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Accurate prediction 
of mega‑electron‑volt electron 
beam properties from UED using 
machine learning
Zhe Zhang1, Xi Yang2*, Xiaobiao Huang3, Junjie Li4, Timur Shaftan2, Victor Smaluk2, 
Minghao Song1, Weishi Wan5, Lijun Wu4 & Yimei Zhu4

To harness the full potential of the ultrafast electron diffraction (UED) and microscopy (UEM), we 
must know accurately the electron beam properties, such as emittance, energy spread, spatial‑
pointing jitter, and shot‑to‑shot energy fluctuation. Owing to the inherent fluctuations in UED/
UEM instruments, obtaining such detailed knowledge requires real‑time characterization of the 
beam properties for each electron bunch. While diagnostics of these properties exist, they are often 
invasive, and many of them cannot operate at a high repetition rate. Here, we present a technique to 
overcome such limitations. Employing a machine learning (ML) strategy, we can accurately predict 
electron beam properties for every shot using only parameters that are easily recorded at high 
repetition rate by the detector while the experiments are ongoing, by training a model on a small set 
of fully diagnosed bunches. Applying ML as real‑time noninvasive diagnostics could enable some new 
capabilities, e.g., online optimization of the long‑term stability and fine single‑shot quality of the 
electron beam, filtering the events and making online corrections of the data for time‑resolved UED, 
otherwise impossible. This opens the possibility of fully realizing the potential of high repetition rate 
UED and UEM for life science and condensed matter physics applications.

Mega-electron-volt (MeV) UED and UEM provide a unique opportunity of simultaneously high temporal and 
spatial resolution for time-resolved observations and measurements in physics, chemistry, and  biology1–12. Exam-
ples include 3D-imaging thick biological samples such as cells in their native states and real-time visualizing 
structural dynamics in real space and in nanometer scales, which allows direct probing of charge-spin–lattice 
interactions to study the role of symmetry, topology, dimensionality, and correlations that control the exotic 
properties of quantum  materials13,14. By employing an accelerator-based radiofrequency (RF) photoinjector as the 
MeV electron source, UED/UEM takes advantage of the strong interaction between electrons and matter while 
mitigating the space charge problem. To meet the long-standing scientific challenge of real-space imaging with 
a high spatiotemporal resolution of tens of nm × ps, packing a sufficient number of MeV electrons in the beam 
for time-resolved single-shot measurements in the presence of space charge is the key to success. Furthermore, 
due to the hundreds-times shorter wavelength compared to X-rays, electrons allow access to high scattering 
vectors in momentum space, so UED/UEM can potentially resolve much finer structural details. This is a big 
step towards a future possibility to see how protein–protein and protein-cell interact and to make molecular 
movies of chemical reactions. Together with XFEL these ultrafast probes will provide a more complete picture 
in groundbreaking studies of all kinds of complex dynamic processes in  nature5.

Large energy spread and shot-to-shot spatial-pointing and energy jitters of the photocathode-based electron 
source are on the top of the list of technical challenges impeding MeV UED and UEM to reach their full potential 
as important tools in ultrafast science and technology. For example, numerical simulations carried out with the 
GPT  code15 taking the stochastic-scattering and space-charge effects into full consideration show a significant 
increase in the energy spread of electron beam, from 1.5× 10−3 to 2.0× 10−2 when the beam charge increases 
from 1 to 16 pC. In the single-shot mode, the beam energy spread and normalized angular divergence are the 
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main factors determining the diffraction peak  width10. In the accumulation mode, the shot-to-shot energy 
fluctuation and spatial-pointing jitter could significantly increase the effective energy spread, which is the con-
volution of the single-shot energy spread and shot-to-shot energy jitter, and effective angular divergence, which 
is the convolution of the single-shot angular divergence and shot-to-shot spatial pointing jitter. A possible way 
around such fluctuations is to perform the full characterization of each electron bunch and use the real-time 
information to stabilize the machine and to retain only the events satisfying certain properties of the electron 
bunch. Moreover, by sorting the events and making online corrections of the data based on those characteriza-
tions, the jitter can be even utilized as an effective scan of the beam energy, energy spread, angular divergence, 
or spatial  pointing16–20. The real-time nondestructive measurements of the energy spread and angular divergence 
could open the possibility of online optimization of the electron bunch at the sample, with the increased beam 
charge. This optimization could be crucial for the future development of a real single-shot time-resolved UED/
UEM  instrument21,22.

