To do so, each participant’s language was
dummy coded (0/1 = absence/presence) for each of the six
induced MM concepts identified above. A response was coded as
having the concept present when it contained any keyword (i.e.,
node in Figure 1) belonging to that concept, as identified in the
automatic semantic network analysis.

In participants’ MM induction language, 77.6% featured
Performance components, 79% included Relational Ontology,
71.5% included Programming, 41.2% included Morphology,
29.3% included Computer, and 9.5% included Commands.
Regressing the total number of robot characters recalled

upon MM components presence, there was no association,

R2 = 0.135, F(6, 42) = 1.092, p = 0.383 (see supplements for
complete outputs). To next consider whether MM components

may be associated with evaluations of robot characters—

independent of the number recalled—binary logistic regressions
(presence/absence of each MM concept upon character
evaluations) were conducted. This approach was taken because
goodness and sympathy ratings for named characters were
correlated (r = 0.607, p < 0.001). There were no significant
models linking mean character goodness and sympathy ratings

to the likelihood of indicating specific MM components
(Table 2).

Recall and Mental Model Influence on
Evaluations of in an Actual Robot (RQ3)
The final analysis attended to whether perceptions of perceived
moral agency of, perceived mental capacities of, trust in, and
willingness to engage with an actual robot may be predicted
by robot character recall (RQ3a) and/or MM content (RQ3b).
Because of a small to moderate correlations among the
dependent variables (see supplements for correlation table) these
associations were considered together via multivariate analyses.

Regressing the number of recalled robots upon the
aforementioned social evaluations of the actual robot, the
model was not significant, R2 = 0.083, F(8, 40) = 0.454, p =

0.880 (see supplements for complete regression table).
To explore a potential association between character

evaluations and actual-robot evaluations (both sets of which
exhibited correlations), a canonical correlation analysis was
performed. The overall model fit was significant (Wilk’s 3

= 0.915, F(16, 786) = 2.246, p = 0.003), explaining 77.5%
of variance shared between variable sets. There were latent
functions, only one of which significantly explained variance in
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TABLE 2 | Binary logistic regression for robot character evaluations and presence of mental model components in mental-model induction language.

Variable B S.E Wald df p Exp(B) CI for Exp(B)

Performance component: χ
2(2) = 1.174, p = 0.424, Nagelkerke R2

= 0.006, 77.7% correct classification

Goodness −0.076 0.124 0.372 1 0.542 0.927 0.726/1.183

Sympathy 0.138 0.104 1.739 1 0.187 1.148 0.935/1.409

Ontology component: χ
2(4) = 2.928, p = 0.231, Nagelkerke R2

= 0.011, 78.9% correct classification

Goodness −0.046 0.142 0.102 1 0.749 0.956 0.723/1.263

Sympathy −0.132 0.122 1.188 1 0.276 0.876 0.690/1.112

Programming component: χ
2(2) = 0.161, p = 0.923, Nagelkerke R2

= 0.001, 71.7% correct classification

Goodness −0.028 0.121 0.054 1 0.806 0.972 0.767/1.232

Sympathy −0.012 0.103 0.014 1 0.905 0.988 0.807/1.209

Morphology component: χ
2(2) = 1.349, p = 0.509, Nagelkerke R2

= 0.005, 58.6% correct classification

Goodness 0.108 0.110 0.960 1 0.327 1.114 0.898/1.381

Sympathy −0.102 0.093 1.180 1 0.277 0.903 0.725/1.085

Computer component: χ
2(2) = 4.130, p = 0.127, Nagelkerke R2

= 0.015, 71.0% correct classification

Goodness 0.108 0.125 0.742 1 0.389 1.114 0.872/1.423

Sympathy 0.097 0.105 0.854 1 0.355 1.102 0.897/1.354

Commands component: χ
2(2) = 0.711, p = 0.701, Nagelkerke R2

= 0.004, 90.3% correct classification

Goodness 0.146 0.177 0.678 1 0.410 1.157 0.818/1.637

Sympathy −0.093 0.142 0.422 1 0.516 0.912 0.689/1.205

TABLE 3 | Canonical solution for character evaluations in relation to actual robot

evaluations.

