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Dendritic cells (DCs) occupy a central position in the immune 
system, orchestrating a wide repertoire of responses that 
span from the development of self-tolerance to the elicitation 
of potent cellular and humoral immunity. Accordingly, 
DCs are involved in the etiology of conditions as diverse as 
infectious diseases, allergic and autoimmune disorders, graft 
rejection and cancer. During the last decade, several methods 
have been developed to load DCs with tumor-associated 
antigens, ex vivo or in vivo, in the attempt to use them as 
therapeutic anticancer vaccines that would elicit clinically 
relevant immune responses. While this has not always been 
the case, several clinical studies have demonstrated that DC-
based anticancer vaccines are capable of activating tumor-
specific immune responses that increase overall survival, at 
least in a subset of patients. In 2010, this branch of clinical 
research has culminated with the approval by FDA of a DC-
based therapeutic vaccine (sipuleucel-T, Provenge®) for use 
in patients with asymptomatic or minimally symptomatic 
metastatic hormone-refractory prostate cancer. Intense 
research efforts are currently dedicated to the identification 
of the immunological features of patients that best respond 
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Introduction

In 1973, Ralph Steinman and colleagues were the first to report 
that murine lymphoid organs, notably the spleen, contain a small 
population of cells exhibiting a very peculiar tree-like morphol-
ogy, which they named (after the Greek term “dendron,” mean-
ing tree) dendritic cells (DCs).1 Since then, thanks to the work 
of other pioneers of the field including (but not limited to) Anna 
Karolina Palucka and Jacques Banchereau,2-18 the structural and 
functional features of murine and human DCs have been char-
acterized with increasing precision, and DCs have turned out to 

to DC-based anticancer vaccines. This knowledge may indeed 
lead to personalized combination strategies that would 
extend the benefit of DC-based immunotherapy to a larger 
patient population. In addition, widespread enthusiasm has 
been generated by the results of the first clinical trials based 
on in vivo DC targeting, an approach that holds great promises 
for the future of DC-based immunotherapy. In this Trial Watch, 
we will summarize the results of recently completed clinical 
trials and discuss the progress of ongoing studies that have 
evaluated/are evaluating DC-based interventions for cancer 
therapy.
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stromal cells. These paracrine mediators include, but are not lim-
ited to, interferon (IFN) γ, which can be secreted by γδ T cells 
as well as by natural killer (NK) cells; IL-4 and tumor necrosis 
factor α (TNFα), both of which are stored in the granules of mast 
cells; IL-15 and thymic stromal lymphopoietin (TSLP), which are 
secreted by stromal cells.29,30 Another signal that is critical for DCs 
to acquire the ability to launch T-cell immune responses involves 
the ligation of the co-stimulatory receptor CD40 (also known as 
TNFRSF5).31,32 The capacity of DCs to respond to so many stim-
uli reflect a functional elasticity that can be explained by the large 
panel of molecular sensors found in these cells. Indeed, DCs not 
only express multiple pattern-recognition receptors (PRRs) includ-
ing cell surface C-type lectins, cell surface and endosomal Toll-like 
receptors (TLRs), intracellular helicases and NOD-like receptors 
(NLRs), but also a diversified array of cytokine/chemokine recep-
tors.33,34 Of note, most—if not all—adjuvants that are currently 
employed in vaccine formulations primarily act by triggering the 
maturation of DCs.

As compared with iDCs, mature DCs (mDCs) exhibit (1) a 
largely compromised ability to capture antigens, (2) increased 
exposure of MHC Class II molecules at the cell surface, (3) the 
expression of chemokine receptors that are required for their 
migration to lymphoid organs upon antigen uptake (e.g., CCR7), 
and (4) an increased capacity to secrete cytokines/chemokines.20 
In addition, mDCs are highly efficient at eliciting adaptive 
immune responses, much more than other antigen-presenting 
cells (APCs) such as macrophages.35 In this context, different DC 
subsets appear to regulate not only humoral vs. cellular immu-
nity, but also more refined aspects of the latter.36-38 Thus, while 
human CD14+ dermal DCs mainly stimulate naïve B cells to dif-
ferentiate into antibody-producing plasma cells and memory B 
cells, via an IL-12-dependent mechanism, epidermal Langerhans 
cells preferentially stimulate CD8+ T-cell responses through the 
production of IL-15.7,39 At present, it remains unclear to which 
extent the induction of CD8+ T-cell responses by Langerhans 
cells is mediated by the direct cross-presentation of antigens on 
MHC Class I molecules as opposed to the stimulation of CD4+ 
T-cell helper functions. Of note, it has recently been suggested 
that Langerhans cells also mediate tolerogenic functions, at least 
in some settings including allergic contact dermatitis, by directly 
inhibiting CD8+ T cells and/or by activating a specific subset of 
Tregs.40 Irrespective of these unresolved issues, it appears that cir-
culating CD141+ DCs (the human homologs of murine CD8α+ 
DCs) would constitute the DC subset most efficient at cross-pre-
sentation.41-44 Gene knockout studies in mice have demonstrated 
that CD8α+ DCs not only are critical for antigen cross-presen-
tation in vivo, but also promote humoral immunity, perhaps by 
releasing IL-12.45 In line with this notion, targeting antigens to 
CD8α+ DCs in vivo via antibodies that specifically recognize 
their surface marker CLEC9A has been shown to elicit potent 
cytotoxic T lymphocyte (CTL) and antibody responses, even in 
the absence of adjuvants.46

One particular subset of DCs is constituted by plasmacytoid 
DCs (pDCs), which—opposed to their myeloid (or “conven-
tional”) counterparts—have been first identified in humans.1,47,48 
pDCs were named after their morphological resemblance to 

occupy a central position in the immune system. Indeed, DCs 
are able to orchestrate a wide repertoire of immune responses, 
spanning from the development of self-tolerance to the elicitation 
of potent cellular and humoral antigen-specific immunity. This 
is due to 4 main features that are a prerogative of DCs: (1) their 
localization at sites of intense antigen exposure; (2) their compe-
tence to engulf, process and present to T cells large amounts of 
antigens; (3) their ability to respond to a plethora of stimuli, and 
(4) their capacity to mature into multiple, functionally-distinct 
subsets.19 Due to its pioneer discoveries on DCs, Ralph Steinman 
has been awarded—posthumously, for the first time in history—
the 2011 Nobel Prize for Medicine and Physiology.20

DCs derive from bone marrow progenitors and can be found 
in virtually all tissues, but are highly enriched where antigen 
exposure is more intense such as in lymphoid organs, at the body 
surface (i.e., skin, pharynx, esophagus, vagina, ectocervix and 
anus) as well as at internal mucosae (i.e., respiratory system and 
gastrointestinal tract).19,21 DCs exhibit peculiar probing move-
ments (relentlessly forming and retracting cellular processes from 
distinct areas of the cell body), which allow them to continu-
ously monitor the microenvironment for the presence of antigens. 
Antigen uptake can occur in situ, followed by the migration of 
DCs to draining lymph nodes via afferent lymphatics,22 or directly 
within lymph nodes, when soluble antigens reach resident DCs 
through the lymph.23 Of note, distinct immune responses can be 
elicited by DCs depending on the specific site at which antigens 
are taken up.23 This reflects the remarkable functional heteroge-
neity of DCs (see below).

