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Abstract

Context: Mitosis count is one of the factors that pathologists use to assess the 
risk of metastasis and survival of the patients, which are affected by the breast 
cancer. Aims: We investigate an application of a set of generic features and an 
ensemble of cascade adaboosts to the automated mitosis detection. Calculation of 
the features rely minimally on object-level descriptions and thus require minimal 
segmentation. Materials and Methods: The proposed work was developed and 
tested on International Conference on Pattern Recognition (ICPR) 2012 mitosis 
detection contest data. Statistical Analysis Used: We plotted receiver operating 
characteristics curves of true positive versus false positive rates; calculated recall, 
precision, F-measure, and region overlap ratio measures. Results: We tested our 
features with two different classifier configurations: 1) An ensemble of single adaboosts, 
2) an ensemble of cascade adaboosts. On the ICPR 2012 mitosis detection contest 
evaluation, the cascade ensemble scored 54, 62.7, and 58, whereas the non-cascade 
version scored 68, 28.1, and 39.7 for the recall, precision, and F-measure measures, 
respectively. Mostly used features in the adaboost classifier rules were a shape‑based 
feature, which counted granularity and a color-based feature, which relied on Red, 
Green, and Blue channel statistics. Conclusions: The features, which express the 
granular structure and color variations, are found useful for mitosis detection. The 
ensemble of adaboosts performs better than the individual adaboost classifiers. 
Moreover, the ensemble of cascaded adaboosts was better than the ensemble of 
single adaboosts for mitosis detection.
Key words: Mitosis detection, area granulometry, cascade adaboost, 
cost‑sensitive learning, ensemble classifier

INTRODUCTION

Histopathology became one of those fields, which strongly 
demand more automated tools to assist the analysis and 
objective quantification of the images. Mitosis count, 
which is used to assess the risk of metastasis and survival 

of the breast cancer patients is one of those problems of 
histopathology.[1]

To evaluate the risk of metastasis, a mitosis grade of 
1‑3 is used. The grade is assigned according to the 
number of mitotic cells, which is counted in a certain 
number of fields. The mitotic cells are briefly defined 

Copyright: © 2013 Tek BF. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

This article may be cited as:
Tek FB. Mitosis detection using generic features and an ensemble of cascade adaboosts. J Pathol Inform 2013;4:12.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2013/4/1/12/112697

Access this article online
Website:  
www.jpathinformatics.org

DOI: 10.4103/2153-3539.112697

Quick Response Code:



J Pathol Inform 2013, 1:12 http://www.jpathinformatics.org/content/4/1/12

as having no nucleus membrane, basophilic cytoplasm, 
and hairy extensions (Van Diest and Baak criteria).[1] 
This description can be sufficient for a trained pathology 
expert; however, it is certainly not well‑defined for 
a computer vision algorithm. First of all, it involves 
components such as nucleus, cytoplasm of the cells to 
be segmented. There are some methods in the literature, 
which work on segmented object‑level descriptors.[2] 
However, segmentation is often a very complicated task 
and is error prone owing to overlapping cells or open and 
not clear boundaries of the objects.

The proposed methodology is mainly based on 
author’s observations on the mitosis dataset, which was 
made available by the ICPR 2012 Mitosis Detection 
Contest.[3] There are three different image data sets 
available in this dataset; however, this work studies 
only one of the sets (Set A), which had 35 Red, Green, 
Blue (RGB) images and manually marked ground truth 
files that show the mitosis sections for each image. After 
inspecting the images and ground truth data, it was 
obvious that a cell level segmentation was not feasible, 
which led to search of some generic features, which can 
be calculated with minimal segmentation process such 
as thresholding. These generic features were inspired 
by similar bio‑image analysis works, which aimed at 
automated microscopy diagnosis.[4,5]

MATERIALS AND METHODS

We study the problem of mitosis detection in a general 
visual pattern recognition frame‑work inspired by modern 
object detection methodologies like face detectors.[6] 
A common approach in these works is to train an object 
detector using the supervised learning methods. This 
detector can identify whether an object of interest exists 
in a given image window or not. Then, a sliding window 
scanner visits each pixel in the image to extract local 
windows that will be feed to the detector. It is often 
necessary to scan in different scales to cope with varying 
sizes of target objects.

Our method follows this approach where we study the 
dataset first to create a detector. Building of such a detector 
that is able to identify existence of a mitotic cell in a given 
image window requires training of a classifier. After the 
detector is trained, input images are scanned to extract 
windows for the detector. The detector’s decision is binary 
and per window or region. This is slightly different than 
the general sliding window approach where the detector 
makes a decision for all possible windows of determined 
sizes around each pixel, which requires a post‑process to 
merge multiple decisions concerning a single object.

