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Abstract: The outburst of inflammatory response and hypercoagulability are among the factors
contributing to increased mortality in severe COVID-19 cases. Pentoxifylline (PTX), a xanthine-
derived drug registered for the treatment of vascular claudication, has been reported to display
broad-spectrum anti-inflammatory and immunomodulatory properties via adenosine A2A receptor
(A2AR)-related mechanisms, in parallel to its rheological actions. Prior studies have indicated
the efficacy of PTX in the treatment of various pulmonary diseases, including the management
of acute respiratory distress syndrome of infectious causes. Therefore, PTX has been proposed to
have potential benefits in the treatment of SARS-CoV-2 symptoms, as well as its complications. The
aim of this review is to discuss available knowledge regarding the role of PTX as a complementary
therapeutic in SARS-CoV-2.
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1. Introduction

The outbreak of SARS-CoV-2 infection in Wuhan, China, at the turn of 2019 and
2020 has spread across the globe, resulting in a worldwide pandemic. Manifestations of
COVID-19 (coronavirus disease 2019) in adults mainly concern the upper-respiratory tract
and vary significantly, ranging from asymptomatic to severe viral pneumonia. Critically
ill patients present with deterioration in respiratory function, development of acute respi-
ratory distress syndrome (ARDS), and suffer from coagulopathy, all of which contribute
to increased mortality. In adolescents, SARS-CoV2 infection can manifest as various non-
respiratory symptoms, including late-onset rashes as well as gastrointestinal or ocular
disturbances [1]. Emerging evidence proposes a robust inflammatory reaction as a major
pathogenic mechanism responsible for severe lung tissue damage in SARS-CoV-2 infection.
The cytokine storm phase of SARS-CoV-2 disease most likely results from amplified pro-
duction of numerous proinflammatory factors, including interleukin 1ß (IL-1ß), interferon
γ (INF-γ), monocyte chemoattractant protein 1 (MCP-1), IL-4, IL-7, IL-8, IL-9, IL-10, and
tumor necrosis factor α (TNF-α) [2].

Except for tocilizumab, a monoclonal antibody against IL-6 receptors that has been
proven to reduce disease progression and lower the rates of hospitalized patients in need of
mechanical ventilation [3], no other therapeutic approaches have thus far been introduced
for countering the cytokine storm syndrome associated with COVID-19 in common clinical
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practice. The current public health emergency has created an urge to repurpose already
available drugs to treat the SARS-CoV-2-induced inflammatory state. Hence, pentoxifylline
(PTX), a drug with an already established safety profile, has been proposed as a potentially
beneficial strategy in fighting COVID-19.

PTX is a xanthine-derived, commercially produced drug approved for the manage-
ment of intermittent claudication in patients suffering from a chronic occlusive arterial
disease of the limbs [4]. In parallel to its rheological actions, PTX has been documented to
display anti-inflammatory and immunomodulatory effects, as well as some antithrombotic
and antiviral effects. These pluripotent properties could be of great value in the context of
the management of SARS-CoV-2 and its complications.

2. The Cytokine Storm

The so-called “cytokine storm” refers to the pathologically up-regulated production
of various proinflammatory molecules in response to infection or other external stimuli [5].
This complication involves a loss of negative feedback on immune cells, thus leading
to further recruitment of cytokines to the site of inflammation and subsequent organ
damage. SARS-CoV-2 pulmonary manifestations are commonly linked to the occurrence of
lung tissue dysfunction, such as diffuse alveolar damage, alveolar edema, thickening of
alveolar walls, desquamation of pneumocytes, and hyaline membrane formation, all of
which are indicative of ARDS [6] and manifest clinically with disturbed ventilation and
hypoxemia. Cytokine storm has been proposed as a primary mechanism responsible for
the development of ARDS in COVID-19, exceeding the direct cytopathogenic action of the
virus itself [7]. Chen et al. have demonstrated increased production of the proinflammatory
molecules IL-6, IL-2R, IL-10, and TNF-α in COVID-19, showing that they correlate with
disease severity [8]. The IL-6, an important cytokine in viral infections, is further responsible
for activation of the coagulation cascade and increased vascular permeability, resulting in
an outburst of inflammation [9]. Furthermore, SARS-CoV-2 S protein can induce IL-6 and
TNF-α production in murine macrophages in vitro in an NF-κB-dependent manner [10].