Tissue-resident DCs normally are immature, i.e., they have 
a high capacity for antigen uptake but a limited potential for 
releasing cytokines, and they express (1) MHC Class II mole-
cules mostly in the late endosome-lysosomal compartment, (2) 
low levels of co-stimulatory molecules (e.g., OX40L, CD40, 
CD70, CD86) and (3) particular chemokine receptors.20 Of 
note, immature DCs (iDCs) do not necessarily mature once they 
take up antigens, as maturation requires a complementary set of 
signals from the microenvironment. Importantly, in the absence 
of such signals, iDCs efficiently present antigens to T cells in the 
context of inhibitory interactions. This response, which appears 
to be critical for the development of peripheral self tolerance, can 
be mediated by two distinct mechanisms, namely, the deletion of 
antigen-specific T cell clones (clonal deletion) and the expansion 
of CD4+CD25+FOXP3+ regulatory T cells (Tregs).24 The former 
has been shown to depend on the expression by DCs of surface 
cell death-inducing molecules such as FASL25,26 and PD-L1.27 
Conversely, the latter appears to proceed (at least in part) indi-
rectly, following the release of interleukin (IL)-2 by conventional 
CD4+ cells that would interact—in a MHC Class II-dependent 
fashion—with DCs.28

iDCs can mature, hence becoming able to elicit adaptive T cell-
based immunity, in response to a wide array of environmental signals 
including microbe-associated molecular patterns (MAMPs, e.g., 
lipopolysaccharide, unmethylated CpG DNA, double-stranded 
RNA), damage-associated molecular patterns (DAMPs, e.g., ATP, 
uric acid, HMGB1, heat-shock proteins), immune complexes as 
well as cytokines/chemokines released by neighboring immune or 



anthracyclines (e.g., doxorubicin, mitoxantrone), cyclophospha-
mide and oxaliplatin, has turned out to rely, at least in part, on 
the induction of immunogenic cancer cell death,87-91 a function-
ally distinct type of apoptosis leading to DC-mediated priming 
of a potent antitumor CTL response.92 Along similar lines, mul-
tiple targeted anticancer agents including monoclonal antibod-
ies (e.g., trastuzumab, cetuximab, panitumumab, rituximab)93 
as well as receptor tyrosine kinase inhibitors (e.g., imatinib)94 
appear to mediate therapeutic effects, at least in part, via off-
target immune mechanisms that involve DCs.86

In the same period, a consistent amount of preclinical and 
clinical results has been gathered indicating that DCs under-
lie a very promising immunotherapeutic approach to cancer 
themselves.95 Thus, a large array of cancer vaccination strategies 
based on DCs have been developed, which can be subdivided 
into three main categories.20 The first group of DC-based anti-
cancer vaccines encompasses strategies whereby DCs are gener-
ated by culturing patient-derived hematopoietic progenitor cells 
or monocytes with specific cytokine combinations, loaded with 
tumor-associated antigens (TAAs) ex vivo (by multiple distinct 
means yet invariably in the presence of an adjuvant, to promote 
DC maturation), and eventually re-infused into the patient, 
most often intradermally and in combination with several local 
courses of an adjuvant.20,30 The most common means for the ex 
vivo loading of DCs with TAAs include: (1) the co-incubation 
of DCs with whole tumor cell lysates or with apoptotic tumor 
cell corpses;96 (2) the co-incubation of DCs with purified TAAs 
(encompassing both full-length proteins and short peptides); (3) 
the transfection of DCs with tumor cell-derived mRNA; (4) the 
genetic manipulation of DCs for the endogenous expression of 
TAAs; and (5) the fusion of DCs with tumor cells.97-99 As an 
alternative, autologous DCs are expanded ex vivo (in the absence 
of TAAs), sometimes genetically engineered for the self-provision 
of proliferation/activation signals,100 and then re-infused intra-
tumorally, either before or after a therapeutic intervention.101-104 
Each of these approaches is associated with specific advantages 
and drawbacks whose detailed discussion exceeds the scope of 
this trial watch and can be found elsewhere.98,105

Ex vivo-generated DC-based preparations have been tested 
in cancer patients for more than a decade.30 While objective 
clinical responses have been recorded only in some settings,106 
taken together these studies demonstrate that DC-based vaccines 
exhibit a good safety profile and can elicit the expansion of circu-
lating TAA-specific CD4+ and CD8+ cells.20,30 Importantly, the 
clinical success of DCs as an anticancer intervention has been 
sealed in 2010 with the approval by FDA of a DC-based thera-
peutic vaccine (sipuleucel-T) for use in patients with asymptom-
atic or minimally symptomatic metastatic hormone-refractory 
prostate cancer.107-109

The second group of DC-based anticancer vaccines comprises 
strategies whereby TAAs are delivered to DCs in vivo.98,105,110 Such 
an approach can be achieved by coupling TAAs to monoclonal 
antibodies or other vectors that specifically recognize DC surface 
receptors like CLEC9A, DEC205, DC-SIGN, DCIR or globo-
triaosylceramide (Gb

3
) but requires the co-delivery of DC matu-

ration signals (as otherwise DCs would drive tolerance).3,111-121 In 

antibody-producing plasma cells and were soon recognized as 
potent stimulators of Th1 responses, owing to their ability to 
secrete high quantities of Type I IFN (in both mice and humans) 
and IL-12 (only in mice).49-51 Actually, both mDCs and pDCs are 
known to secrete Type I IFN in response to an array of stimuli, 
but for the latter this array is much larger than for the former, 
encompassing live and inactivated viruses as well as self-nucleic 
acids. Most likely, this is due to the fact that—at odds with their 
myeloid counterparts—pDCs express both TLR7 and TLR9 in 
the endosomal compartment, providing them with a superior 
capacity to detect MAMPs and DAMPs.52-54

Given their critical role at the interface between innate and 
adaptive immune responses, it is not surprising that DCs are 
involved in the pathophysiology of multiple human diseases 
involving immunity, including (though perhaps not limited to) 
infection, chronic inflammation, autoimmunity and allergy.19,55 
For instance, the specific depletion of DCs has been experimen-
tally associated with an increased susceptibility to Mycobacterium 
tuberculosis,56 Toxoplasma gondii,57 herpes simplex virus Type I 
and II,58 cytomegalovirus,59 and lymphocytic choriomeningitis 
virus infection.59,60 In addition, several pathogens have devised 
strategies for avoiding the activation of DCs,61-64 hijacking DC 
functions toward the establishment of a non-protective Th2 
response65,66 or even exploiting DCs for replication.19,67 Along 
similar lines, the tolerogenic functions of iDCs appears to be 
compromised in several autoimmune disorders including, but not 
limited to, psoriasis,68,69 systemic lupus erythematosus (SLE),70 
dermatomyositis,71,72 and inflammatory bowel disease,73-75 as well 
as in allergic conditions, a setting in which TSLP may play a 
prominent role.76,77 Of note, recent results indicate that pDCs 
may actively contribute to the pathogenesis of SLE, owing to 
their capacity to respond to the so-called neutrophil extracellular 
traps (i.e., complexes containing self DNA and pro-inflammatory 
molecules that are released by neutrophils in the course of SLE) 
by secreting large amounts of Type I IFN.78,79

According to the currently accepted model of immunoediting, 
neoplasms acquire the ability to develop and grow in spite of a pro-
ficient immune system in three sequential steps.80,81 Initially, the 
growth of cancer cells is efficiently controlled, owing to the elicita-
tion of robust tumor-specific immune responses (elimination). As 
the elimination phase is normally unable to completely eradicate 
malignant cells, some of them may acquire alterations that either 
reduce their immunogenicity or increase their resistance to the 
cytotoxic functions of the immune system (equilibrium). Such cells 
eventually grow out uncontrolled (escape), leading to clinically 
manifest cancer.80,81 Often, the equilibrium/escape phases occur 
along with the establishment of an immunosuppressive local micro-
environment that involves, among multiple mechanisms,82,83 the 
conditioning of tumor-infiltrating DCs toward a tolerogenic phe-
notype.84,85 Thus, similar to invading pathogens, malignant cells 
evolve mechanisms for the subversion of DC-mediated responses.