Variables Function 1

Coef. rs r2
s
(%)

Set 1: media character evaluations

Mean goodness 0.300 0.779 60.68

Mean sympathy 0.790 0.971 94.28

R2
c 0.07

Set 2: actual robot evaluations

Moral agency (PMA) −0.044 0.384 14.75

Dependency (PMA) 0.259 0.293 8.59

Mental capacity-affective 0.649 0.513 26.32

Mental capacity-social/moral −0.459 0.340 11.56

Mental capacity-reality interactive −0.148 0.150 2.25

Trust-ethical/sincerity 0.456 0.713 50.84

Trust-reliability/capability 0.359 0.662 43.82

Invitation acceptance 0.387 0.578 33.41

Coef., standardized canonical coefficients; rs, structure coefficient; = squared structure

coefficient. Structure coefficients greater than |0.45| are in bold.

the model (R2c = 0.07, p = 0.003). Only structure coefficients
≥ |0.45| were interpreted (per Sherry and Henson, 2005). The
canonical function indicated that (significantly, but weakly)
the more perceptibly good and the more sympathetically
recalled the robot characters, the more likely one is to perceive
the actual robot as having affective mental capacity, to feel
reliability/capability and ethical/sincerity trust, and to accept a
collaboration invitation (Table 3).

To evaluate the potential influence of MM components
on evaluations of an actual robot, presence of each of the

MM components (among which there were only a few small
correlations) were separately regressed upon the dependent
actual-robot evaluation variables. Only one of the six models
was statistically significant. The increased likelihood of a
programming component in one’s MM was positively associated
with seeing the actual robot as being able to independently
interact with its environment and negatively associated with
perceptions of affective mind (Table 4).

DISCUSSION

The present study’s findings indicate that aggregate mental
models for robots consisted of a few key concepts (Performance,
Relational Ontology, Programming, Morphology, Computer, and
Command) and a few core keywords (tasks, programming,
humans, performance, machine); individual MMs tended to
tap into a small number of these core components, beyond
which there was a good deal of individual difference (RQ1).
There were no links between recalled robot characters (in either
quantity or evaluations) and MMs for actual robots (RQ2).
There was no association between recall quantity and evaluations
of actual robots. However, findings suggest that character
evaluations, holistically, may prompt differential responses to
actual robots: the more sympathy one has for perceptually
good robot characters experienced recalled from media, the
more likely one is to engage in future collaborations with an
actual robot, to trust it, and to perceive it has having a mind
(RQ3a). Evaluations of actual robots may also be influenced
by MM components: holding the notion of “programming”
in one’s MM was positively associated with reality-interaction
mind perception and negatively associated with affective mind
perception (RQ3b).
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TABLE 4 | Regression results for evaluation of actual robot in relation to the presence of each possible mental model component.

Variable B S.E Wald df p Exp(B)