PTX has been proven to display anti-inflammatory effects and, therefore, was selected
as a treatment with potential benefit in countering the COVID-19-mediated cytokine storm.
PTX has been considered to boost cAMP levels via the inhibition of phosphodiesterase
4 (PDE-4). The inhibition of the enzyme results in a decreased breakdown of cAMP and
further in its increased intracellular levels. Modulation of inflammatory processes by PTX
occurs via inhibition of NF-κB, leading to reduced leukocytes–platelets interactions and
prothrombotic effects, as well as reduced activation of proinflammatory cytokines and
reactive oxygen species [11]. PDE-4 inhibition has already displayed favorable effects in
various conditions, i.e., asthma, chronic obstructive pulmonary disease, and idiopathic
pulmonary fibrosis (IPF) [12]. However, an additional mechanism of action of PTX has
recently been proposed. Adenosine A2A receptors (A2ARs) are 7-pass G-protein-coupled
receptors that escalate the activity of adenylate cyclase, resulting in increased production
of intracellular cAMP in multiple cells, such as neutrophils, macrophages, T-cells, natural
killer cells, endothelial cells, and platelets [13,14]. The ability of A2ARs to diminish inflam-
matory responses mainly relies upon the deactivation of the two main proinflammatory
pathways: the NF-κB and JAK/STAT pathways [13] (Figure 1). Increased levels of cAMP
contribute to a reduction in the release of oxidants and cytokines, decreased expression
of adhesion molecules, decreased generation of tissue factors, and decreased platelet ag-
gregation [13]. Stimulation of A2ARs further blocks the transition of neutrophils through
the lung endothelium, a phenomenon that underlies the pathogenesis of ARDS [13]. PTX
potentiates the response of A2ARs to extracellular adenosine, therefore participating in
A2AR-related anti-inflammatory pathways Previously, PTX has been proven to reduce
lung inflammation and decrease the number and activity of lung neutrophils in rodent
models of hemorrhagic shock, when administrated as an adjuvant therapy to standard fluid
resuscitation [15]. In the same study, PTX regimens resulted in attenuation of the NF-κB
activity, possibly through a cAMP-related mechanism [15]. The capacity of PTX to inhibit
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TNF-α secretion in vitro has been confirmed through a randomized controlled study of
advanced cancer patients diagnosed with ARDS [16]. The study group was characterized
by improvements in both mean survival time and the clinical and radiological symptoms
of ARDS, without any serious adverse effects [16]. PTX has also been shown to attenuate
lung injury and improve mortality rates in mice induced to ARDS by increasing cAMP
levels and restoring the Treg/Th17 imbalance, in parallel to decreases in IL-2, IL-6, IL-10,
and IL-17 secretion [17]. In a recently published pilot study on patients with a moderate-
to-severe SARS-CoV-2 disease course, treatment with PTX led to increases in lymphocyte
counts and decreases in serum lactate dehydrogenase (LDH) levels, two biomarkers that
are associated with COVID-19 severity [18] and that are indicators of cytokine storm de-
velopment [19]. Lymphocyte depression and fatigue, commonly observed in SARS-CoV-2
infection, occur secondary to overproduction of proinflammatory molecules (TNF-α, IL-6,
IL-2, IL-10, and TNF-β) [20–22], while LDH has been described as a prognostic marker
in several pulmonary conditions [23–25]. Despite no statistical significance in terms of
mortality, days of hospitalization, or the need for intubation, the authors postulate that
PTX administration could be of great value in the first-line care of COVID-19 due to its
anti-inflammatory properties [18].
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Figure 1. Pentoxifylline is able to dampen activation of two major proinflammatory signaling
pathways (the NFκB and JAK-STAT) via antagonist effect on adenosine binding with its receptor
(A2AAR). Triggering A2AAR causes elevation of intracellular cAMP levels. This leads to increase
SUMO-1 activity along with inhibition of the E3 SCF Ub ligase complex, which prevents IκBα
ubiquitination and degradation, thereby switching off the NFκB pathway. Moreover, high cAMP
levels suppress cytokine-mediated JAK/STAT signaling via induction of the inhibitory protein SOCS3.