We have developed a diagnostic method based on Bragg Diffraction (BD). This method allows us to optimize 
the beam properties including energy spread, angular divergence, shot-to-shot pulse fluctuation and jitter, while 
the experiments are  ongoing19,20. However, applying the BD diagnostic in real time is currently impossible for 
every electron pulse because the noisy background and instrument instability frequently overload the data stream 
and demand more complex numerical algorithms for the data analysis. In this paper, we propose ML as a general 
technique to overcome this limitation. Similar approaches have been successfully realized for a few scientific 
 applications23–28. We demonstrate that ML can be applied at any UED/UEM facility to obtain the full electron 
bunch information with high fidelity on every shot even at the high repetition rate. Employing ML as a real-time 
noninvasive diagnostic could enable new features and capabilities, which are impossible for the present UED 
instruments. As an example, by adding a second set of the sample and detector pair downstream of the UED 
detector, those non-interacted electrons, originally being sent to the beam dump, will be diffracted to form a 
second BD pattern, as the input to the BD-based ML model. The electron beam properties predicted by the ML 
model could potentially be applied to automate the setup of the UED instrument and to perform the real-time 
data correction during the experiment. It is far beyond a diagnostic method of accelerators.

Using the data from simulation as a proof-of-principle, we show that much of the information including 
the energy, energy spread, spatial pointing and angular divergence of the electron bunches, which is usually 
extracted from complex invasive diagnostics such as dipole spectrometer and quadrupole based emittance  scan29, 
is strongly correlated to the BD patterns recorded by the  detector20,21. While these correlations are driven by phys-
ical processes, nevertheless performing accurate direct modeling of every experimental aspect in the machines as 
jittering as the UED/UEM is currently time-consuming and impossible in real  time20,21. As an alternative, we use 
generic linear, quadratic and more complex but well-known ML  models30, such as convolutional neural networks 
(CNN)31,32 or support vector  regression33 to describe the non-trivial hidden correlations and make predictions 
of the fluctuations in the variables using the BD patterns as input. Those variables only can be measured by the 
complex destructive diagnostics before. We demonstrate the horizontal (x) and vertical (y) spatial pointing, x and 
y angular divergence, energy and energy spread prediction with the generalization errors around 0.01 regarding 
the normalized training variables. Furthermore, in the experiment at the BNL ATF, we show that similar predict-
ability of x and y spatial pointing and energy jitters can be achieved with the RMS error of 0.11 μrad, 0.12 μrad, 
and 3.44 ×10−5 , respectively, only using a small set (several thousand) of the BD patterns. This approach can be 
potentially applied at UED/UEM with a high repetition rate to provide accurate knowledge of complex electron 
bunches at the full repetition rate in real-time, as well as to lessen the load on the data stream requirement.

Results
Simulating BD patterns. We have completed the start-to-end simulation. An electron bunch emitted 
from the photocathode RF gun has been tracked through the UED beamline to the sample via the GPT  code15. 
Afterwards, the electron diffraction is dynamically calculated using our own computer code, named electron dif-
fraction patterns (EDP), for a single crystal. The code is based on the Bloch wave method, which takes dynamical 
effects in electron diffraction into a full consideration and has been successfully used for quantitatively deter-
mining crystal structure and charge distributions of  crystals34–36.

The interface between the GPT and EDP simulation codes implemented in our early studies will be applied 
in calculating the electron diffraction  patterns21. In the GPT code, each electron is defined as a particle, while a 
macroparticle represents a collection of electrons with the same properties, e.g. the coordinate in 6D phase space. 
The number of electrons in each macroparticle can be different. It is several thousand in our case. An electron 
beam can be therefore considered as a collection of macroparticles. With the macroparticle concept, a seamless 
transition between the GPT particle tracking from the gun to the sample and the EDP simulation of a wave-like 
electron being diffracted by sample, can be established. The electron beam incoming to the sample is represented 
by a collection of macroparticles in GPT  simulation15,36. Each macroparticle has the coordinate nmacroi , where 
i = 1, 2 to N, and N is the total number of macroparticles in the beam. N is equal to two thousand in our simula-

tion. The beam charge is determined as C =

N
∑

i=1

ci =

N
∑

i=1

nmacroi · e , where e is the charge of an electron. The 

reflection intensities are calculated based on the Bloch wave method for each individual  macroparticle21,34–36 and 
the reflection intensities are scaled by the charge (number of electrons) of each macroparticle. The diffraction 
pattern is obtained by summation of reflection intensities from all macroparticles.

