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a b s t r a c t

Background: Nonalcoholic steatohepatitis (NASH) is one of the main chronic liver diseases. NASH is
identified by lipid accumulation, inflammation, and fibrosis. Jinan Red Ginseng (JRG) and licorice have
been widely used because of their anti-inflammatory and hepatoprotective effects. Hence, this study
assessed JRG and licorice extract mixtures' effects on NASH progression.
Methods: Palmitic acid (PA) and the western diet (WD) plus, high glucose-fructose water were used to
induce in vitro and in vivo NASH. Mice were orally administered with JRG-single (JRG-S) and JRG-
mixtures (JRG-M; JRG-S þ licorice) at 0, 50, 100, 200 or 400 mg/kg/day once a day during the last
half-period of diet feeding.
Results: JRG-S and JRG-M reduced NASH-related pathologies in WD-fed mice. JRG-S and JRG-M consis-
tently decreased the mRNA level of genes related with inflammation, fibrosis, and lipid metabolism. The
treatment of JRG-S and JRG-M also diminished the SREBP-1c protein levels and the p-AMPK/AMPK ratio.
The FAS protein levels were decreased by JRG-M treatment both in vivo and in vitro but not JRG-S.
Conclusion: JRG-M effectively reduced lipogenesis by modulating AMPK downstream signaling. Our
findings suggest that this mixture can be used as a prophylactic or therapeutic alternative for the remedy
of NASH.
© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A western lifestyle and an unhealthy diet are closely related
with an increasing prevalence of obesity, metabolic disorder, and
cardiovascular disease. Such metabolic abnormalities induce mild
liver injury, leading to the onset of nonalcoholic fatty liver disease
(NAFLD) [1]. NAFLD is one of the main chronic liver disorders, and
its prevalence is gradually increasing among obese people world-
wide [2]. The NAFLD spectrum includes simple steatosis and
nonalcoholic steatohepatitis (NASH), as well as advanced liver
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fibrosis, cirrhosis, and hepatocellular carcinoma. Along this spec-
trum, NASH is an intermediate stage of progressive lesion that is
accompanied by hepatocellular damage, metabolic inflammation,
and fibrosis [3,4].

Several hypothetical mechanisms have been suggested to
describe the development and progression of NASH. One of them
has indicated that abnormal lipid metabolism and chronic free fatty
acid (FFA) overload can trigger changes from simple steatosis to
NASH by inducing hepatocyte death-mediated chronic liver injury,
which is closely related with the progression of inflammation and
fibrogenesis in the liver [5]. It has been well-documented that
Kupffer cells (KCs) and monocyte-derived macrophages have a
critical function in NASH-related inflammation and fibrosis. The
activation status of these cells is changed during NASH progression,
depending upon the degree of stimuli, such as damaged associated
molecular patterns, cytokines, gut microbiota-derived endotoxin,
and lipid metabolites [6,7]. Hence, many factors and signaling
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pathways that are attributable to NASH pathogenesis have been
investigated to discover new therapeutic targets.

Panax ginseng has been used as an oriental herbal remedy for
more than 2,000 years in Eastern Asia. Among the several types of
ginseng, Korean Red Ginseng (KRG, Panax ginseng Meyer) is made
through a steaming and drying process. KRG has fewer side effects
and has more effective pharmacological activities as compared to
the original ginseng or its-dried form, called white ginseng [8,9]. It
has been demonstrated that KRG has ameliorative effects in various
pathologic conditions, such as immune enhancement, alleviation of
fatigue, antidiabetic, antistress, antiinflammatory, and anti-
oxidative, as well as several types of organ injuries [10e13]. Also,
Jinan Red Ginseng (JRG) extracted from KRG has suppressive effects
on fatty acid synthesis in adipocytes or triglyceride synthesis in
hepatoma cells [14].