Our method can be examined in four different stages: 
Pre‑processing (candidate region detection), feature 
extraction, classifier construction, and detection.

Pre‑Processing (Candidate Region Extraction)
In a typical image, visiting each pixel, to extract its local 
neighborhood window to be given to the detector is a 
computationally intensive process. Usually, the number 
of pixels to visit is around few millions. Visiting each 
pixel more than one time for different scales will multiply 
number of windows for the detector to process. To finish 
the whole analysis of a single image in a reasonable time 
the window extractor has to be more selective.

Fortunately, an observation of the mitosis regions reveals 
a simple way to eliminate some of the windows: The 
mitosis regions in these images are usually darker regions. 
Figure 1 shows histograms of mitosis sections and 
non‑mitosis random sections extracted from 35 images. 
Even though, clear boundaries cannot be observed (which 
may suggest that the detector could be based only on 
color), it is possible to note that the peaks of green and 
blue channels of mitotic regions are lower than the peaks 
of random regions. A morphological double threshold 
operation is employed here to extract candidate regions. 
The double threshold operation is the morphological 
infinite reconstruction (Rδ) of a wider threshold (Tw (I)) 
from a narrow threshold (Tn (I)) of image I:[7]
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In other words, the double threshold reconstructs 
any region with at least a single pixel, which satisfies 
the narrow threshold (Tn(I)), to a connected region 
comprised of all of its pixels, which satisfy the wide 
threshold (Tw (I)). Figure 2 shows a 300  × 300 section of 
one input image with wide and narrow thresholds and 
corresponding morphological double threshold result. It 
can be seen that the reconstructed result preserves the 
regions marked with narrow threshold although removing 
the rest. This process provides a better way for image 
thresholding than using a single threshold. Then, a 
morphological area opening operation removes very small 
regions. Finally, a hole filling operation fills the regions 
to complete the pre‑process step.[7] The accuracy of this 
pre‑process is discussed in the results section.

Feature Extraction
Despite the fact that there are many popular features, 
which can be used in general object detection 
tasks (e.g., Haar‑like,[6] SIFT[8]), a feature to be used 
in analysis of microscope images must be strictly a 
rotation invariant one. After some initial trials we 
decided to use four different groups of features: Color, 
binary shape‑based, Laplacian, and morphological 
features. We must note that we avoided using of object 
level descriptors to avoid the necessity for an object 
level segmentation process. The color group includes 
15 individual simple features such as mean, standard 
deviation, mode of RGB channels as well as RGB 
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histogram similarities (measured by intersection) to the 
overall mitosis and non‑mitosis section histograms. Here, 
we use the previously calculated (total) mitosis section 
histograms as references in the similarity [Figure 1]. The 
second group of features calculates geometrical features 
on the candidate region’s binary mask. This set includes 
19 individual features such as area, circularity, eccentricity, 
major‑minor axis lengths, and ratio of the area of the 
largest component to the area of the window. The third 
group aims to capture textural information by calculating 
the total intensity reduction between consecutive 
levels of Laplacian pyramid calculated from the image 
window. The differences between two consecutive levels 
are summed over the window to produce the different 
feature values at different levels.[9]

f k DoG I G I G I
I

k
I

k k
( ) ; * *= ( ) = −( )∑ ∑ −

σ σ σ1

where DoG stands for difference of Gaussians, * denotes 
convolution, I shows the input grey level image. The 
Gaussian kernels have zero mean and variance σk. The 
kth feature value is simply the sum of the difference 
image between two consecutive Gaussian convolved 
images where variance values are shown by σk, moreover 
σk/σk‑1 = 2. The feature calculation is constricted by the 
local window; however, for efficiency we calculate the 
Gaussian convolutions once for the entire image, but 
calculate the sums for the individual windows.

The fourth group aims to capture textural (granular) 
properties using the area granulometry (or pattern 
spectra), which was used in similar studies.[4,10] 
By calculating image’s intensity reduction after a 
morphological opening operation (the probe), the 
granulometry calculates the distribution of an image’s 
similarity to that morphological opening structure of 
different sizes. Here, we have used the area granulometry 
with morphological area openings, to extract distribution 
of different sizes of granular components of the region. 
The area granulometry (fag) of an image can be defined 

as the total differential mass between consecutive area 
openings (γa) of an increasing area threshold (T (k))[10]
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We calculate area granulometry in 20 linearly spaced area 
thresholds in range (T (k) ∈ [1, WcH]) where W and H are 
the width and height of the local window respectively (forms 
a 20 element vector). Finally, the four different groups of 
features are concatenated to form a vector of 58 values.