Performance component: χ
2(8) = 12.991, p = 0.112, Nagelkerke R2

= 0.067, 77.1% correct

Moral capacity −0.009 0.127 0.005 1 0.946 0.991

Dependency −0.046 0.116 0.154 1 0.695 0.955

Affective mind −0.129 0.133 0.939 1 0.332 0.879

Social/moral mind −0.113 0.166 0.464 1 0.496 0.893

Reality-interaction mind 0.218 0.112 3.816 1 0.051 1.243

Capacity/reliability trust 0.048 0.143 0.115 1 0.735 1.050

Invitation acceptance −0.121 0.132 0.845 1 0.358 0.886

Ontology component: χ
2(8) = 6.450, p = 0.597, Nagelkerke R2

= 0.018, 79.0% correct

Moral capacity −0.098 0.127 0.598 1 0.439 0.906

Dependency −0.109 0.122 0.806 1 0.369 0.897

Affective mind −0.162 0.136 1.419 1 0.234 0.850

Social/moral mind 0.073 0.166 0.192 1 0.661 1.075

Reality-interaction mind 0.017 0.112 0.024 1 0.876 1.018

Capacity/reliability trust −0.023 0.141 0.026 1 0.871 0.977

Collaboration accept 0.044 0.129 0.116 1 0.733 1.045

Programming component: χ
2(8) = 26.386, p = 0.001, Nagelkerke R2

= 0.068, 71.5% correct

Moral capacity −0.164 0.118 1.936 1 0.164 0.848

Dependency 0.008 0.107 0.006 1 0.938 1.008

Affective mind –0.254 0.130 3.852 1 0.050 0.775

Social/moral mind 0.089 0.158 0.319 1 0.572 1.094

Reality-interaction mind 0.205 0.102 4.062 1 0.044 1.228

Capacity/reliability trust 0.027 0.128 0.043 1 0.836 1.027

Collaboration accept 0.109 0.122 0.801 1 0.371 1.115

Morphology component: χ
2(8) = 5.217, p = 0.734, Nagelkerke R2

= 0.011, 58.0% correct

Moral capacity 0.069 0.105 0.435 1 0.510 1.071

Dependency −0.017 0.097 0.031 1 0.860 0.983

Affective mind −0.139 0.115 1.462 1 0.227 0.870

Social/moral mind 0.037 0.134 0.075 1 0.784 1.037

Reality-interaction mind 0.005 0.091 0.003 1 0.958 1.005

Capacity/reliability trust −0.114 0.114 1.010 1 0.315 0.892

Collaboration accept 0.007 0.104 0.005 1 0.946 1.007

Computer component: χ
2(8) = 9.934, p = 0.270, Nagelkerke R2

= 0.041, 70.5% correct

Moral capacity −0.286 0.119 5.797 1 0.016 0.751

Dependency 0.174 0.111 2.464 1 0.117 1.191

Affective mind −0.060 0.125 0.228 1 0.633 0.942

Social/moral mind 0.250 0.145 2.986 1 0.084 1.284

Reality-interaction mind −0.062 0.099 0.392 1 0.531 0.940

Capacity/reliability trust −0.045 0.124 0.131 1 0.717 0.956

Collaboration accept 0.144 0.111 1.666 1 0.197 1.155

Commands component: χ
2(8) = 4.824, p = 0.776, Nagelkerke R2

= 0.045, 90.5% correct

Moral capacity 0.312 0.163 3.648 1 0.056 1.366

Dependency −0.089 0.166 0.290 1 0.590 0.914

Affective mind −0.332 0.205 2.613 1 0.106 0.718

Social/moral mind −0.226 0.219 1.067 1 0.302 0.797

Reality-interaction mind −0.019 0.147 0.017 1 0.897 0.981

Capacity/reliability trust 0.107 0.192 0.312 1 0.576 1.113

Collaboration accept 0.043 0.167 0.067 1 0.796 1.044

Significant associations are presented in bold.
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Mental Models for Robots:
Narrow Plus Nuance
This study’s findings indicate that—at the aggregate level—
collective ideas about robots as a class of agent are relatively
simple, relying on a small number of higher-order concepts.
Individual MMs more or less take up these concepts, beyond
which there appears to be a good deal of difference as people draw
from more nuanced characterizations. Broadly these findings
align with work suggesting that robots’ discrete physicals features
(Powers and Kiesler, 2006) and task-related expectations (Kiesler,
2005) are important MM components, here as embedded
within the higher-order Morphology and Performance concepts.
Additionally, extant suggestions of humanlikeness (Kiesler and
Goetz, 2002) as core to MMs were supported within the higher-
order consideration of robots’ Relational Ontology as functional,
social, and embodied relations with humans. Components of
Programming, Computer, and Command align broadly with those
supported by some veins of the explainable-AI movement in
which functional accountability of AI and associated robots
should be driven by transparency in those technologies’ inner
workings (Wachter et al., 2017)—acknowledging a distinction
between knowing that robots have these components and
understanding how those components actually work. It should
be noted that the presence of these factors—and not others—in
the present analysis is not to say that those factors do not exist
in people’s MMs; indeed, aggregate mental models are likely to
vary by population. It is merely to say that, especially for models-
in-application in the perception of a particular robot (where
personality characteristics may be important; Kiesler and Goetz,
2002), they did not appear to exist in cultivated, prototypical,
societal understandings of robot as an ontological class.

This coalescing around a small set of concepts for what
robots are and how they exist in the world is notable
in that, from a Cultivation Theory perspective, culture is
characterized as the knowledge required to interpret and predict
the activities of a community (Goodenough, 1957). That the
core, cultural knowledge comprising the ostensible “cultural
consensus” (Roskos-Ewoldesen et al., 2004, p. 358) for robots
relies on a simple set of concepts (principally their task-
performative capacities, how they compare with or function
in relation to humans, and their reliance on programming)
has implications for how collective understandings may foster
views of social robots as tools, as similar to but distinct from
humans, and as designed actors. From some positions, these
are useful paradigms for understanding robots as they preserve
the distinctions from and primacy of humans (cf. Bryson, 2010,
2018). From other positions, these understandings could be seen
as problematic since technological advances may increasingly
engender robot agencies and, as a result, a duty to consider
the obligation to afford them rights as authentic persons (cf.
Gunkel, 2018). In particular, it is notable that holding in one’s
MM a Programming component was linked to increased reality-
interactive mind perception (i.e., that it can manifestly function
in the world—a requirement for service) and reduced affective
mind perception (i.e., that it can think and feel; Malle, 2019).
Practically, when individuals believe an agent’s traits are fixed (as