Previous studies have suggested that amixture of KRG and other
botanical therapeutic ingredients such as coffee, puer tea, buck-
wheat or licorice (Glycyrrhiza uralensis Fischer) have complex
enhancement effects on various indices related to antioxidative,
antibacterial, antiobesity, or collagenase inhibitory activity [15e18].
Among them, glycyrrhizin, a constituent of licorice, has a sweet
taste and is known to have antiobesity effects and to alleviate al-
lergy asthma [17,19]. Thus, we herein developed a promising new
herbal medicine, a mixture of JRG and licorice, and we evaluated
the hepatoprotective effects of this mixture in the NASH model.

2. Materials and methods

2.1. Material preparation

JRG (Panax ginseng Meyer) used in the study was 6-years root
harvested in Jinan-gun, Jeollabuk-do, Korea. Licorice (Glycyrrhiza
uralensis Fischer) used in the study was 3-years root harvested in
Jecheon-si, Chungcheongbuk-do, Korea. After adding 600mL of 50%
ethanol (EtOH) to 60 g of raw material powder, it was immersed,
heated to 80�C, and filtered (Grade 41 Fast Ashless Filter Paper, 20
mm, 1441-125, Whatman). Thereafter, samples were obtained
through vacuum concentration (N-1110, EYELA) and freeze drying
(FD8512, Freeze Dryer, ilShin BioBase). Contents of main ginseno-
sides contained in JRG extract and glycyrrhizin contained in licorice
extract in 50% EtOH are described in Supplementary Table 1.

2.2. Cell viability assay

Alpha mouse liver 12 (AML-12) cells were cultured in a 96-well
plate (1 � 104 cells/well) in Dulbecco's modified Eagle's medium/
Ham's F12 (DMEM/F12; Corning, NY, USA) containing 10% fetal
bovine serum (FBS; MP Biomedicals, Santa Ana, USA), 1% Insu-
lineTransferrineSeleniumePyruvate (ITSP; Welgene, Gyeongsan,
Korea), 40 ng/mL of dexamethasone (SigmaeAldrich, MO, USA),
and an antibiotic-antimycotic solution (Welgene) at 37�C in
controlled atmosphere with 5% CO2. The next day,10:0, 7:3, 5:5, 3:7,
or 0:10 ratios of JRG:licorice at 1 mg/mL were placed into cells with
or without 0.4 mM palmitic acid (PA; Sigma-Aldrich) and incubated
for 24 hours. Afterward, cell viability was measured by Cell
Counting Kit-8 (CCK-8; Dojindo Molecular Technologies, MD, USA),
using EMax spectrophotometer (Molecular Devices, CA, USA).

2.3. Cell culture and induction of in vitro NASH model

AML-12 cells and RAW 264.7 cells were cultured into a 12-well
plate (5 � 105 cells/well) and were co-cultured in a 12-well insert
plate (NEST, Jiangsu, China) at a 2:1 ratio of AML-12:RAW 264.7 in
DMEM/F12 (Corning) containing 10% FBS (MP Biomedicals), 1% ITSP
(Welgene), 40 ng/mL of dexamethasone (Sigma-Aldrich), and
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antibiotic-antimycotic solution (Welgene) at 37�C in controlled
atmosphere with 5% CO2. An in vitro NASH model was established
by treatment of 0.4 mM PA (Sigma-Aldrich) to cells as previously
described [20]. Cells were maintained for 24 hours after treatment
with a different concentration of JRG-S or JRG-M (0, 10 ng/mL, 100
ng/mL, or 1 mg/mL).
2.4. Animals and experimental design

Six-week-old male C57BL/6J mice were obtained from Taconic
Farms, Inc. (DBL Co., Ltd. Eumseong, Korea). The animals were
housed at 24 ± 3�C and 50 ± 5% humidity with ad libitum access to
sterilized normal diet and water during the acclimatization period
of one week. This study was approved by the Animal Care and
Ethics Committees of Jeonbuk National University (CBNU 2020-
082).