ML with simulated BD patterns. A complete set of six training variables. To turn the ML model into a 
real-time non-destructive diagnostic tool, the choice of the training variables becomes critically important. We 
must choose the training variables such that they are not only predictable by the ML model with high accuracy 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13890  | https://doi.org/10.1038/s41598-021-93341-2

www.nature.com/scientificreports/

but also easily projectable to the electron beam properties. This requires that the BD pattern as input to the ML 
model must contain adequate information of the desired electron beam properties. Since the spatial pointing 
(θxc and θyc), angular divergence (∆θx and ∆θy), energy (E) and energy spread (∆E/E) of the electron beam are 
intrinsically correlated to the BD peak widths and positions, these variables are ideal for the ML, based on these 
selection criteria. Then we performed the simulations of the BD patterns on a  SrTiO3 single crystal sample using 
the EDP code. GPT simulation from the gun to the sample generates a realistic macroparticle distribution that 
contains the electron bunch energy, energy spread, angular divergence, and spatial pointing. The projection of 
the electron bunch properties to the training variables is analytically described by a linear function, as shown 
in Table 1. Using the macroparticle distribution as the input to the EDP simulation, the diffraction patterns are 
calculated as ‘tif ’ format image  files34–36. The diffraction intensity depends on the training variables θxc, ∆θx, θyc, 
∆θy, ∆E/E, and E, as well as the information of the sample (e.g., thickness).

To generate the training dataset, those six parameters are varied as the input to the EDP simulation while 
all other parameters, e.g., the illumination area and the sample thickness, are fixed. The ranges of the varia-
tions are determined by the experimental setup of the UED facility at the BNL  ATF19,20, as shown in Table 1. 
Special attention should be paid when we talk about the divergence in the training variables as well as in the 
EDP simulation, it means �θx, y ; however, when we speak about the divergence induced BD peak broadening, 
it specifically indicates the normalized divergence �θx, y/θx, y . Here θx, y∗ is the BD angle of a particular BD 
peak in x or y direction, determined by the Miller index of the sample and the beam energy, usually in the range 
of sub-mrad to a few mrad.

We aim to build an ML model as the real-time UED/UEM diagnostic method. The ML model could become 
a virtual diagnostic tool of the electron bunch properties at the sample in real-time with the BD pattern on the 
detector as the input. A set of ten thousand images (simulated dataset #1) with the size of 256 × 256 pixels are 
generated based on the initial population set by the Latin hypercube  sampling37. The Latin hypercube sampling 
method provides an efficient coverage of the parameter space with the maximum randomness and the highest 
density of the population. The labels of those images are normalized to the range of zero to one for the purpose 
of standardizing the training process. Since CNN is quite effective in the pattern recognition, it becomes the ideal 
ML model with the advantage of being robust and highly efficient in handling the sophisticated noisy background 
in the UED experiments. This statement can be justified by applying a similar ML method to the experimental 
dataset (described later in the manuscript).

Examples of the input to the ML model, six BD patterns with the index of 4, 5, 11, 13, 15 and 16 in the simu-
lated dataset are shown as Fig. 1a–f with the corresponding training variables listed as the inserts.

An ML model can be considered as a fitting function with the required complexities for reproducing the 
behavior of the experimental system. In our case, the experimental data are a series of the BD patterns recorded 
by the detector when the electron beam properties (spatial pointing, angular divergence, energy, and energy 
spread) are varied. Our goal is to find a fitting function that can map every BD pattern to its underlying electron 
beam properties. Since those BD patterns are in a high-dimensional space (65536-D), the fitting function must 
have enough degrees of freedom to account for the complexities of the correlations. Therefore, we choose a neural 
network (NN) based ML model in this study. The NN  model38 typically consists of multiple layers of nodes, and 
the nodes between adjacent layers are connected through weighted non-linear functions, which are referred to 
as the activation functions. The weights in the NN model are determined by fitting the existing labeled data (in 
our case, the labels are the underlying electron beam properties that correspond to the BD patterns). This is the 
model training process. Typically, the existing data are divided into three subsets: the training set, the validation 
set, and the test set. The training and validation sets are used to fit the model and to prevent the model from 
overfitting, while the test set is used to check the accuracy of the trained model.