Nevertheless, during the last two decades, DCs have been 
shown to provide a prominent contribution to the efficacy of 
multiple chemotherapeutic and immunotherapeutic antican-
cer regimens.86 Thus, the therapeutic efficacy of conventional 
chemotherapeutics including, though probably not limited to, 
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membrane-surrounded vesicles that are released by a wide range 
of mammalian cell types, including neoplastic cells and DCs.125-

127 Originating from the fusion of multivesicular bodies with the 
plasma membrane, exosomes have been shown to modulate mul-
tiple biological functions, including cell-to-cell communication 
and membrane dynamics.125-127 DC-derived exosomes are not 
only highly enriched in MHC Class II molecules (100-fold, as 
compared with DCs), but also can be produced in conditions 
that result in the expression of high levels of co-stimulatory mol-
ecules including CD40, CD80 and CD86.128 In line with these 
biological properties, DC-derived exosomes are fully capable of 
activating adaptive immune responses once loaded with TAAs 
and inoculated in vivo in suitable animal models.122,129-131

For the development of efficient antitumor vaccines, great 
efforts have been dedicated at the identification of antigens 

vivo DC targeting is advantageous in that it does not require the 
expensive and time-consuming generation of clinical grade DC 
preparations, but so far has been explored to limited extents, espe-
cially in the clinical setting. Another advantage of this approach, 
at least on theoretical grounds, is that chimeric proteins can 
be designed allowing for the simultaneous delivery of antigens 
to DCs and for the provision of specific activation signals (for 
instance upon the engagement of CLEC7A or CD40).20 This 
said, further insights into the mechanisms that precisely regulate 
immune responses elicited by the in vivo delivery of TAAs to 
DCs are required for this promising strategy to be translated into 
a clinical reality.20

The third class of DC-based immunotherapeutic interven-
tions against cancer includes approaches based on DC-derived 
exosomes.122-124 Exosomes are small (30–90 nm in diameter), 

Table 1. Clinical trials evaluating DCs loaded ex vivo with tumor cell lysates or apoptotic tumor cells as an immunotherapeutic intervention against cancer.*

Approach Indications Trials Phase Status Notes Ref.

DCs pulsed with 
apoptotic bodies

AML 1 I-II Recruiting As single agent NCT01146262

Brain tumors 1 I
Active, not 
recruiting

As single agent NCT00893945

DCs pulsed with 
tumor cell lysates

B-cell lymphoma  
Multiple myeloma

1 I-II Unknown As single agent NCT00937183

Brain tumors 2
I Suspended Combined with imiquimod NCT01171469

II Recruiting Combined with imiquimod or polyIC NCT01204684

Breast cancer 1 II Recruiting As single agent NCT01431196

Colorectal cancer 2 II Recruiting As single agent
NCT01348256

NCT01413295

Ewing’s sarcoma 
Neuroblastoma 

Rhabdomyosarcoma
1 I-II Suspended Combined with IL-4 NCT00923351

Glioblastoma 2 II Recruiting
Combined with radiotherapy, surgery  

and temozolomide
NCT01213407

NCT01567202

Glioma 1 I-II Not yet recruiting Combined with CIK cells and IL-2 NCT01235845

Melanoma 1 II
Active, not 
recruiting

As single agent NCT01042366

Mesothelioma 1 I Recruiting Combined with cyclophosphamide NCT01241682

Ovarian cancer 3

0 Recruiting

As single agent

NCT01132014

I
Active, not 
recruiting

NCT00683241

II Recruiting NCT00703105

Prostate cancer 1 I
Active, not 
recruiting

Combined with androgen ablation NCT00970203

Renal cell carcinoma 2
II

Recruiting
Combined with bevacizumab, IFNα and IL-2 NCT00913913

I-II Combined with CIK cells NCT00862303

Reproductive tract cancer 1 I Recruiting
Combined with anti-CD3/anti-CD28-stim-
ulated autologous T-cells, bevacizumab, 

cyclophosphamide and fludarabine
NCT01312376

Solid tumors 1 II Unknown Combined with GM-CSF and IFNα-2a NCT00610389

AML, acute myeloid leukemia; CIK, cytokine-induced killer; DC, dendritic cell; GM-CSF, granulocyte macrophage colony-stimulating factor; IFN, inter-
feron; IL, interleukin; polyIC, polyinosinic-polycytidylic acid. *Started after January, 1st 2008.
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In Solid Tumors (RECIST) have recently been shown to be inap-
propriate for assessing the clinical efficacy of immunotherapeutic 
interventions.20,221,222 In spite of this (perhaps only apparently) 
moderate rate of clinical success, some studies were able to corre-
late the development of antitumor immune responses (as assessed 
by the appearance of delayed Type IV hypersensitivity, DTH) 
with improved clinical outcomes,164,179,187,219,220 thus maintaining 
the interest in this immunotherapeutic strategy high.

DCs matured ex vivo in the presence of apoptotic tumor cells 
are being tested, as a single immunotherapeutic intervention in 
acute myeloid leukemia (AML) patients (NCT01146262) as well 
as in subjects affected by brain neoplasms (NCT00893945). 
In addition, DCs loaded ex vivo with tumor cell lysates (alone 
or in the presence of the immunostimulatory protein key-
hole limpet hemocyanin, KLH) are being employed in B-cell 
lymphoma and MM patients, as a standalone intervention 
(NCT00937183); in individuals affected by brain tumors, com-
bined with the TLR3 agonist polyinosinic-polycytidylic acid 
(polyIC) and/or the TLR7 agonist imiquimod (NCT01171469, 
NCT01204684); in neuroblastoma and sarcoma patients, com-
bined with IL-4 (NCT00923351); in GBM patients, associated 
with the standard therapeutic approach involving radiotherapy, 
surgery and temozolomide (NCT01567202, NCT01213407); 
in subjects affected by glioma, in combination with cytokine-
induced killer (CIK) cells and IL-2 (NCT01235845); in breast 
carcinoma (NCT01431196), melanoma (NCT01042366), 
CRC (NCT01348256; NCT01413295) and ovarian cancer 
(NCT00683241, NCT00703105, NCT01132014) patients, 
as a single immunotherapeutic intervention; in mesothelioma 
patients, combined with cyclophosphamide (NCT01241682); 
in prostate cancer patients, combined with androgen ablation 
(NCT00970203); in individuals affected by RCC, combined 
with either CIK cells or with the vascular endothelial growth 
factor (VEGF)-targeting monoclonal antibody bevacizumab 
plus an immunostimulatory cocktail including IL-2 and IFNα 
(NCT00862303, NCT00913913); in patients with tumors of 
the reproductive tract, together with bevacizumab, cyclophos-
phamide, fludarabine and anti-CD3/anti-CD8-stimulated autol-
ogous T cells (NCT01312376); and in patients with multiple 
solid tumors, combined with granulocyte macrophage colony-
stimulating factor (GM-CSF) plus IFNα (NCT00610389). Two 
of these trials (NCT01171469, NCT00923351) have been sus-
pended, for unspecified reasons, while all the others are listed as 
active (source www.clinicaltrials.gov). Intriguingly, two of these 
trials involve the use of autologous DCs loaded with oxidized 
tumor cell lysates, a procedure that has been associated with 
increased immunogenicity in preclinical settings.223

Table 1 reports recent (studies registered at www.clinicaltri-
als.gov later than 2008, January 1st) clinical trials evaluating, 
in oncological settings, the safety and efficacy of DCs loaded ex 
vivo with tumor cell lysates or apoptotic tumor cells.

DCs Pulsed Ex Vivo with Purified TAAs

The notion that DCs exposed ex vivo to purified/recombinant 
TAAs (be them full-length proteins or short peptides) can elicit 

that would yield to robust, therapeutically beneficial immune 
responses. This is obviously an important parameter, potentially 
influencing (though perhaps not entirely dictating) the outcome 
of DC-based (as well as of other forms of) immunotherapy. 
Candidates include mutated antigens, which—at least theoreti-
cally—can be recognized as non-self by the immune system, as 
well as wild type self antigens.132,133 The latter have often been 
selected as they may lead to the development of broadly appli-
cable anticancer vaccines. Still, T-cell clones with a high avidity 
for common self antigens are likely to be deleted via negative 
selection, and often memory T cells recognizing these anti-
gens include immunosuppressive Tregs.134,135 Importantly, the 
use of mutated antigens may circumvent these limitations, yet 
it requires the identification of antigens on a fully personalized 
basis, an approach that only now starts to become feasible thanks 
to the development of efficient RNA sequencing technologies.

Along the lines of our Trial Watch series,136-141 here we will 
discuss recently completed or ongoing clinical trials that have 
evaluated/are evaluating DC-based preparations as therapeutic 
anticancer vaccines.