We divided the mice into 10 groups of eight mice each: (1) a
normal diet (ND; with normal water); (2) a western diet (WD; 40
kcal% fat, 20 kcal% fructose, and 2% cholesterol with high fructose-
glucose water [23.1 g d-fructose/L þ 18.9 g d-glucose/L]) as previ-
ously described [21]; (3) a WD with JRG-S at 50 mg/kg/day (S 50),
100mg/kg/day (S 100), 200mg/kg/day (S 200), or 400mg/kg/day (S
400); (4) a WDwith JRG-M at 50 mg/kg/day (M 50), 100 mg/kg/day
(M 100), 200 mg/kg/day (M 200), or 400 mg/kg/day (M 400). We
gave them either a ND or a WD for 16 weeks. After eight weeks of
WD feeding, we orally administered JRG-S and JRG-M dissolved in
saline once daily, five days aweek, fromweek nine to 16 to eachWD
diet-fed group. We measured the body and liver weights at
necropsy.
2.5. Serum and hepatic biochemical analysis

The serum biochemistry levels, such as alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST), were evaluated
by an AM101-K assay kit (ASAN Pharmaceutical, Seoul, Korea).
Hepatic triglyceride (TG) and total cholesterol (TC) levels were
determined by an AM202-K assay kit (ASAN Pharmaceutical) ac-
cording to the manufacturer's instruction.
2.6. Histopathology and staining analysis

Liver samples of each experimental group were carefully
removed and immersed in 10% formalin for tissue fixation. Paraffin-
embedded liver was sectioned by a microtome (HM-340E, Thermo
Fisher Scientific, MA, USA). We stained the sections with hema-
toxylin & eosin (H&E) in accordance with typical protocol. To
confirm NASH severity, an NAFLD activity score (NAS) system was
obtained in accordance with the criteria by Kleiner et al [22].

To detect the apoptosis in the liver, we carried out a terminal
deoxynucleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) assay on the paraffin-embedded sections, using an
ApopTag Peroxidase in situ apoptosis detection kit (EMD Millipore,
CA, USA).

To assess the severity of fibrosis, we did sirius red staining of the
liver sections with Direct Red 80 (Sigma-Aldrich). We also did Oil-
Red O staining (ScyTek Laboratories, UT, USA) using frozen liver
tissue sections or cultured cells to determine intracellular lipid
accumulation. We evaluated the stained liver section or cell images
using light microscopy (BX53F, Olympus Corp., Tokyo, Japan) and
digital image software (cellSens Standard, Olympus Corp.). The data
is expressed as the mean of each positively stained area per field in
the livers or cells.
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2.7. Quantitative real time-polymerase chain reaction (qRT-PCR)

The total RNA was extracted from the liver tissue or cells using
RiboEx (GeneAll Biotechnology Co. Ltd., Seoul, Korea) and the
Hybrid-R RNA purification kit (GeneAll Biotechnology Co. Ltd.). For
degradation of DNA, DNase I containing RNase inhibitor (TOYOBO,
Osaka, Japan) was added to total RNA. Complementary DNA was
synthesized using ReverTra Ace qPCR RT Master Mix (TOYOBO) in
accordance with the manufacturer's recommendation. Next, qRT-
PCR was conducted with a CFX96 Real-Time PCR Detection Sys-
tem (Bio-Rad Laboratories, CA, USA) using SYBR Green Master Mix
(TOYOBO). The relative mRNA concentrations were calculated to
that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). All
used primer sequences are shown in Supplementary Table 2.

2.8. Enzyme-linked immunosorbent assay (ELISA)

To confirm the protein levels of proinflammatory cytokines like
tumor necrosis factor-alpha (TNF-a) and interleukin-6 (IL-6), cell
supernatant was collected and measured by the ELISA kits (Invi-
trogen, CA, USA) in accordance with the manufacturer's protocol. If
this was lower than the minimum measurable value of detection
kit, it was expressed as “below the detection limit (B.D.)”.