The BD patterns are split into the three subsets with a ratio of 0.7:0.15:0.15. We choose a LeNet-style neural 
network  architecture39 with a linear output activation function to meet the continuous output variable require-
ment, the actual network structure is schematically shown in Fig. 2. After a comprehensive training hyper-
parameter tuning, including the image cropping size and the cutoff radius, with the help of the early stopping 
 technique40 to reduce the training time and overfitting, the LeNet NN model can describe the non-trivial hidden 
correlations and make predictions of the fluctuations in the variables corresponding to the electron beam prop-
erties using the untrained BD patterns with a reasonably good agreement. The labels and the predictions of 200 

Table 1.  The training variables v1, v2, v3, v4, v5, and v6 with respect to electron properties, p1, p2, p3, p4, p5 
and p6, are listed, including the upper maximum and lower minimum limits for all parameters and the unit 
conversion between training variables to electron properties with their physical definitions. * When we speak 
about the divergence as the electron beam property, it means �θx, y ; when we talk about the peak broadening, 
the divergence should be converted to the normalized divergence ∆θx,y/θx,y.

Variable Min Max Unit Formula Description Variable in training Normalization

p1 0 2.13 ×  10−4 rad ∆θx* x-divergence v1 v1 = p1/2.13 ×  10−4

p2  − 1.73 ×  10−5 1.73 ×  10−5 rad θxc x-jitter v2 v2 = p2/3.46 ×  10−5 + 0.5

p3 0 2.13 ×  10−4 rad ∆θy* y-divergence v3 v3 = p3/2.13 ×  10−4

p4  − 1.73 ×  10−5 1.73 ×  10−5 rad θyc y-jitter v4 v4 = p4/3.46 ×  10−5 + 0.5

p5 0 0.0013 ∆E/E energy spread v5 v5 = p5/0.0013

p6 − 0.004 0.004 ∆Ec/Ec energy jitter v6 v6 = p6/0.008 + 0.5
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images from the test set are plotted in Fig. 3a–f, as the blue curves and orange crosses, respectively, and show 
reasonably good agreements except variable 5 (∆E/E). Also, their corresponding error distributions regarding the 
whole image set are shown on the right side of Fig. 3a–f. Training loss (blue curve) and validation loss (orange 
curve) are plotted for two different cases, six training variables (v1 to v6) trained together and only variable v6 
being trained, as Fig. 3g,h, respectively. It is clear to see that the generalization error of the prediction of variable 
5 is about 10 times larger than the errors of variables 1—4, and 2 times larger than the error of variable 6. The 
generalization error is consistent with the RMS error of the randomly picked test images.

However, training variable 5 corresponding to the beam energy spread is the most challenging parame-
ter to be trained with a predictable result. The initial training was unsuccessful because the BD peak widths 
in every image are dominated by the normalized angular divergence, not by the energy spread in the EDP 
simulation. The BD peak width is the convolution of the normalized angular divergence �θ/θ and the energy 
spread �E/E : 

√

(�θ/θ)
2
+ (�E/E)

2  . In the first simulated dataset, the normalized angular divergence of 

Figure 1.  Simulated BD patterns of  SrTiO3 single crystal along [001] direction with the index 4 (a), 5 (b), 11 
(c), 13 (d), 15 (e) and 16 (f), from left-to-right and top-to-bottom. The corresponding training variables are 
listed as the data array on the right side of a BD pattern. Each image has the size of 65,536 (= 256 × 256) pixels, 
with the angular resolution of 20 pixel/mrad in the EDP simulation. For each image, the x and y view angles are 
the same, ± 6.40 mrad. Miller indexes of selected Bragg peaks, ( ̄220 ) and (220), are labeled (yellow). The cutoff 
radius, shown as the white dashed circle in the middle of Fig. 1a, represents the hole in the middle of the mirror 
which is part of the detector system. The detector includes a phosphor screen and a downstream mirror with a 
hole in the middle. The hole allows the background noises generated by the core of the non-interacted electron 
beam and by the dark current to pass through the mirror to the beam dump.