by rote programming or inherent personality) those individuals
more strongly rely on trait evaluations to predict behavior
(Chiu et al., 1991). Considering robot interaction potentials
only according to assumed programming, then, may result
in a reduced propensity to account for emergent, adaptive,
or unprogrammed behaviors. Ethically, that combination of
perceived high capacity to function and low capacity to affectively
experience the world has historically been grounds for denial of
personhood, as attributions of doing and feeling are consequential
for the assignment of moral rights and acknowledgment of
meaningful action (Waytz et al., 2010). That potential for
appropriate or problematic objectification should be further
explored as people increasingly use MM for robots to order their
experiences of actual robots (Powers and Kiesler, 2006).

Beyond those ethics of ontological-class understandings,
variations beyond a few core MM components hold implications
for how human-robot relations should be explored in future
research. Given the narrow set of mainstreamed ideas manifested
in robot MMs, it may be in the nuances of these cognitive
frameworks that propensities to accept or reject robots in varied
roles (intimate companion, friendly acquaintance, co-worker,
servant) may emerge. This is implicated in the finding that
both trust and willingness to engage the actual robot were not
associated MM components; as MMs broadly are understood
to drive much of human meaning-making and so behavior
(Miller and Johnson-Laird, 1976), it could be argued that
robot trust and acceptance must be associated with some MM
components outside of the higher-order concepts identified in
the aggregate model.

Media Character Evaluations Engender
Actual Robot Heuristics
An alternative explanation for the non-association between MM
content and evaluations of the actual robot may come in the
potential for media-character evaluations to engender certain
heuristics for considerations of actual robots. The link between
sympathy felt for good robot characters and trust in, perceived
mental capacity of, and willingness to engage with the actual
robot—independent of MM content—may be interpreted as
a combination of representativeness heuristics (Tversky and
Kahneman, 1974) and pareidolia (seeing ordered patterns [often
human faces] in random or unrelated information; Liu et al.,
2014). That is, consideration of the plights of robot characters
in their respective narratives may serve as social simulations
(Mar and Oatley, 2008) engendering sympathy; in the absence
of direct exposure to robots, those characters are engaged as
exemplars for all robots and so the sympathy for characters
manifests as a sympathetic heuristic for actual robots. Said
another way, media representations may foster non-conscious
affective orientations toward robots that are independent of
conscious understandings of them. This interpretation aligns
with dual-process approaches to human-robot interaction (e.g.,
Lobato et al., 2013) in which people have an automatic and
mindless reaction (Type 1 processing) to machine delivery of
social signals followed by a delayed and conscious evaluation
(Type 2 processing), as has been exhibited in robot mind

Frontiers in Robotics and AI | www.frontiersin.org 11 May 2020 | Volume 7 | Article 62

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Banks Robot Media Cultivation

perception (Banks, 2019) and suggested for various other forms
of social cognition (Wiltshire et al., 2015). In short, it may be that
people develop a sense of what a robot is that may or may not line
up with their knowledge of what a robot is (Airenti, 2018), and
that sense may be primed for high accessibility in evaluations of
actual robots (see Roskos-Ewoldsen et al., 2009).

The present findings have mixed alignment to those from
Sundar and colleagues (2016), the study on which the present
investigation was based. In that study of older adults’ recall and
robot attitudes, higher character recall was associated with lower
anxiety toward robots and greater felt sympathy toward recalled
robots was related to more positive attitudes toward robots. In
the present study, recall volume had no association with any
actual-robot evaluation metric, but there was alignment in the
link between character sympathy and positive evaluations of and
intention toward the actual robot. That recall volume effects
were not seen here could be a matter of sampling differences
and media formats considered: the original study focused only
among older adults and only on film characters, while this
investigation considered an age-representative sample from the
U.S. and considered multiple media types. It could be that
age is associated with temporal trends in media representations
of technology or that media format carries similar norms for
representations of robots, or more recent general availability
and visibility of machine agents such as voice agents and robot
vacuums. For instance, in many videogames, robots function as
combat companions (as with Rush in Mega Man, Claptrap in
Borderlands, andWheatley in Portal 2) while contemporary films
often portray robots as independent protagonists or antagonists.
Given potential for the realism present in many films and for
CGI to foster greater accessibility of media-character exemplars
(Busselle, 2001), these potential effects should be teased out in
future investigations.