2.9. Western blot assay

Liver tissues or cultured cells were lysed in a protein extraction
reagent (Thermo Fisher Scientific). Protein extracts were obtained
by centrifugation at 13,000 � g for 15minutes at 4�C. Protein
concentration was measured with the Pierce BCA Protein Assay kit
(Thermo Fisher Scientific). Protein samples were electrophoresed
on SDS-PAGE gel, and then transferred to a polyvinylidene
difluoride membrane that activated with methanol. The membrane
was blocked with Superblock (Thermo Fisher Scientific) for one
hour at room temperature and incubated overnight at 4�C of the
following primary antibodies: phospho-AMP-activated protein ki-
nase (p-AMPK), AMPK (Cell Signaling Technology, MA, USA), sterol
regulatory element-binding protein-1c (SREBP-1c), fatty acid syn-
thase (FAS), and b-actin (Santa Cruz Biotechnology, CA, USA). Sec-
ondary horseradish peroxidase-conjugated IgG antibodies (Enzo
Life Sciences, NY, USA) were used, and incubated for two hours at
room temperature. Protein activities were visualized by the West-
ern ECL Kit (LPS solution, Daejeon, Korea) and ImageQuant LAS 500
(GE Healthcare Life Science, PA, USA). Image analysis for deter-
mining relative intensity was conducted using ImageQuant TL
software version 8.1 (GE Healthcare Life Science).

2.10. Statistical analysis

All data was presented as means ± standard deviation (SD).
Statistical difference between the groups was analyzed by One-way
analysis of variance (ANOVA) using Prism version 8.0.1 (GraphPad
Software, CA, USA). Liver histopathological assessment was per-
formed using the Kruskal-Wallis nonparametric test, followed by
Dunn's multiple comparisons test. The data was shown as being in
the median ± interquartile range. A p-value of 0.05 or less was
regarded to be statistically significant.

3. Results

3.1. Mixtures of JRG/licorice extracts (7:3) increase cell viability in
PA-treated cells

Various ratios of JRG/licorice extracts (10:0, 7:3, 5:5, 3:7, or 0:10)
were treated to PA-treated AML-12 cells with the maximum
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concentration that had not been cytotoxic (1 mg/mL;
supplementary Fig. 1A and 1B) for 24 hours. The cell viability was
significantly increased in all groups except for the JRG/licorice
extract 0:10 ratio group as compared to the PA only-treated group
(p < 0.05) (supplementary Fig. 1C), and the 7:3 ratio group showed
the highest cell viability among them (p < 0.001). Therefore, we
prepared the JRG/licorice extract mixtures that we used in the
in vivo and in vitro studies in a 7:3 ratio.

3.2. JRG-S or JRG-M decreased PA-induced lipotoxicity in vitro

Representative figures of Oil Red-O stained AML-12 cells and
their positive area measurements showed that JRG-S or JRG-M
significantly decreased the lipid accumulation at 100 ng/mL and 1
mg/mL of both the JRG-S and JRG-M groups with PA treatment
(Fig.1A and B). As shown bywestern blot analysis, the protein levels
of p-AMPK increased considerably only at 100 ng/mL and 1 mg/mL
in the JRG-M group as compared to the control (p < 0.001) (Fig. 1C).
In the JRG-M group with PA treatment, hepatic protein levels of
SREBP-1c were significantly decreased at every concentration as
compared to the control (p < 0.001) while decreased at 100 ng/mL
and 1 mg/mL in the JRG-S group. The protein levels of FAS were
significantly diminished by treating only the JRG-M in a dose-
dependent manner, but not the JRG-S. Furthermore, diminished
mRNA expressions of LXRb, but not LXRa, were observed at 1 mg/mL
in the JRG-M group with PA treatment (p < 0.01) (Fig. 1D). Hepatic
mRNA levels of C/EBPa were significantly reduced at every con-
centration in both the JRG-S and JRG-M groups with PA treatment
(p < 0.001). ACCa, ACCb, and LPL mRNA levels were also decreased
in the JRG-S or JRG-M group with PA treatment. According to these
results, JRG-S or JRG-M could alleviate the PA-induced lipid meta-
bolism response by modulation of lipogenesis.