3. Pulmonary Fibrosis

Previous experiences from the SARS epidemic in 2002, with growing clinical evidence
regarding the current pandemic, show that pulmonary fibrosis can be a long-term complica-
tion of SARS-CoV-2 infection [26]. Pulmonary fibrosis is a condition that potentially limits
patients’ activities and lowers their quality of life due to a persistent alveolar restriction.
Considering the mass spread of SARS-CoV-2 worldwide, residual pulmonary fibrosis may
become a challenge for global healthcare and the economy. Fibrotic changes have been ob-
served in patients that have recovered from SARS-CoV-2-related pneumonia in follow-up
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studies [27–29]. Post-COVID-19 fibrotic changes in the lung have also been reported in
autopsy specimens [30,31]. Three main factors that make a patient more susceptible to the
development of COVID-19-related pulmonary fibrosis are older age, severe pneumonia,
and prolonged mechanical ventilation [32–34]. George et al. stated that some antifibrotic
agents used in IPF treatment could be valuable in preventing post-COVID fibrosis or
decreasing its severity [35].

The exact pathological mechanism of the development of fibrosis in COVID-19 is still
not fully understood; thus, no specific treatment exists. The most probable pathomechanism
involves overexpression of inflammatory cytokines, mainly as a result of alveolar damage,
which later leads to the activation of fibroblasts and an over deposition of collagen in the
pulmonary parenchyma [26,36,37]. One of the fibroblasts’ primary triggers is TGF-beta, a
profibrotic cytokine that promotes the expression of other proinflammatory cytokines, such
as TNF-α and IL-6 [36,38,39]. Reactive oxygen species (ROS) have also been shown to play
an important role in the pathogenesis of pulmonary fibrosis, contributing to dysregulated
proteostasis in the extracellular matrix and myofibroblast aging [40,41].

As PTX has been proven to possess anti-inflammatory effects, i.e., decreasing TNF-α,
IL-6, and IL-1 plasma levels, as well the ability to decrease ROS production, and it has been
widely evaluated in pre-clinical trials considering the treatment and prevention of various
types of fibrosis. In animal models, PTX has shown efficacy in the prevention of renal inter-
stitial fibrosis via inhibition of connective tissue growth factors and, thus, the prevention
of extracellular matrix overproduction [42,43]. PTX–tocopherol combination treatment
has been shown to reduce collagen type I and III depositions in the ECM in radiation-
induced heart fibrosis using a rat model [44]. A small meta-analysis by Kaidar–Person et al.
revealed limited, however promising, data on PTX-tocopherol use in radiation-induced
fibrosis among patients undergoing radiotherapy for breast cancer [45]. In a rat model of
radiation-induced lung injury, PTX inhibited fibrosis by reducing plasminogen activator
inhibitor (PAI) and fibrinogen expression [46]. Some pre-clinical data also exists supporting
the use of PTX in the treatment of peritoneal fibrosis due to its effects on attenuating
TGF-beta and collagen production [47–49]. El-Lakkany et al. introduced the potential use
of PTX as an adjuvant drug in schistosomal liver fibrosis; in the aforementioned paper, the
authors propose downregulation of oxidative stress as the mechanisms behind the halt in
fibrotic changes [50]. Additionally, in a study by Zabel et al., PTX was shown to inhibit
TNF-α release from alveolar macrophages in patients with sarcoidosis, thus hindering
the formation of sarcoid granulomas in the lung; some of the enrolled patients were also
able to lower the dose of steroids in their treatment regimen [51]. These findings were
later evaluated in a small, randomized controlled trial by Park et al., in which PTX was
shown to reduce flares and exhibit a steroid-sparing effect in patients with sarcoidosis [52].
Nevertheless, PTX requires further investigations regarding this area due to the small
sample sizes utilized.