The alignment in findings regarding character sympathy
and positive evaluations of robots hold implications for
fostering potential acceptance or rejection of robots. Specifically,
improving social integrations through trust and agency
acknowledgment—as is important in human-machine teaming
scenarios (de Visser et al., 2018)—may be facilitated through
fictional representations that foster sympathetic responses.
As primitive human capacities, sympathy toward another
can be fostered in media through first-person narration,
representation of a character’s internal states, and the imbuing
of humanlike traits (see Keen, 2006). Indeed, the characters
most commonly assigned the highest sympathy ratings are those
whose narratives often account moral, emotional, or otherwise
personal journeys: Optimus Prime, WALL-E, R2D2, C3PO,
Baymax, Sunny, Terminator, Robby, Johnny5, Data, Ultron,
Bumblebee, Claptrap, and Iron Giant. The formulation of
sympathetic orientations may foster rules-of-thumb for thinking
about robots as a class of agents, which in turn may drive
interpretations of their behavior (Banks, 2019).

Limitations and Future Research
As an online survey, this study is subject to the usual suspects in
empirical research limitations: self-report reliance on experience
accessibility, potential demand effects, and non-response. There

is also the possibility that participants may have looked up
character names rather than engaging in pure recall, although
the frequency with which participants did not name a full
suite of nine characters suggests this is not the case. Further,
although there is inferential time order, there is not manifest
time-order that supports a definitive interpretation of the causal
links between media consumption, MM content, and evaluations
of robots. Because a single robot was used to evoke post-recall
evaluations, generalizability of findings to other robotic agents
is limited. Future research should seek to experimentally or
observationally evaluate this study’s proposed causal linkages and
the applicability of findings to other robots.

Additionally, the design of this study limits the scope of
claims that may be made regarding the influence of media
characters. Participants were asked to recall them holistically
and independent of particular events, since that is how we may
reflect on or draw from media experiences. However, because
MMs may evolve through the indexing of specific narrative
events (cataloging temporal, spatial, casual, motivational, and
agentic components; Roskos-Ewoldesen et al., 2004), future
research should consider whether/how specific kinds of narrated
actions and contexts may contribute to evolving robot MMs.
For instance, it may be that what is most salient in holistic
recall are sympathy-invoking events (explaining the influence
of character sympathy in the present findings) or that popular
discourse-consistent concepts are those that are most encoded
and reinforced (perhaps explaining the lack of links between
recalled characters with relatively complex personalities and
fairly simplistic and mechanistic MM components).

Although the non-alignment between media character recall
and MM content may tempt a rejection of Cultivation Theory
premises in the case of robots, it is important to note that this
study focuses on recall (i.e., salient and accessible characters)
rather than on consumption volume. Although recall was an
appropriate first step to evaluating potentials for cultivation
effects, future research should investigate links between robot-
representation consumption volume and variability in relation
to MM components, as well as whether and how consumption
and cognitive frameworks may evolve over time and relative to
societal norms. Given the possibility that MMs for robots may
emerge from media and from other sources (e.g., experience,
conversation, advertising), future research should also explore
intersections of media and other sources in relation to popular
understandings of these social technologies.

CONCLUSION

This study’s findings suggest that mental models for robots
constellate around a few core concepts, but these models have no
association with recalled robot media characters; holding notions
of “programming” in one’s MM content may facilitate simplistic
but (contemporarily) factually correct thinking about robots
as an ontological agent class, while sympathetic orientations
toward robot media characters may function as a heuristic for
robots that leads to trust, mind perception, and collaboration
intent. Findings are interpreted to suggest that characters
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engendering sympathetic responses—from Optimus Prime to
WALL-E and R2D2 to Sunny—may be a vehicle for facilitating
social integration of robots, while fostering understandings of
robots as programmed systems may inhibit that integration
via reduced consideration of them as affective agents. Media
representations of robots likely contribute to people’s internalized
models for those technologies such that HRI scholarship and
robot development should consider not only how cues and
dynamics of live interactions may influence relational processes
and effects, but also the influence of anteceding cognitive
frameworks that people bring into those interactions. Those
understandings and heuristics function as ground against which
immediate interactions are considered.
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