DCs Loaded Ex Vivo with Tumor Cell Lysates or 
Apoptotic Bodies

By the late 1990s/early 2000s, the capacity of DCs matured 
ex vivo in the presence of whole tumor cell lysates or apoptotic 
tumor cells to elicit therapeutic antitumor immunity in vivo 
had been firmly established.142-147 Since then, great experimental 
efforts have been dedicated to the identification of factors that 
may influence the immunological outcome of this approach.20 
Of note, it has been suggested that DCs loaded with apoptotic 
tumor cells would be superior to DCs pulsed with tumor cell 
lysates, to DCs fused with tumor cells as well as to DCs trans-
fected with tumor-derived mRNA in eliciting immune responses 
in vivo.148-151

During the last decade, a wide array of Phase I/II clinical trials 
has been launched to test the safety and efficacy of this therapeutic 
strategy in cancer patients. These studies have been performed in 
a very wide range of settings, encompassing B-cell lymphoma,152 
chronic lymphocytic leukemia (CLL),148,153-156 cutaneous T-cell 
lymphoma (CTCL),157 glioma,158-161 glioblastoma multiforme 
(GBM),162-165 thyroid carcinoma,166,167 non-small cell lung carci-
noma (NSCLC),168-170 breast carcinoma,171,172 mesothelioma,173 
hepatocellular carcinoma (HCC),174,175 intrahepatic cholangio-
carcinoma,176 melanoma,177-193 pancreatic carcinoma,194 colorec-
tal carcinoma (CRC),195-200 renal cell carcinoma (RCC),171,201-210 
prostate cancer,211,212 pediatric malignancies,213-215 and mixed 
advanced cancers.216-219 Taken together, the results of these stud-
ies were very encouraging as they indicated that (1) DCs pulsed 
ex vivo with tumor cell lysates or with cancer cells succumbing to 
apoptosis can be administered to patients in the absence of partic-
ular toxicity, and that (2) this approach leads to the activation of 
an immune response in a very large proportion of cases. This said, 
objective clinical responses were reported in a relatively limited 
number of studies,152,160,164,165,175,179,180,187,189,191,194,195,198,200,202,209,219,220 
perhaps linked to the fact that the Response Evaluation Criteria 
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Table 2. Clinical trials evaluating DCs loaded ex vivo with purified TAAs as an anticancer immunotherapeutic intervention.*

Indications Trials Phase Status TAA Notes Ref.

AML 1 I Recruiting
MAGE-A1 MAGE-A3 

NY-ESO-1
Combined with decitabine NCT01483274

Breast cancer 4

I
Recruiting

iLRP

As single agent

NCT00715832

I-II
HER-2 NCT00923143

Unknown iLRP NCT00879489

II Withdrawn p53
Combined with an aromatase inhibitor,  

IL-2 and thymosin α1
NCT00935558

Glioblastoma 1 II Recruiting Multiple As single agent NCT01280552

Glioma 2
I

Active, not recruiting GAAs As single agent
NCT00612001

I-II NCT00766753

Hematological 
malignancies

1 I-II Recruiting KLH WT1 Combined with IL-4 NCT00923910

Hepatocellular  
carcinoma

1 I-II Unknown AFP As single agent NCT01128803

Melanoma 6

I-II

Completed Various Combined with daclizumab NCT00847106

Recruiting

MAGE-A1 MAGE-A3 
MART-1 As single agent

NCT01082198

Various NCT01189383

gp100 Combined with cyclophosphamide NCT00683670

II

Active, not recruiting Various As single agent NCT00722098

Unknown MART-1
Combined with IL-2, non-myeloablative  

chemotherapy and transgenic T cells
NCT00910650

Neuroblastoma 
Sarcoma

2 I

Recruiting
MAGE-A1 MAGE-A3 

NY-ESO-1
Combined with decitabine

and imiquimod
NCT01241162

Terminated
MAGE-A1 MAGE-A3 

NY-ESO-1
As single agent NCT00944580

NSCLC 1 n.a. Not yet recruiting Cyclin B1 As single agent NCT01398124

Ovarian cancer 3

I Recruiting Survivin

As single agent

NCT01456065

II Active, not recruiting
MUC1

NCT01068509

II Enrolling by invitation NCT01617629

Pancreatic cancer 3

I
Recruiting Multiple As single agent NCT01410968

Suspended

KLH

Combined with radiotherapy NCT00843830

II Active, not recruiting
Alone or combined with a TNFα-encoding 

vector and radiotherapy
NCT00868114

Prostate cancer 10

I Active, not recruiting TARP
As single agent

NCT00972309

I-II Completed KLH PAP PSA NCT01171729

II

Active, not recruiting

PAP fused to 
GM-CSF

Sipuleucel-T, as single agent

NCT00715078

NCT00715104

NCT00901342

Recruiting

NCT01338012

NCT01477749

Sipuleucel-T, combined with  
hormonotherapy

NCT01487863

NCT01431391

III Active, not recruiting Sipuleucel-T, as single agent NCT00779402

AML, acute myeloid leukemia; DC, dendritic cell; GM-CSF, granulocyte macrophage colony-stimulating factor; IL, interleukin; KLH, keyhole limpet 
hemocyanin; n.a., not available; NSCLC, non-small cell lung carcinoma; PAP, prostate acid phosphatase; PSA, prostate-specific antigen; TAA, tumor-
associated antigen; TNF, tumor necrosis factor; WT1, Wilms’ tumor 1. *Started after January, 1st 2008.
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this trend is provided by prostate cancer. Indeed, DCs loaded ex 
vivo with specific TAAs, in particular prostate acid phosphatase 
(PAP), were soon demonstrated to elicit clinical responses in a 
consistent fraction of prostate carcinoma patients,298-304 fostering 
the launch of multiple Phase III clinical trials,107,313,314 including a 
large, randomized, double-blind, placebo-controlled multicenter 
study.107 This latter trial unequivocally demonstrated that autolo-
gous DCs loaded and activated ex vivo with recombinant PAP 
fused to GM-CSF (an immunotherapeutic preparation known 
as sipuleucel-T) are capable of extending the overall survival of 
patients affected by asymptomatic or minimally symptomatic 
metastatic hormone-refractory prostate cancer by approximately 
4 mo.107 Shortly after the release of these results, sipuleucel-T was 
approved by the FDA for use in humans and begun to be com-
mercialized under the label Provenge®, even though a meticulous 
phenotypic characterization of the cellular component of this 
product has not been performed to date.109

Recently (studies registered at www.clinicaltrials.gov later than 
2008, January 1st), DCs loaded ex vivo with purified TAAs have 
been (and, often, are still being) tested in AML, neuroblastoma 
and sarcoma patients (targeted TAAs: MAGE-A1, MAGE-A3, 
and NY-ESO-1), as a single intervention (NCT00944580), in 
combination with decitabine (NCT01483274) or associated 
with decitabine plus imiquimod (NCT01241162); in individu-
als affected by various hematological malignancies, combined 
with IL-4 (NCT00923910); in breast carcinoma patients (tar-
geted TAAs: iLRP, HER2 and p53), either as a standalone inter-
vention (NCT00715832, NCT00879489, NCT00923143) or 
combined with an aromatase inhibitor, IL-2 and thymosin α1 
(NCT00935558); in individuals affected by GBM (targeted TAAs: 
multiple; NCT01280552) and glioma (targeted TAAs: GAA 
and others; NCT00612001, NCT00766753), as a single immu-
notherapeutic approach; in melanoma patients (targeted TAAs: 
gp100, MAGE-A1, MAGE-A3, MART-1, tyrosinase and others, 
sometimes in combination with viral peptides), as a standalone 
intervention (NCT00722098, NCT01082198, NCT01189383) 
or combined with cyclophosphamide (NCT00683670), dacli-
zumab (NCT00847106), or IL-2, non-myeloablative condi-
tioning chemotherapy and transgenic T cells (NCT00910650); 
in subjects affected by NSCLC (targeted TAA: cyclin B1), as a 
single therapeutic agent (NCT01398124); in HCC patients (tar-
geted TAA: AFP), as a standalone intervention (NCT01128803); 
in ovarian cancer patients (targeted TAAs: MUC1, survivin), 
as a single immune therapeutic intervention (NCT01068509, 
NCT01456065, NCT01617629); in patients bearing pancre-
atic cancer (targeted TAAs: multiple, loaded in combination 
with polyIC or KLH), either as a single agent (NCT00868114, 
NCT01410968) or combined with an adenoviral vector encoding 
TNFα and/or radiotherapy (NCT00868114, NCT00843830); 
and in prostate cancer patients (targeted TAAs: PAP, PSA, 
TARP, sometimes loaded in combination with KLH), as a stand-
alone anticancer measure (NCT00972309, NCT01171729). All 
these clinical trials are Phase I/II studies, and the vast majority 
of them are currently ongoing. A few exceptions are constituted 
by NCT00935558, which has been withdrawn due to the lack 
of patients enrolled, NCT00843830, which has been suspended 