Figure 2.  Schematic plot of the NN of the ML model including convolutional layer, pooling layer, and fully 
connected layer.
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Figure 3.  The training variables 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), and 6 (f) as input to generate the BD patterns are plotted as 
the blue curve while their corresponding predictions by the ML model are plotted as the orange crosses for the untrained 200 
images. Besides, the corresponding error distributions for the entire dataset of 10,000 images are plotted on the right side. The 
RMS errors for the untrained images and the entire dataset agree well. (g), (h): training loss (blue curve) and validation loss 
(orange curve) are plotted for two different cases, six training variables (v1 to v6) trained together and only variable v6 being 
trained, respectively. Notice the different x scaling for (g) and (h). The fluctuation of the loss curves for the variable v6 only is 
larger than the 6 variables due to the smoothing effect introduced by averaging the mean squared error (MSE) loss over all the 
variables in the 6-variable case.
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6.65× 10−2
≈ 2.13× 10−4

/3.2× 10−3 (the ratio of the angular divergence to the detector half view angle) is 
significantly larger than the energy spread of 1.3× 10−3 therefore, making the energy spread no longer detect-
able by the ML model.

Beam energy spread only. For the proof-of-principle purpose, we only vary the variable 5 in the EDP simula-
tion while keeping all other training variables fixed (named simulated dataset #2). To make the BD peak width 
dominated by the beam energy spread, we deliberately choose the maximum energy spread (2.0% RMS) for the 
high-charge UED experiments while keeping the x and y divergences within a few microradian in RMS. In the 
current UED at BNL, the angular divergence at the sample can be varied in a limited tuning range using a sole-
noid as the only knob. Assuming the geometrical emittance of the electron beam is  10–8 m rad, and the virtual 
image is 100 μm in diameter, the beam divergence at the sample can vary from 97 μrad to 677 μrad. Additional 
condenser lenses can be implemented together with an aperture to further reduce the angular divergence (see 
the details in “Discussion” section). By doing so, we generate the second set of 10,000 simulated BD patterns 
with the peak widths dominated by the energy spread. Also, there is a clear feature difference between the peak 
broadening induced by the angular divergence and the broadening induced by the energy spread. The energy 
spread causes the peak broadening in the radial direction, as shown in Fig. 4a–c; whereas the x and y angular 
divergences broaden the BD peak in the same direction with the beam divergence.

There is such a striking feature that reflects the correlation between the energy spread and BD peak broaden-
ing in the second dataset of simulated BD patterns, as one can see in Fig. 4a–c, dashed ellipses on each image. 
So, we can achieve similar predictability of the beam energy spread with the mean error of 0.002, as shown in 
Fig. 4d, which is converted to excellent accuracy of the energy spread prediction with an error of 9.2 ×  10–5.

To explore the ultimate predictability of the electron beam energy spread by an ML model, a new dataset 
#3 of 10,000 BD patterns have been generated, with the only difference of a four times smaller energy spread of 
5 ×  10–3 compared to the dataset #2. The training result is shown in Fig. 4e. As one expects, a similar precision 
with minor degradation has been achieved with the mean error of 0.0066 with respect to those randomly selected 
two hundred untrained images.

So far, we have successfully demonstrated for the two major sources that the angular divergence often con-
tributes the most significant part of the peak broadening compared to the energy spread. As an example, the 
angular divergence, Bragg angle with the first order of reflection, and energy spread are chosen to be 0.2 mrad, 
1.0 mrad and 0.01; the peak broadening due to the angular divergence and the energy spread are 95% and 5%, 
respectively. Making the prediction of energy spread with the agreement better than 10% has been proved to be 
quite a challenge not possible in the current ATF setup. This is evidenced by the simulated case #1. If we choose 
the Bragg angle with the third order of reflection, those peak broadenings become 87% and 13%, respectively. 
However, this requires some significant improvements to the detector system. Instead, to make the ML model 
with the required predictability of the energy spread, we propose a novel approach via experimentally creating 
a similar condition of the simulated cases #2 and #3, see details in “Discussion”.

ML with experimental BD patterns. We applied the ML to the diffraction patterns of the  MoTe2 sample 
taken at the BNL UED in 2020. To answer the elusive question, whether all the six training variables are suit-
able for the ML in the experimental case, we must decide which parameters can be trained effectively in the ML 
model with the required precision. From our past  experience20, the conventional data analysis only can provide 
variable 2, 4 and 6 with high fidelity; it is not possible for variable 1, 3 and 5. The reason is that the information 
of variable 1, 3, 5 and variable 2, 4, 6 are intrinsically correlated to the BD peak widths and positions, respectively. 
The peak position can be fitted with a high accuracy of  10–4 using the standard Gaussian  method20. However, it 
is difficult to achieve a similar  10–4 precision with respect to the fitted peak width, often worse than  10–3 in the 
UED experiments.