Given all of the above data, we hypothesize that PTX may be a potent adjuvant
drug for preventing and treating COVID-19-related pulmonary fibrosis. We call for large,
population-based clinical trials repurposing this well-known drug with a previously estab-
lished safety profile.

4. Coagulopathy

COVID-19 is a disease that, in its wide range of complications, does not spare hemosta-
sis. Both thromboembolic and hemorrhagic events have been observed in SARS-CoV-2
infected patients, although the latter is much less common. Thrombi have occurred in mul-
tiple vascular beds, not limited to the alveolar vessels, and may lead to multi-organ failure.
Iba et al., in a review article assessing 51 studies of coagulation in COVID-19, concluded
that the endotheliopathy leading to lethal complications is mainly caused by direct viral
injury to the vascular epithelium and a flourishing inflammatory response that results in
vasculitis [53]. The most frequent biochemical findings considering the coagulation panel in
COVID-19 are elevated D-dimer and fibrinogen serum levels, prolonged prothrombin times,
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and low platelet counts [54,55]. These alterations may appear somewhat similar to those
observed in disseminated intravascular coagulation (DIC), a complication that develops in
about 30–50% of severe sepsis patients, but the pathophysiology of COVID-associated coag-
ulopathy is different from septic DIC [56]. DIC is characterized by a hypercoagulable state
concomitant to excessive bleeding stemming from overconsumption of clotting factors [57].
Nevertheless, the D-dimer elevation in septic DIC is usually not as high as observed in
COVID-19, and the platelet count drop in COVID-19 is not as profound as seen in DIC,
which seems to be the reason why SARS-CoV-2 infection predisposes to thromboembolic
complications [58]. The use of PTX in the treatment of DIC was evaluated by Ozden et al.,
who compared the effects of treatment with PTX and antithrombin III (ATIII) in 30 adult
patients with Gram-negative sepsis who developed DIC; the authors concluded that both
treatments were effective in terms of lowering D-dimer and fibrinogen levels, increasing
platelet counts, and shortening prothrombin time (PT). Additionally, both PTX and ATIII
lowered ISTH DIC scores with statistical significance [59]. Currently, PTX is mainly used
in the treatment of intermittent claudication resulting from peripheral artery disease, in
which it improves blood viscosity, stimulates fibrinolysis, makes erythrocytes more elastic
and less prone to adhesion, and downregulates platelet aggregation [60–63]. Given this
information, we may conclude that PTX is capable of improving blood flow and increasing
tissue oxygenation. Thus in our opinion, PTX may be a powerful adjuvant therapeutic for
COVID-19 patients, as it is able to diminish the effects of the hypercoagulable state via
downregulation of the inflammatory response in vascular beds and can limit the tissue
damage resulting from hypoxia.

5. Conclusions

Pentoxifylline (PTX) is a drug that exhibits broad-spectrum anti-inflammatory and
immunomodulatory effects through mechanisms involving the adenosine A2A receptor
(A2AR), in parallel with rheological effects. Previous studies have shown that PTX has
anti-inflammatory effects and, therefore, may be beneficial in countering the cytokine storm
caused by COVID-19. This drug has also been shown to reduce lung fibrosis in patients
with COVID-19, as well as to prevent thromboembolic events. Therefore, PTX may exert
potential benefits in treating the symptoms of SARS-CoV-2 as well as its complications.
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