both protective and therapeutic anticancer immune responses in 
vivo was first demonstrated in 1995, independently, by the labo-
ratories of Michael Lotze and Cornelius Melief.224,225 In the fol-
lowing few years, the therapeutic potential of antigen-pulsed DCs 
was confirmed in additional tumor models,226,227 the underlying 
molecular and cellular circuitries begun to the characterized,228-231 
and several strategies for increasing the immunogenicity of this 
approach were devised, encompassing the genetic manipulation 
of DCs for the emission of immunostimulatory (e.g., IL-12),232 
proliferative (e.g., GM-CSF),233 or chemotactic signals (e.g., 
lymphotactin).234,235 These research threads have never been dis-
missed since, leading to an ever increasing understanding of the 
biology that underlie the immunogenicity of antigen-pulsed DCs 
and to an ever more refined arsenal of protocols for ex vivo anti-
gen loading.20,105,236 As a standalone example, protein transduction 
(achieved by fusing TAAs to protein transduction domains such 
as that of HIV-1 Tat) has been developed as a means to increase 
the accumulation of purified proteins/peptides in the cytosol of 
DCs, resulting in the preferential processing of antigens by the 
proteasome and their presentation on MHC Class I molecules.237 
Of note, some B-cell neoplasms including follicular, non-Hodg-
kin’s and mantle cell lymphoma as well as multiple myeloma 
(MM) produce tumor-specific immunoglobulins that, owing 
to their idiotypic determinants, can be exploited as TAAs.238,239 
Although DC-based interventions against such TAAs have been 
called “anti-idiotypic vaccines,” they are conceptually equivalent 
to other approaches employing DCs as a means to elicit a tumor-
specific immune response, the only difference being the nature 
and specificity of the TAA.238,239

The results of the first pilot study testing the safety of DCs loaded 
ex vivo with purified TAAs (in this case, idiotypic determinants) in 
cancer patients were published in 1996, and were fairly encourag-
ing: all four follicular B-cell lymphoma patients developed measur-
able antitumor cellular immune responses, and clinical responses 
were observed in three of them (one complete regression, one partial 
regression, and one complete resolution of disease, as assessed by 
the disappearance of disease-specific molecular markers).240 Since 
then, this approach has been tested in a consistent number of Phase 
I/II clinical trials that enrolled patients affected by a wide array 
of neoplasms including chronic myeloid leukemia (CML),241,242 
myeloma,243-249 sarcoma,218,250 glioma,251,252 GBM,253-255 breast car-
cinoma,256-261 NSCLC,262-265 melanoma,179,184,191,193,266-282 HCC,283 
pancreatic carcinoma,284,285 gastrointestinal malignancies,286,287 
biliary tract cancer,284 CRC,262,264,288-290 RCC,291-293 ovarian carci-
noma,218,256,294,295 cervical carcinoma,296,297 prostate cancer,259,298-311 
and other advanced malignancies.312 Altogether, these clinical 
studies demonstrated that the use of DCs loaded ex vivo with 
purified TAAs is safe and results in the activation of TAA-specific 
immunity in a large proportion of patients, some of whom also 
exhibit partial or complete clinical responses.

In spite of these encouraging results and perhaps linked to 
the lack of appropriate surrogate markers to assess the clinical 
efficacy of immunotherapy-based clinical trials,221,222 the vast 
majority of studies investigating the anticancer activity of DCs 
loaded ex vivo with purified TAAs have not yet reached Phase 
III (see below), and perhaps never will. One notable exception to 
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Table 3. Clinical trials evaluating DCs transfected ex vivo with tumor-derived mRNA or engineered to express TAAs*

Approach Indications Trials Phase Status TAA/RNA Notes Ref.

DCs engineered to 
express TAAs

Breast cancer 1 n.a. Recruiting

p53

Combined with 1-MT NCT01302821

Metastatic solid 
tumors

1 II Terminated

Combined with anti-p53  
TCR-transduced lymphocytes,  

cyclophosphamide, fludarabine, 
G-CSF and IL-2

NCT00704938

Prostate cancer 1 I-II Recruiting MUC1 As single agent NCT00852007

SCLC 3

II
Active, not 
recruiting

p53

Combined with paclitaxel ± 
ATRA

NCT00617409

II Recruiting Combined with ATRA NCT00618891

II Terminated
Combined with ex vivo  

expanded T cells
NCT00776295

DCs transfected 
with TC-derived 

mRNA

AML 1 I Completed WT1 As single agent NCT00834002

AML CML  
MM

1 II
Enrolling by 

invitation
WT1 As single agent NCT00965224

Brain tumors 1 I-II
Enrolling by 

invitation
TSC-derived RNA As single agent NCT00846456

Breast cancer

Melanoma
1 I Recruiting hTERT p53 Survivin

Combined with  
cyclophosphamide

NCT00978913

Glioblastoma 4

I

Active, not 
recruiting

CMV p65

As single agent NCT00639639

Combined with adoptive T-cell 
adoptive transfer

NCT00693095

Recruiting TSC-derived RNA Combined with bevacizumab NCT00890032

I-II
Active, not 
recruiting

CMV p65
Combined with adoptive  

T-cell transfer, daclizumab 
and imiquimod

NCT00626483

Medulloblastoma 
Neuroectodermal 

tumors
1 I-II Recruiting TC-derived RNA

Combined with adoptive T-cell 
transfer

NCT01326104

Melanoma 9

I

Active, not 
recruiting

CD40L CD70  
TLR4

As single agent NCT01066390

Recruiting

gp100 MAGE-3 
MART-1 Tyrosinase

As single agent NCT00672542

Combined DCs transfected  
with GITRL-encoding RNA

NCT01216436

TRP2 As single agent NCT01456104

I-II

Active, not 
recruiting

gp100 Tyrosinase

As single agent

NCT00940004

CD40L CD70  
TLR4

NCT01530698

hTERT Survivin 
TC-derived RNA

Combined with temozolomide NCT00961844

Completed TC-derived RNA

As single agent

NCT01278940

Recruiting gp100 Tyrosinase NCT00929019

AML, acute myeloid leukemia; ATRA, all-trans retinoic acid; CML, chronic myeloid leukemia; CMV, cytomegalovirus; DC, dendritic cell; G-CSF, granu-
locyte colony-stimulating factor; IL, interleukin; MM, multiple myeloma; PAP, prostate acid phosphatase; PSA, prostate-specific antigen; SCLC, small 
cell lung carcinoma; TAA, tumor-associated antigen; TC, tumor cell; TCR, T-cell receptor; hTERT, human telomerase reverse transcriptase; TLR, Toll-like 
receptor; TSC, tumor stem cell; WT1, Wilms’ tumor 1. *Started after January, 1st 2008.
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in vitro) as a means to load DCs for the development of antican-
cer vaccines begun to rise in the late 1990s, thanks to the pioneer 
work of Eli Gilboa and colleagues at the Duke University.315-317 
Approximately in the same period, the efficacy of naked DNA-
based vaccines (most often consisting in the electroporation-medi-
ated delivery of constructs for the expression of TAAs) turned out 
to be enormously increased by protocols resulting in the preferen-
tial transfection of DCs, in vivo.318-320 Following this discovery, 
several laboratories worldwide demonstrated that the infusion of 
DCs engineered ex vivo with (often—but not always—adenovi-
ral)321 vectors for the expression of TAAs elicits superior immune 
responses, in vivo, as compared with the direct electroporation of 
DNA-based vaccines, a notion that in a few years was extended 
to a wide array of different TAAs and tumor models.322-332 Along 
similar lines, in the 2000–2010 decade, several reports provided 
unequivocal proof that—upon re-infusion—DCs pulsed ex vivo 
with tumor-derived RNA are capable of eliciting both protective 
and therapeutic anticancer immune responses.333-343

During the last decade, RNA-pulsed DCs as well as DCs 
engineered for the endogenous expression of TAAs have been 
evaluated as anticancer immunotherapeutics in a few Phase I/II 
clinical trials. In particular, DCs electroporated with the mRNA 
coding for full-length Wilms’ tumor 1 (WT1) have been tested 
in AML patients;344,345 DCs loaded with the mRNA encoding 

Table 3. Clinical trials evaluating DCs transfected ex vivo with tumor-derived mRNA or engineered to express TAAs*

Approach Indications Trials Phase Status TAA/RNA Notes Ref.