Furthermore, to differentiate the peak broadening due to the energy spread and angular divergence with a 
similar precision of  10–4, the diffraction pattern must contain the BD peaks higher than the first order of reflec-
tion as well as having an adequate resolution and reasonable signal to noise ratio (SNR) of the  detector20,21. This 
is not possible in the current UED facility at the BNL ATF, which is limited by the view angle and resolution of 
the detector. Only the BD peaks with the first order of reflection are available, as shown in Fig. 5a indicated by 
the white dashed square.

We only can obtain the data label of each image for variable 2, 4, 6 via the Gaussian  method20; therefore, the 
training must be limited to variable 2, 4, and 6 in the experimental case. The number of variables in the output 
layer of our ML model has been set to 3 instead of 6, to reflect this change. We achieve a similar predictability of x 
and y spatial pointing and energy jitters with the RMS error of 0.11 μrad, 0.12 μrad, and 3.44 ×10−5 , respectively, 
as showing in Fig. 5c–e. Training loss and validation loss will be shown in “Pre-processing BD patterns towards 
a compact ML model”. To make the high-order BD peaks visible with the required SNR, we must increase the 
range of view angles and improve the detector resolution.

ML as real‑time UED diagnostic tool. Since the sample needs to be changed very often for different 
experiments, it is important that by training an ML model on a small set of fully diagnosed electron bunches, we 
can accurately predict beam properties for every shot using only parameters that are recorded at the high repeti-
tion rate by the detector as the bonus while the experiments are ongoing. This could open the door to fully real-
izing the BD-based ML model as a real-time single-shot diagnostic tool widely applicable to different UED and 
UEM experiments. Whenever there is a sample replacement or a machine change, only several thousand BD pat-
terns are needed for retraining and adapting the ML model to the new condition, to meet a 0.01 generalization 
error threshold, as shown in Fig. 6. For the x and y spatial pointing (blue square and orange circle) and energy 
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(green triangle) jitters, only 3000 to 4000 images are needed for a predictable ML model with an accuracy better 
than 99%. It takes only about 20 min on a NVIDIA GeForce RTX 2080 GPU card in the experiment at the BNL 
ATF. With the accumulation of more data, taken at different electron beam properties and sample varieties, the 
model will continuously grow until it can cover most of the routine operations, therefore no need for retraining.

Pre‑processing BD patterns towards a compact ML model. To further reduce the training time, 
we explored the possibilities of using more compact BD patterns and a simpler ML model, with an acceptable 
trade-off on the prediction accuracy. Taking one experimental BD pattern shown in Fig. 7a as an example, useful 
information is carried mainly by the pixels within the ring. It would be a waste to employ a CNN that accepts the 
full 256 × 256 image as input. The number of informative pixels is approximately 38% of the total. If the image 

Figure 4.  Simulated BD patterns of  SrTiO3 single crystal along [001] direction of the dataset #2 with the RMS 
energy spread of 2 ×  10–2 have the index 4 (a), 8 (b) and 81 (c) from left-to-right. Their corresponding training 
variables are 0.00204, 0.55412 and 0.95690, respectively. With the unit conversion of 0.04584, the energy spread 
is labeled in each image. Here, variable 5 multiplied by the unit conversion equals to the energy spread. The 
image has a size of 256 × 256 pixels, with an angular resolution of 100 pix/mrad in the EDP simulation. For each 
image, the view angles are the same in x and y directions: ± 1.28 mrad. Miller indexes of selected Bragg peaks, 
( ̄110 ) and (110), are labeled (yellow). The dashed circle represents the hole of the mirror in the detector system. 
(d) The input data label is plotted as the blue curve while the corresponding prediction is plotted as the orange 
cross. The corresponding error distribution for the entire dataset of ten thousand images is plotted on the right 
side. (e) For the simulated dataset #3, with the RMS energy spread of 5 ×  10–3, the input data label is plotted as 
the blue curve while the corresponding prediction is plotted as the orange cross. Similarly, the corresponding 
error distribution for the entire dataset of ten thousand images is plotted on the right side. The RMS errors for 
the untrained images and the entire dataset agree extremely well. The neural network architecture used for these 
trainings is almost identical to the one shown in Fig. 2, with the only difference as the number of variables in the 
output layer.
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Figure 5.  An example of original experimental image (a). The white box indicates the selected area for the data 
analysis. The dashed circle represents the hole of the mirror in the detector system. Cropped image for the ML 
(b). Training variables 2 (c), 4 (d), and 6 (e) via the data analysis using the Gaussian method are plotted as the 
blue curve while their corresponding predictions as the result of the ML model are plotted as the orange crosses 
respectively for the untrained two hundred images. Besides, their corresponding error distributions for the 
entire dataset of ten thousand images are plotted on the right side. The RMS errors for the untrained images and 
the entire dataset agree extremely well.
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could be compressed in a way that only the pixels in the ring are kept, one can expect a significant reduction of 
the total number of the parameters of the model, speeding up the training and inference processes.