3.3. JRG-S or JRG-M decreased PA-induced inflammation and
oxidative stress in single cultured cells

The mRNA expression levels of TNF-a, IL-6, or IL-1b were
significantly diminished in PA-treated AML-12 cells (Fig. 2A) or
RAW 264.7 cells (Fig. 2B) that had been treated with either JRG-S or
JRG-M, except for IL-1b in RAW 264.7 cells. The protein levels of
TNF-a in RAW 264.7 cells, macrophage cells regulating immune
response, were reduced at 1 mg/mL in the JRG-S group and at 100
ng/mL and 1 mg/mL in the JRG-M group with PA treatment. The IL-6
levels were decreased at 1 mg/mL in the JRG-S and at 10 ng/mL in
the JRG-M groups with PA treatment, as compared to the control
(Fig. 2C). Hepatic mRNA levels of HO-1were increased at 100 ng/mL
in the JRG-M group with PA treatment (Fig. 2D). These results
indicate that JRG-S or JRG-M relieve PA-induced inflammatory re-
sponses and could reduce oxidative stress, as well as lipid
metabolism.

3.4. JRG-S or JRG-M regulated the expression of NASH-related
markers in co-cultured cells

To estimate the effects of JRG-S or JRG-M in an environment
similar to an in vivo liver condition in which hepatocytes and
macrophages coexist, PA-treated AML-12 cells and RAW 264.7 cells
were co-cultured with or without JRG-S or JRG-M treatment for 24
hours. In co-cultured AML-12 cells, TNF-a mRNA expressions were
decreased in both of the JRG-S and JRG-M groups with PA treat-
ment, but IL-1b was significantly diminished only in the JRG-M
group with PA treatment (Fig. 2E). The mRNA expression of TNF-a
was significantly diminished at 1 mg/mL in both JRG-S and JRG-M
groups, and IL-1b was considerably decreased at every concentra-
tions in JRG-S and JRG-M groups in co-cultured RAW 264.7 cells



Fig. 1. JRG-S and JRG-M alleviate PA-induced NASH via modulation of lipogenesis in vitro, (A and B) Oil Red-O stained liver section's representative images are shown with its
positive area in AML-12 cells (scale bar: 35 mm). (C) Protein levels of p-AMPK, AMPK, SREBP-1c, FAS, and b-actin in AML-12 cells and their relative protein intensity are measured
with a western blot analysis. (D) Hepatic mRNA level of lipid metabolism-associated genes was assayed by qRT-PCR analysis in AML-12 cells. The graph indicates the expression
level against GAPDH. All statistics were done by comparing the control group of each group. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 2. JRG-S and JRG-M modulated the expression of NASH-related markers in both single cultured and co-cultured cells. The mRNA expressions of TNF-a, IL-6, and IL-1b were
measured with qRT-PCR in (A) AML-12 cells or (B) RAW 264.7 cells, and (C) the protein levels of TNF-a or IL-6 were detected with ELISA in the RAW 264.7 cells. The lowest minimal
measurable value of the detection kit was expressed as “below the detection limit (B.D.)”. (D) The oxidative stress factor levels were assessed in AML-12 cells with qRT-PCR. The
mRNA expressions of TNF-a and IL-1b were measured with qRT-PCR in co-cultured (E) AML-12 cells or (F) RAW 264.7 cells, and (G) hepatic TNF-a or IL-6 protein levels were
detected with ELISA in cell supernatants. (H) Oxidative stress factor levels and (I) lipid metabolism-related factors were assayed in co-cultured AML-12 cells with qRT-PCR. The
graph indicates the expression level against GAPDH. All statistics were done by comparing the control group of each group. *p < 0.05, **p < 0.01, ***p < 0.001.
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with PA treatment (Fig. 2F). We also observed diminished protein
levels of TNF-a and IL-6 in cell supernatants in the JRG-S and JRG-M
groups with PA treatment (Fig. 2G). NOS2 mRNA levels were
significantly decreased at 1 mg/mL in JRG-S and every concentra-
tions in JRG-M groups with PA treatment, whereas HO-1 was
increased at 1 mg/mL only in the JRG-S group (Fig. 2H). Moreover,
decreased mRNA expressions of LXRa, LXRb, C/EBPa, ACCa, ACCb,
and LPL were observed in the JRG-S and JRG-M groups with PA
treatment (Fig. 2I). Taken together, these findings indicate that JRG-
S and JRG-M treatment diminishes NASH severity, owing to
decreased inflammation, fibrosis, and oxidative stress in co-
cultured AML-12 cells and RAW 264.7 cells with PA treatment.