DCs transfected 
with TC-derived 

mRNA

Ovarian cancer 2

I

Recruiting

hTERT Survivin

As single agent

NCT01456065

I-II
hTERT Survivin  

TSC-derived RNA
NCT01334047

Prostate cancer 4

II Recruiting
hTERT PAP  

PSA Survivin
Combined with docetaxel NCT01446731

I-II

Completed TC-derived RNA

As single agent

NCT01278914

Recruiting
hTERT Survivin 
TC-derived RNA

NCT01197625

Withdrawn hTERT NCT01153113

Renal cell carcinoma 2

II

Active, not 
recruiting

CD40L  
TC-derived RNA

Combined with sunitinib

NCT00678119

Enrolling by 
invitation

NCT01482949

III
Not yet 

recruiting
NCT01582672

Solid tumors I-II
Enrolling by 

invitation
WT1 As single agent NCT01291420

AML, acute myeloid leukemia; ATRA, all-trans retinoic acid; CML, chronic myeloid leukemia; CMV, cytomegalovirus; DC, dendritic cell; G-CSF, granu-
locyte colony-stimulating factor; IL, interleukin; MM, multiple myeloma; PAP, prostate acid phosphatase; PSA, prostate-specific antigen; SCLC, small 
cell lung carcinoma; TAA, tumor-associated antigen; TC, tumor cell; TCR, T-cell receptor; hTERT, human telomerase reverse transcriptase; TLR, Toll-like 
receptor; TSC, tumor stem cell; WT1, Wilms’ tumor 1. *Started after January, 1st 2008.

(listed as temporarily closed to accrual), NCT00944580, which 
has been prematurely terminated (due to unexpectedly low screen-
ing results leading to poor accrual) and NCT01171729, which has 
been completed (though results have not been released yet).

Sipuleucel-T has recently been/is currently being tested, either 
as a single intervention or combined with hormonotherapy, in 
eight distinct clinical trials (including seven Phase II and one Phase 
III studies) enrolling prostate cancer patients (NCT00715078, 
NCT00715104, NCT00779402, NCT00901342, NCT01338012, 
NCT01431391, NCT01477749, NCT01487863). These trials 
aim at assessing the clinical reliability of different protocols for the 
derivation of sipuleucel-T from autologous DCs as well as the use 
of sipuleucel-T as a (partially) off-label medication, for instance 
in patients affected by hormone-sensitive, rather than hormone-
refractory, prostate cancer (source www.clinicaltrials.gov).

Table 2 collects recent clinical trials evaluating the safety and 
efficacy of DCs loaded ex vivo with purified TAAs in cancer 
patients.

DCs Pulsed with Tumor-Derived mRNA or 
Engineered for the Expression of TAAs

The interest in using RNA (be it total RNA extracted from bulk 
tumor cells or the mRNA coding for a specific TAA synthesized 

(continued)
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with cyclophosphamide (NCT00978913); in melanoma patients 
(transduced RNAs: gp100, hTERT, MAGE-3, MART-1, p53, 
survivin, TRP2, tyrosinase and tumor cell-derived RNA, some-
times in combination with RNAs coding for immunostimulatory 
proteins including CD40L, CD70 and TLR4), as a standalone 
intervention (NCT00672542, NCT00929019, NCT00940004, 
NCT01066390, NCT01278940, NCT01456104, 
NCT01530698) or in combination with cyclophosphamide 
(NCT00978913), temozolomide (NCT00961844) or DCs 
transfected with RNAs encoding immune modulators such as 
GITRL (NCT01216436); in subjects affected by ovarian can-
cer (transduced RNAs: hTERT, survivin and tumor cell-derived 
RNA), as a single agent (NCT01334047, NCT01456065); in 
prostate cancer patients (transduced RNAs: PAP, PSA, hTERT, 
survivin and tumor cell-derived RNA), as a standalone inter-
vention (NCT01153113, NCT01197625, NCT01278914) or 
combined with docetaxel (NCT01446731); in RCC patients 
(transduced RNAs: tumor cell-derived RNA plus the mRNA 
encoding CD40L), invariably in combination with the tyrosine 
kinase inhibition sunitinib (NCT00678119, NCT01482949, 
NCT01582672); and in patients affected by advanced solid 
tumors (transduced TAA-encoding RNA: WT1), as a single 
immunotherapeutic intervention (NCT01291420).

In addition, DCs engineered to stably express p53 as a TAA 
have been/are being tested in combination with 1-methyl-d-tryp-
tophan (an inhibitor of indoleamine 2,3-dioxygenase, IDO) in 
breast cancer patients (NCT01302821), combined with chemo-
therapy, IL-2, granulocyte colony-stimulating factor (G-CSF, fil-
grastim) and anti-p53 TCR-transduced lymphocytes in patients 
with progressive or recurrent metastatic cancer (NCT00704938), 
and in combination with all-trans retinoic acid, paclitaxel, all-
trans retinoic acid plus paclitaxel or ex vivo expanded T cells in 
SCLC (NCT00617409, NCT00618891, NCT00776295). Along 
similar lines, MUC1-expressing DCs are being investigated as 
a single immunotherapeutic intervention against prostate can-
cer (NCT00852007). Most of these studies are currently ongo-
ing, with a few exceptions. These include NCT00704938 and 

the carcinoembryonic antigen (CEA) have been used in CRC 
patients289 as well as in patients with advanced CEA-expressing 
malignancies;346 DCs transduced with the mRNA coding for 
the human telomerase reverse transcriptase (hTERT) have been 
tested in a subject bearing pancreatic cancer,347 and in pros-
tate cancer patients;348 the safety and efficacy of DCs trans-
fected with the mRNA encoding the prostate-specific antigen 
(PSA)349 or with RNA derived from allogeneic prostate cancer 
cell lines350,351 have been investigated in prostate cancer patients; 
and DCs pulsed with autologous tumor RNA (alone or com-
bined with KLH) have been tested in patients affected by various 
brain tumors,352 glioma,353 neuroblastoma,354 melanoma,350,355 
CRC,356 and RCC.357 In addition, DCs stably expressing TAAs 
(most often upon adenoviral transduction) have been tested in 
patients with advanced (breast, pancreatic and papillary) cancers 
(expressed TAA: mucin 1),358 small cell lung carcinoma (SCLC, 
expressed TAA: mucin p53),359,360 and melanoma (expressed 
TAAs: tyrosinase, melan A and gp100).361,362 Taken together, 
these studies demonstrated that RNA-loaded as well genetically-
modified DCs can be safely administered to cancer patients, 
leading (in a fraction of cases) to the activation of an antitumor 
immune response.

Recently (studies registered at www.clinicaltrials.gov later 
than 2008, January 1st), DCs transduced (most often by electro-
poration) with RNA have been (and, often, are still being) tested 
in patients affected by hematological malignancies encompass-
ing acute myeloid leukemia (AML), CML and MM (transduced 
TAA-encoding RNA: WT1), as a single immunotherapeutic 
intervention (NCT00834002, NCT00965224); in individu-
als affected by brain tumors (including GBM) and neuroecto-
dermal tumors (transduced RNAs: CMV p65 or tumor stem 
cell-derived RNA), either as a single agent (NCT00639639, 
NCT00846456) or combined with adoptive T-cell transfer 
(NCT00626483, NCT00693095, NCT01326104), bevaci-
zumab (given as an adjuvant, NCT00890032) or with the tetanus 
toxoid (NCT00639639); in breast cancer patients (transduced 
TAA-encoding RNAs: hTERT, p53 and survivin), combined 

Table 4. Clinical trials evaluating dendritomes as an immunotherapeutic intervention in cancer patients*

Indications Trials Phase Status Notes Ref.