A polar coordinate transformation with resampling has been applied to extract the pixels in the ring into a 
rectangular image. The transformed input image of Fig. 7a is shown as Fig. 7b. By choosing a radial interval of 
[91, 127] pixel with 1 pixel tick and angular interval of [0, 360] degree with 1 degree tick, the size of the input 
image has been reduced by 80%, while the number of the model parameters reduced by 70%. With the compact 
input images and the model structure, the training time was shortened to around 8 min. Given the fact that for 
the original dataset the training takes around 20 min to converge, the time reduction is about 60%.

The price of shortening the training time is the degradation of the prediction accuracy. As Figs. 7c,d, and 8a,c 
indicate, the predicted RMS error for x jitter, y jitter and energy jitter of the polar ML model are 0.0106, 0.0074 
and 0.0112, respectively, which are almost twice as large compared to the ones of the original ML model for the 
experimental data, as shown in Fig. 5c–e. This degradation of performance is expected because the spatial struc-
ture of the spots in the ring region was lost during the polar transformation, while such information is crucial 
for the extraction of the spatial pointing and energy jitter. The compact CNN model must recover this spatial 
relationship to make more accurate predictions. While in practice, the depth of the neural network is usually not 
going to be set deep enough due to various reasons, such as reducing the training time for our case. Therefore, 
the model might not be able to easily learn this kind of high-level features, which leads to inferior performance.

The standard size of the detector of a cryo-electron microscope is 4000 × 4000. Only a small fraction (e.g. 10%) 
of those pixels contain useful information, depending on the specific sample setup. It is evident that the image 
size reduction and coordinate transformation could result in a much more compact and efficient ML model, 
enabling real-time event selection, data correction, as well as electron beam diagnostics.

Figure 6.  The results for one round of training with image numbers ranging from 500 to 5000 with a step size 
of 100. The generalization error in the plot is the RMS error of the trained model prediction based on all the 
available data of 5000 images. The scatter points are the raw data and the solid lines are the inverse fittings to the 
raw  data41. The training for each dataset size has been rerun for 10 times to get less noisy data.

Figure 7.  (a) An example of the original experimental image. The highlighted dashed ring area indicates 
the informative part of the image. The two arrows show the axes of the polar coordinate that the ring to be 
transformed to. (b) The polar-transformed image of the ring area in (a). (c), (d) Training loss (blue curves) and 
validation loss (orange curves) for the original images and the polar images, respectively.
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Methods
The start-to-end simulation is performed via the GPT particle tracking from the gun to the sample and the EDP 
simulation of a wave-like electron being diffracted by the sample. The BD patterns as input to the ML model 
are labeled by the electron beam properties used to generate those diffraction patterns. To meet the continuous 
output variable requirement, a  LeNet39-style neural network architecture with a linear output activation function 
was used as the ML model.

The diffraction patterns of the  MoTe2 sample taken at the BNL UED in 2020 were used as the input to the ML 
model in the experimental case. Based on our past  experience20, the conventional data analysis via the Gaussian 
method can provide variable 2 (x jitter), 4 (y jitter) and 6 (energy jitter) with high fidelity since they are intrin-
sically correlated to the BD peak positions that can be fitted with the high accuracy of  10–4. The training was 
limited to variable 2, 4, and 6. The number of variables in the output layer of our ML model was set to 3 instead 
of 6, to reflect this change. To further reduce the training time, pre-processing BD patterns via image cropping 
and polar coordinate transformation was explored. A compact ML model has been obtained to speed up the 
training process by 60% with the cost of a minor reduction of the prediction accuracy.