3.5. JRG-S or JRG-M administration ameliorates WD-induced liver
injury

Morphologically, livers from WD-administrated mice that had
had treatment of high concentration of JRG-S or JRG-M were
significantly reduced in size, and they were reddish-brown in color
as compared to theWD-fed control group, which were pale in color
and of a large size (Fig. 3A). We also visually confirmed that the
amount of abdominal fat had been decreased by the administration
of JRG-S and JRG-M. The body weight, liver weight, and liver/body
ratio were decreased by JRG-S and JRG-M administration (Fig. 3B).
The serum AST levels were also remarkably decreased in the M 400
group (p < 0.05) and ALT levels were significantly diminished in the
S 400, M 200 and M 400 groups (p < 0.01) as compared to the WD
control group (Fig. 3C). Hepatic TG levels were slightly, but signif-
icantly, diminished at the highest concentration in both the JRG-S
and JRG-M groups, and TC levels were remarkably diminished in
the WD-fed mice that had been administered JRG-S or JRG-M
(Fig. 3D). These findings collectively suggest that NASH-induced
liver injuries are diminished by JRG-S or JRG-M administration.

3.6. JRG-S or JRG-M administration ameliorates the severity of
NASH

WD-fedmice that received JRG-S or JRG-M showed reduced NAS
score. These were the aggregated scores from histopathologic
lesion such as steatosis, lobular inflammation, and hepatocyte
ballooning degeneration in H&E staining (Fig. 4A and B). WD-fed
mice administered JRG-S or JRG-M showed significantly lower
lipid accumulation in the liver, founded on Oil Red-O staining and
its positive area measurements (Fig. 4C and D). As shown in Fig. 4E
and F, significantly lower positive areas in the liver indicate that
collagen distribution was decreased by JRG-S or JRG-M adminis-
tration. Moreover, a lower number of apoptotic cells was found in
WD-fed mice that had been administered JRG-S or JRG-M as
compared to the WD control group, except for the S 50 and the S
100 groups, as revealed by TUNEL assay (Fig. 4G and H). Collectively,
JRG-S or JRG-Mmitigates the severity of NASH, based on pathologic
processes including inflammation, liver fibrosis, and cellular injury.

3.7. JRG-S or JRG-M administration decreased hepatocellular lipid
metabolism induced by WD feeding

Consistent with in vitro results, a ratio of p-AMPK/AMPK levels
was markedly increased in the M 200 and M 400 groups. The level
in the SREBP-1c was significantly decreased in all groups having
JRG-S and JRG-M administration in all WD-fed mice (Fig. 5A). In the
M 200 and M 400 groups that had been fed with a WD, the
expression of FAS protein was markedly diminished. Furthermore,
JRG-S and JRG-M administration diminished the mRNA expression
levels of lipogenic ACCa, ACCb, LPL, LXRa, and LXRb, but the level of
C/EBPawas only diminished in the JRG-M group (Fig. 5B). This data
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suggests that treatment with JRG-S and JRG-M inhibits the
expression of downstreammolecules, like SREBP-1c and FAS, which
are modulated by AMPK activation in lipid metabolism and which
diminish de novo lipogenesis in the NASH model.