AML 1 II Recruiting Combined with CT-011 or GM-CSF NCT01096602

B-cell lymphoma  
Multiple myeloma

1 I-II Unknown As single agent NCT00937183

Breast cancer 1 I-II Recruiting Alone or combined with IL-12 NCT00622401

Melanoma 2
I-II Unknown

As single agent
NCT00626860

II Active, not recruiting NCT01042366

Non-Hodgkin lymphoma 1 n.a. Recruiting
Combined with cryotherapy  

and a pneumococcal polyvalent vaccine
NCT01239875

Renal cell carcinoma 2
I-II Completed As single agent NCT00625755

II Recruiting Combined with CT-011 NCT01441765

Reproductive tract cancer 1 II
Active,

not recruiting
Combined with GM-CSF ± imiquimod NCT00799110

AML, acute myeloid leukemia; GM-CSF, granulocyte macrophage colony-stimulating factor; IL-12, interleukin-12; n.a., not available. *Started after January, 
1st 2008.
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carcinoma patients, alone or combined with recombinant IL-12 
(NCT00622401); in melanoma patients, as a standalone inter-
vention (NCT00626860, NCT01042366); in non-Hodgkin 
lymphoma patients, in combination with cryotherapy and a pneu-
mococcal polyvalent vaccine (NCT01239875); in RCC patients, 
alone or together with CT-011 (NCT00625755, NCT01441765); 
as well as in subjects affected by neoplasms of the reproductive 
tract, combined with GM-CSF alone or GM-CSF plus imiqui-
mod (NCT00799110). Only one of these studies is listed by offi-
cial sources as completed (NCT00625755), yet its results have 
not been released yet (source www.clinicaltrials.gov).

Table 4 reports recent clinical trials evaluating the safety and 
efficacy of dendritomes for cancer therapy.

Other DC-Based Approaches

In addition to the strategies described above, several other 
approaches have been undertaken, with variable rates of suc-
cess, to harness the immunogenic potential of DCs for cancer 
therapy.30,394 These include, but are not limited to, the intratu-
moral administration of DCs expanded ex vivo (but not loaded 
with TAAs), either preceding or ensuing a therapeutic interven-
tion,101-104 the use of DC-based exosomes,124,126 as well as the 
direct administration of TAAs fused to DC-specific monoclonal 
antibodies (in vivo DC targeting).111-113,395 We were unable to find 
in the literature any clinical report on the safety and efficacy of 
this latter approach for cancer therapy. Conversely, the safety and 
efficacy of DC-derived exosomes have already been investigated 
in two Phase I clinical trials, involving advanced melanoma and 
NSCLC patients.263,396 The results of these studies indicate that 
DC-derived exosomes loaded with TAAs can be safely adminis-
tered to cancer patients, yielding—at least in a fraction of cases—
immunological and (partial) clinical responses.263,396

Along similar lines, the intratumoral administration of ex 
vivo expanded DCs has already been tested in a few Phase I/
II clinical trials. Obviously, this approach cannot be undertaken 
in the wide range of tumors for which an intratumoral injection 
is associated with a high rate of intervention-associated morbid-
ity, though technical advances are expected to resolve this issue, 
at least in some cases397 Of note, elevated intratumoral amounts 
of DCs have often, but not always, associated with an improved 
clinical outcome,398-402 most likely due to the fact that DCs exist 
in several functionally distinct subsets, which cannot be appro-
priately discriminated by means of the common markers detected 
by immunohistochemistry. Indeed, studies in which DCs were 
quantified based on maturation-specific markers invariably 
unveiled a positive correlation between infiltration by mDCs and 
clinical outcome,403-406 with a single exception provided by CRC 
patients.407 This is paralleled by the fact that high intratumoral 
levels of Tregs positively (rather than negatively, as in all other 
cancers)86 affect CRC prognosis,408 and de facto reflects the very 
peculiar oncogenesis of CRC, which involves a prominent pro-
inflammatory component.409

Irrespective of these issues, intratumoral DCs so far have been 
tested in small cohorts of breast carcinoma,410 melanoma,410,411 hep-
atoma,412 soft tissue sarcoma,413 resectable pancreatic carcinoma,104 

NCT00776295, which have been prematurely terminated (the 
latter due to low accrual), NCT01153113, which has been with-
drawn (due to the status of investigational new drug being with-
drawn by FDA), as well as NCT00834002 and NCT01278940, 
which have been completed. These results of these latter two 
studies, however, have not yet been released. Of note, excep-
tion made for one sipuleucel-T-based study (NCT00779402), 
NCT01582672 is the sole clinical trial currently assessing the 
efficacy of DC-based immunotherapy in a Phase III setting 
(source www.clinicaltrials.gov).

Table 3 collects recent clinical trials testing the safety and effi-
cacy, as anticancer immunotherapeutics, of DCs transfected ex 
vivo with tumor-derived mRNA or engineered to express TAAs.

DCs Fused Ex Vivo with Tumor Cells

The first indications that DCs fused to cancer cells would induce 
therapeutic antitumor responses in vivo date back to the late 
1990s/early 2000s.363-366 Such cell hybrids, also known as “den-
dritomes,” form spontaneously when DCs are co-cultured with 
both living and apoptotic tumor cells, though at a very low fre-
quency.363 Thus, multiple protocols have been devised to promote 
the formation of dendritomes, including approaches based on 
polyethylene glycol, fusogenic viral glycoproteins and electro-
fusion.367-370 It has been proposed that—up re-infusion—dend-
ritomes exert a lower immunogenic potential than DCs pulsed 
ex vivo with apoptotic tumor cells,149-151 perhaps owing to com-
paratively lower expression levels of co-stimulatory surface mark-
ers and/or IL-12.371 Of note, dendritomes have been proposed as 
a means to drive the activation and expansion ex vivo of antitu-
mor T cell clones for adoptive cell transfer approaches.372

During the last decade, Phase I/II clinical trials have inves-
tigated the safety and efficacy of dendritomes373 in patients 
affected by AML,374 MM,375,376 glioma,377 breast carcinoma,378,379 
melanoma,380-385 adrenocortical carcinoma,386 RCC,379,387-391 and 
mixed solid tumors.392,393 Taken together, these clinical studies 
demonstrated that the administration of dendritomes to cancer 
patients is safe and associated with the development of DTH 
responses (indicative of the activation of the immune system) in a 
very large proportion of cases. In addition, objective clinical bene-
fits (including disease stabilization as well as partial and complete 
responses) were reported—at least for a fraction of patients—in 
the vast majority of the studies, with two notable exceptions. In 
the first one, none of the 11 metastatic melanoma patients treated 
with dendritomes plus IL-2 developed DTH, pointing to a prob-
lem with the vaccination protocol itself.381 The second one was 
based on a patient cohort way too small for drawing reliable con-
clusion. Indeed, only two adrenocortical carcinoma patients were 
treated with dendritomes and, while they did develop immuno-
logical responses, no clinical benefits were observed.386

Recently (studies registered at www.clinicaltrials.gov later 
than 2008, January 1st), dendritomes have been (and, often, 
are still being) tested in AML patients, in combination with 
the anti-PD1 monoclonal antibody CT-011 or with GM-CSF 
(NCT01096602); in B-cell lymphoma and MM patients, as a 
single immunotherapeutic agent (NCT00937183); in breast 
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listed one single Phase I clinical trial what would test in cancer 
patients the concept of in vivo DC delivery (NCT01522820). 
Following recent, encouraging preclinical data,395 this study was 
enrolling patients affected by a wide spectrum of NY-ESO-1-
expressing solid tumors for investigating the safety and efficacy of 
the TAA NY-ESO-1 fused to a monoclonal antibody specific for 
the DC surface marker DEC-205. In addition, we found only one 
(Phase II) clinical study investigating the use of DC-based exo-
somes against cancer (NCT01159288). In this latter trial, unresect-
able NSCLC patients responding to induction chemotherapy are 
allocated to receive or not DC-derived exosomes pulsed with mul-
tiple TAAs including, but not limited to, MAGE-A1, MAGE-A3, 
MART-1 and NY-ESO-1 (source www.clinicaltrials.gov).

Table 5 summarizes recent clinical trials evaluating the safety 
and efficacy of antigen-naïve DCs, DC-derived exosomes and in 
vivo DC targeting strategies for cancer therapy.