Discussion
To maintain the long-term stability as well as to achieve the fine single-shot quality of the electron beam, the 
constantly drifting UED/UEM makes the ML technique essential not only to provide a good condition for 
the machine startup but also to feed the real-time information of the electron bunch properties for online 
optimization.

We demonstrated the ML approach as the single-shot real-time diagnostics of the transverse electron beam 
properties. In the simulation case, the ML model can go beyond the transverse diagnostics even predicting the 
energy spread of an electron beam. However, there are some obstacles that we must overcome before the ML 
technique can be applied to extract the full information of the electron bunch including the energy spread. Since 
an ML model built on the simulated dataset #2 or #3 can predict the beam energy spread with the required preci-
sion, it is important that we can experimentally reproduce the simulation condition. Thanks to the independent 
control of the beam size and angular divergence via a set of condenser lenses, which can be either round lenses 
or a few quadrupole  magnets19, a beam waist can be formed at the sample and the angular divergence can be 
adjusted freely. To maintain a reasonable illumination area, an aperture can be placed upstream of the sample. 

Figure 8.  Training variables 2 (a), 4 (b), and 6 (c), labels are plotted as the blue curve while their corresponding 
predictions as the result of the polar ML model are plotted as the orange crosses respectively for the untrained 
two hundred images. Besides, their corresponding error distributions for the entire dataset of five thousand 
images are plotted on the right side. The RMS errors for the untrained images and the entire dataset agree 
extremely well.
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With this setup, the minimum angular divergence may be as small as a few μrad. In addition, the energy spread 
can be increased with the increase of the beam charge, as the result of increasing the photocathode drive laser 
 power21. This allows us to vary the upper limit of the beam energy spread in a broader range for the training 
dataset, toward the required measurement precision of better than  10–3.

To be specific, the required measurement precision is similar for both the conventional BD method and the 
BD-based ML method. However, the ML method is much faster because the data collection and model training 
are done before the model is used. Evaluation of the CNN model with each BDP to predict the electron beam 
properties takes only 1.65 ms using 4.4 GHz CPU and 0.39 ms using RTX2080 GPU in the single mode, instead 
of 300 ms or more required by the conventional method using the available 4.4 GHz CPU. For a UED operated 
at a repetition rate above 3 Hz, the BD-based ML method is significantly superior because it is faster by several 
orders of magnitude. If thousands of frames are collected and processed all at once in the batch mode, the speed 
gain is even larger, as shown in Table 2.

Our next goal is to develop an integrated product, including the hardware and an ML model, as a single-shot 
noninvasive real-time beam diagnostic tool for future MeV UED and UEM facilities with a high repetition rate. 
The hardware will aim for a standalone diagnostic toolbox, including the sample for calibrating the ML model, 
alignment parts, viewport, vacuum connections, etc., while the software could be the ML model for online 
monitoring and tuning of the angular divergence, energy spread, shot-to-shot energy and spatial pointing jitters 
of the electron beam. This new diagnostic toolbox could be an important step forward for providing essential 
information of the electron beam in real-time, which would help to achieve the long-term stability and fine 
single-shot quality of the electron beam.

Furthermore, the BD-based ML method provides the real-time, single-shot characterization of the electron 
beam properties at a high repetition rate up to 2 kHz. The repetition rate can be increased to MHz level if the 
data are processed in the batch mode. This will potentially enable fully automated UED operation. To achieve this 
ultimate goal, our plan is to perform a feasibility study using GPT simulation from the gun to the sample. Then, 
a second ML model, the gun-to-sample ML model, will be built with the simulation data. The input to this ML 
model will be the electron beam properties and the output will be the machine parameters. When we apply the 
method to experiments, the electron beam properties will first be obtained from the prediction of the BD-based 
ML model; then, the gun-to-sample ML model will make the prediction of the machine parameters, which will, 
in turn, be used to set up the UED instrument. The two-stage ML approach has much broader applications due 
to the availability of the electron beam properties. One can apply this two-stage approach not only to automate 
the setup of the UED instrument but also to perform the real-time data correction using the available electron 
beam properties during the experiment. This will be investigated in future studies.
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