3.8. JRG-S or JRG-M administration decreased NASH-related
hepatocellular inflammation, fibrosis, and oxidative stress

Administration of JRG-S significantly reduced the hepatic mRNA
levels of TNF-a in the S 400 group as well as IL-6 in the S 200 and S
400 groups, as compared to the WD group (Fig. 6A). JRG-M also
reduced TNF-a and IL-1b mRNA levels in the M 400 group
considerably, as well as IL-6 in every group as compared to the WD
control group. In the S 200, S 400, and M 400 groups, decreased
mRNA expression levels of Col 1 were observed (Fig. 6B), andmRNA
levels of a-SMA were diminished in the M 200 and M 400 groups.
As shown in Fig. 6C, hepatic mRNA expression levels of NOS2 were
significantly decreased in all JRG-S and JRG-M groups, and that of
HO-1 was increased in S 200, S 400, and M 400 groups. Therefore,
JRG-S or JRG-M affects NASH progression in various NASH-related
markers in vivo as well as in vitro.

4. Discussion

NASH is known to be caused by diverse risk factors, including
genetic or environmental factors, lipid accumulation in the liver,
insulin resistance, oxidative stress, and mitochondrial dysfunction.
To understand the pathogenesis of NASH, the establishment of an
optimal NASH model should be the first step. The diet-induced
animal model of nonalcoholic fatty liver disease (DIAMOND) that
we used in this study is induced by a western diet, including the
high-fructose and glucose water ad libitum [21], which subse-
quently causes steatosis, NASH, cirrhosis, and even liver cancer [23].
Therefore, the DIAMOND model has been widely used in recent
years among various rodent NASH models because it shows similar
patterns to human NASH pathologies, such as steatosis, hepato-
cellular ballooning, lobular inflammation, and fibrotic progression
[23,24].

Phosphorylated AMPK inhibits the expression of SREBP-1c,
which is abundantly expressed in liver tissue, thereby reducing
the expression of its downstream target genes like FAS, stearoyl-
CoA desaturase, and acetyl-CoA carboxylase related to triglyceride
synthesis [25,26]. In this study, we found that treatment of JRG-S or
JRG-M increased the protein level ratio of p-AMPK/AMPK and
consequently reduced the expression of SREBP-1c-target genes. In
particular, the protein levels of the FAS were not significantly
changed in the JRG-S group, whereas they were significantly
diminished in the JRG-M group both in vivo and in vitro. Therefore,
we found that JRG-M alleviates NASH severity via inhibiting lipo-
genesis with the AMPK-SREBP-1c-FAS pathway. In the case of JRG-S,
one study has already demonstrated that JRG extracts inhibit tri-
glyceride synthesis via LXR-SCD expression regulation in HepG2,
the human hepatoma cell line [14]. Anti-steatotic effects of JRG-S
might be mediated by modulating other AMPK-SREBP-1c down-
stream, such as low-density lipoprotein receptor or stearoyl-CoA
desaturase-1 [27].

The inflammatory response plays a major role in the patho-
genesis of NASH. Among various types of hepatic immune cells, KCs
located in the hepatic sinusoid are known to be pivotal for regu-
lating the inflammatory responses in steatohepatitic livers [28].
Therefore, modulation of the inflammatory signaling pathway in
KCs, as well as hepatocytes, might be a promising therapeutic
strategy in patients with NASH. Since it is difficult to isolate cells
from humans for in vitro experiments, studies using cell lines are
being alternatively conducted. Giridhar Kanuri and Ina Bergheim