Concluding Remarks

Following the discovery that—in the presence of appropriate 
stimulatory signals—DCs are able to elicit robust (and hence 
potentially therapeutic) antitumor immune responses, multiple 
strategies have been devised to harness the potential of this 
functionally heterogeneous immune cell population for cancer 
therapy. The efficacy of these approaches, encompassing the re-
infusion into patients of autologous DCs expanded, (sometimes) 
genetically modified and loaded with TAAs ex vivo as well as 
the administration of TAAs fused with monoclonal antibodies 

and advanced cancer patients.414 Cumulatively, the results of these 
studies further confirmed the notion that the administration of 
DCs is safe and—at least in fraction of patients—can elicit thera-
peutic immune responses. Recently (studies registered at www.
clinicaltrials.gov later than 2008, January 1st), the safety and effi-
cacy of genetically-unmodified DCs have been (and, often, are 
still being) investigated in several distinct settings and following 
multiple strategies. These include: (1) allogeneic DCs employed as 
a single agent in RCC patients (NCT01525017); (2) autologous 
DCs used alone against AML (NCT00963521), in combination 
with radiotherapy in soft tissue sarcoma patients (NCT01347034), 
or with an allogeneic prostate cancer cell vaccine in patients with 
non-metastatic prostate cancer (NCT00814892); (3) irradiated 
autologous DCs tested as a single intervention in AML patients 
(NCT01373515); (4) autologous iDCs used as standalone 
agent against pancreatic (NCT00795977) and prostate cancer 
(NCT00753220), or combined with chemotherapy and/or an 
experimental TLR4 agonist (picibanil) in head and neck cancer 
(HNC) (NCT01149902) or pancreatic cancer (NCT00795977) 
patients; and (5) mDCs in combination with lenalidomide for 
the therapy of MM (NCT00698776). In addition, a few trials 
are testing autologous DCs that have been genetically engineered 
for the production of IL-12 or CCL21 as standalone interventions 
in melanoma (NCT00815607) and NSCLC (NCT00601094, 
NCT01574222) patients, respectively. With a single exception 
(NCT00963521), for which—however—results are not yet avail-
able, all these clinical studies have not yet been completed. When 
this Trial Watch was being redacted (July 2012), official sources 

Table 5. Clinical trials evaluating antigen-naïve DCs, DC-derived exosomes and in vivo DC targeting as immunotherapeutic interventions for cancer therapy*

Approach Indications Trials Phase Status Notes Ref.

Allogeneic DCs Renal cell carcinoma 1 I Recruiting As single agent NCT01525017

Autologous DCs

AML 2
I Completed As single agent NCT00963521

I Recruiting Irradiated DCs, as a single agent NCT01373515

HNC 1 I Unknown
iDCs, combined with cyclophosphamide, 

docetaxel and picibanil
NCT01149902

Multiple myeloma 1 I-II Unknown Combined with lenalidomide NCT00698776

Pancreatic cancer 1 I-II
Active, not 
recruiting

iDCs, alone or combined with picibanil NCT00795977

Prostate cancer 2

I-II
Active, not 
recruiting

iDCs, as single agent NCT00753220

II Suspended
Combined with allogeneic  

tumor-cell vaccine
NCT00814892

Soft tissue sarcoma 1 II Recruiting Combined with radiotherapy NCT01347034

DC-derived exosomes NSCLC 1 II Recruiting As a single agent NCT01159288

Genetically engineered 
autologous DCs

Melanoma 1 I
Active, not 
recruiting

IL-12-expressing DCs, as single agent NCT00815607

NSCLC 2 I Recruiting CCL21-expressing DCs, as single agent
NCT00601094

NCT01574222

In vivo DC targeting
NY-ESO-1-expressing  

solid tumors
1 I Recruiting Alone or combined with sirolimus NCT01522820

AML, acute myeloid leukemia; DC, dendritic cell; HNC, head and neck cancer; iDC, immature DC; IL-12, interleukin-12; mDC, mature DC; NSCLC, non-
small cell lung carcinoma. *Started after January, 1st 2008.
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which would constitute the DC subset most efficient at cross-pre-
sentation.41-44 In addition, the potential of pDCs as professional 
APCs is being re-evaluated.422 Future investigations will clarify 
if the specific use of CD141+ DCs or pDCs results in improved 
therapeutic outcomes.

Finally, one major issue that has hampered the development 
of DC-based interventions is represented by the fact that, until 
a few years ago, clinical efficacy in immunotherapy-based tri-
als was assessed by the RECIST.423 These criteria, which have 
been developed to monitor chemotherapy-based clinical studies, 
have recently been shown to be inappropriate for the assessment 
of immunomodulatory interventions, as the activation of anti-
tumor responses is slow and initially may even be paralleled by 
an increased tumor mass (reflecting the infiltration of immune 
cells).20,221,222 In line with this notion, the administration of a 
monoclonal antibody targeting the immunosuppressive receptor 
cytotoxic T-lymphocyte antigen 4 (CTLA4) has been shown—in 
a randomized Phase III clinical trial—to double the survival of 
Stage IV melanoma patients in the absence of early tumor shrink-
age.424 These observations suggest that overall survival might 
be the sole objective parameter to assess the clinical efficacy of 
immunotherapeutic interventions. As the evaluation of clinical 
trials based on overall survival may be excessively long (and hence 
discourage the development of potentially valuable immunothera-
pies), there is an urgent need for the identification of surrogate 
markers of efficacy. While it has been suggested that the clinical 
outcome of anticancer vaccines might correlate with the expansion 
of TAA-specific CTLs,220,425-427 several other factors are involved 
in the elicitation of therapeutically beneficial immune responses. 
A better understanding of the molecular and cellular mecha-
nisms whereby efficient immunotherapy translates into objective 
responses will surely lead to the identification of novel biomarkers 
that predict the clinical efficacy of DC-based interventions.
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allowing for in vivo DC targeting, has been promptly demon-
strated in murine tumor models, encouraging the launch of 
several Phase I/II clinical trials. In the vast majority of these 
studies, the administration of DCs was found to be safe and—at 
least in a fraction of patients—to stimulate detectable antitu-
mor responses. Clinical benefits ranging from disease stabiliza-
tion to complete responses have also been observed in a variable 
percentage of cases. However, with the notable exception of 
FDA-approved sipuleucel-T, whose efficacy against asymptom-
atic or minimally symptomatic metastatic hormone-refractory 
prostate cancer has been amply documented in multiple, double-
blind, placebo-controlled, multicenter Phase III trials,107,313,314 
the clinical development of DC-based anticancer vaccines 
appears to be challenging, with most approaches failing to enter 
Phase III testing.

There are several reasons behind the relatively slow develop-
ment of DC-based immunotherapeutic interventions. First, until 
recently, the availability of clinical grade TLR agonists (which are 
required for DC maturation) was limited. This has been partially 
circumvented by the use of surrogate compounds, such as clini-
cally approved prophylactic vaccines.415,416 Second, a limited frac-
tion (~10%) of TAAs appears to be immunogenic, and, among 
these, only a few constitute bona fide tumor-rejection antigens 
(TRAs), i.e., antigens that elicit an immune response resulting 
in tumor eradication.417 Thus, great efforts will have to be dedi-
cated to the identification of bona fide TRAs, a highly personal-
ized process that involves single cell exome sequencing followed by 
functional validation assays.418,419 Of note, contrarily to expecta-
tions, it seems that TRAs do not preferentially arise from “driver” 
oncogenic mutations, suggesting that the oncogenic potential of 
TAAs does not correlate with their immunogenicity.420 Third, 
DCs administered to patients may not efficiently localize at the 
tumor site.421 Thus, even though extratumoral DCs may also pro-
vide therapeutic benefits, strategies to direct the migration of DCs 
toward tumor nests are under development. Forth, owing to the 
elevated heterogeneity (as well as to the hitherto partial charac-
terization) of the DC system, it remains unclear which specific 
formulation (i.e., which specific route for the loading of TAAs and 
which specific subset of DCs) has the highest likelihood to result 
in the activation of therapeutic anticancer immune responses. 
Recently, great expectations have been generated by the discovery 
of CD141+ DCs (the human homologs of murine CD8α+ DCs), 
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