Fig. 3. JRG-S and JRG-M administration affected NASH progression in WD-fed mice. (A) Representative images of liver morphology and (B) body weight, liver weight, and liver/body
ratio are shown. (C and D) Serum and hepatic biochemical activity is measured in order to evaluate NASH-associated liver injury and lipid accumulation. All statistics were done by
comparing the control group of each group. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 4. JRG-S and JRG-M administration improved NASH in WD-fed mice based on histological changes. Representative microscopic images showed (A) H&E, (C) Oil Red-O, (E) sirius
red, and (G) TUNEL-stained liver sections fromWD-fed mice with or without JRG-S and JRG-M administration (scale bar: 100 mm) (B) NAS scoring and (D, F, and H) the positive areas
of each staining were evaluated. All statistics were done by comparing the control group of each group. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 5. JRG-S and JRG-M modulated NASH-related lipid metabolism in WD-fed mice. (A) Western blot analysis of lipid metabolism-related proteins and their relative protein
intensities were done for NASH-induced mice liver tissue. (B) Hepatic mRNA levels of lipid metabolism-related genes were measured. All statistics were done by comparing the
control group of each group. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 6. Administration of JRG-S and JRG-M downregulated the expression of NASH-related proinflammatory cytokines, fibrogenic, and oxidative stress genes. Hepatic mRNA ex-
pressions of (A) proinflammatory cytokines, (B) fibrogenic, and (C) oxidative stress genes were assessed by qRT-PCR in the livers of each group. All statistics were done by comparing
the control group of each group. *p < 0.05, **p < 0.01, ***p < 0.001.
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have shown that RAW 264.7 cells and KCs show similar reactivity
against stimuli [29]. Therefore, AML-12 cells and RAW 264.7 cells to
perform in-vitro single or co-culture NASH models can be replaced
as alternative cells for primary hepatocytes and KCs. Thus, we used
herein AML-12 cells and RAW 264.7 cells and found a positive in-
duction response to PA treatment, providing an appropriate NASH
in vitro disease model. In this paper, we confirmed that increased
mRNA level of inflammatory cytokines by PA was remarkably
decreased by treatment with JRG-S or JRG-M. Furthermore, similar
135
results were observed in co-culture experiments using AML-12 and
RAW 264.7 cells to mimic in vivo NASH pathogenesis.

Herbal medicines such as JRG and licorice, are preferred because
they are more easily accessible than are other chemically synthetic
treatments. Thus, these ingredients can be suggested as alternative
medicines without toxicity by using the appropriate concentra-
tions. The content of JRG components greatly influenced by the
manufacturing method, and the content of ginsenoside increases
with the age of JRG [30,31]. In comparison to fresh ginseng, JRG,
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which undergoes a steaming process, has higher pharmacological
activity and stability due to changes in chemical components
[32,33]. Because of these points, JRG has the strict manufacturing
process and management to maintain its effectiveness. Among
various ingredients in licorice, glycyrrhizin has been demonstrated
to have hepatoprotective effects in lipopolysaccharide, carbon tet-
rachloride, or alcohol-induced liver injury models [34e36]. In this
study, we combined a new mixture at a 7:3 ratio of JRG to licorice,
showing the highest cell viability in PA-treated AML-12 cells. This
showed antiinflammatory and antisteatotic effects in the NASH
model. Recently, various studies have been striving to develop a
complex treatment by mixing ingredients known to have disease-
relieving effects [15e18]. These attempts may address the limited
supply of existing ingredients and lead to the development of new
health functional foods.

Regarding each component's proportion in the mixture used in
this study, JRG-S was 100% of the JRG, and JRG-M was 70%, along
with 30% licorice. Hence, it is difficult to clarify the synergistic ef-
fects of JRG and licorice because of their different proportions.
Nevertheless, JRG-M-treated cells in the NASH milieu showed
lower mRNA expression levels of LXRb, ACCa, LPL, and IL-1b than
did the JRG-S-treated cells. Furthermore, the bodyweight, serum
biochemicals, and the mRNA expression levels of C/EBPa, IL-1b, IL
-6, and a-SMA were remarkably reduced in the WD-fed mice
treated with a high dose JRG-M as compared to the JRG-S-treated
mice. These results indicate that JRG-M show similar or improved
alleviation effects on NASH severity, despite its lower amounts of
JRG compared to JRG-S. Therefore, we thought that JRG-Mmight be
more effective than JRG-S. In addition to its-beneficial effects on
NASH progression, JRG-M seems more cost-effective than other
herbal mixtures because of its relatively simple manufacturing
process. Overall, we hope that JRG-M can be widely used as a
prophylactic or alternative treatment for NASH.
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