Classifier
Extracted features vary largely in their types and produce 
a 58 dimensional space. Therefore, a strong classifier 
needs to be constructed. After initial trials, we focused 
on the adaboost classifier and a cost‑sensitive variant.[11,12] 
Adaboost is a linear combination of selected simple decision 
stumps. The decision stump is simply an individual feature 
measurement and a threshold value, which divides that 
feature space into two separate regions for two classes.
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Where αk is the weight for the decision stump hk. 
T denotes decision threshold (default zero) and used to 
manipulate the decision boundary. Despite its desirable 
properties (e.g., known as resistant to overfitting) this 
method suffers from the imbalanced data, which is 
common to almost every supervised learning system. 
However, it is possible to search for an appropriate 
balance of classes by changing the decision threshold T 
after the training (learning) phase. A variant of adaboost 
that was developed by Shirazi attacks this problem by 
modifying the calculation of linear weighting coefficients 
and the best decision stump with respect to a given 

Figure 1: Red, Green, Blue histograms of mitosis versus randomly 
selected non‑mitosis sections

Figure 2: Morphological double threshold operation; (a) original 
image and the result of; (b) narrow threshold; (c) wide threshold; 
(d) reconstructed binary image
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cost.[12] Given a cost structure for two target classes 
[c1, c2], Shirazi’s method performs the adaptive boosting 
of the classifier (and picking the decision stumps) 
directly with respect to the given costs. However, there 
is no clear relationship between a desired balanced 
accuracy (i.e., true positive vs. false positive) and these 
costs. Therefore, one needs to search for the best cost 
structure to obtain a desired operating balance.

Nevertheless, Shirazi’s cost sensitive adaboost approach 
makes it suitable to design cascade classifiers, which 
are formed of consecutive stages. To reach a given 
final target true detection and false detection rate, one 
needs to control the stage classifier’s detection rates. 
Viola controls the stage classifiers by manipulating their 
thresholds, whereas Shirazi creates cost aligned optimal 
adaboosts, which do not need post manipulation.[6,12] 
In order to create a cascade of adaboost classifiers, we 
implement a simple approach. We start by using Viola’s 
method for calculating the necessary stage true positive 
and false positive rates to reach a goal target true and 
false positive rate pair (DT, FT):
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Then, we use Shirazi’s cost sensitive adaboost training 
to form each stage classifier incrementally, such that in 
every step a new rule (decision stump) is added to the 
stage classifier. Then the stage classifier is tested on the 
training set to note its actual true and false positive 
rates (da, fa). By assumption the incremental rule addition 
must stop when the stage targets are achieved (da  >  ds, 
fa  <  fs). However, in practice we observed that these 
constraints are too tight and often not achievable within 
a reasonable number of rule additions. Hence, we limit 
the number of rules that can be added to the classifier 
with a constant value that is gradually increased as the 
stage level increases. In addition, if maximum number 
of rules for that level is reached, we accept any rule set 
that gives the maximum true detection rate da among the 
ones, which satisfy (fa < fs).

Another modern technique, we incorporate into our 
classifier is to create an ensemble of classifiers instead of 
using a single classifier.[13] In this way, we aim to reduce 
the false positives. The potential benefit from creating an 
ensemble is mostly dependent on the variation embedded 
through the different classifiers forming that ensemble. 
To practically create an ensemble of classifiers, we 
divided the training set into 10 folds where the classifiers 
used 9 random folds to train and remaining other for the 
validation. The trained individual adaboosts were later 
merged to have an ensemble decision that is formed by 
the majority of their votes.

RESULTS

This method was developed and tested on a dataset 
that is provided by ICPR 2012 Mitosis Detection 
Contest organization.[3] Despite that there were two 
other sets made available for the contest, we have only 
used the image set produced by scanner A which had 
35 2048  ×  2048 (resolution: 0.2456 μm/pixel) RGB 
images (hereafter Set‑A). The images in Set‑A were 
provided with manually marked ground data, which 
showed the bounding box for 227 mitosis regions.

Initially, we extracted all the mitosis windows and also 
some random windows from the images (all 35 images) 
to calculate RGB histograms. Simple rough observation 
of the histograms revealed pre‑processing thresholds for 
double threshold operations as (threshold narrow  =  [80, 
50, 80] and threshold wide = [150, 100, 150]). Table 1 
shows the accuracy of different components of this 
pre‑process. Here, we compare the extracted connected 
components’ center coordinates with those of ground 
truth bounding boxes. It can be seen that the application 
of reconstruction (double threshold) improves both 
overlap accuracy and precision. Furthermore, we note 
that the slight variation in the recall values is due to 
the comparison of the center coordinates rather than 
the regions (this caused two mitosis regions that are in 
Telophase state to be incorrectly evaluated as missed). 
The application of area opening with area threshold of 
100 pixels improves the precision further by cleaning 
some more regions. Owing to the final hole‑filling 
operation the detected region versus bounding box 
overlap accuracy also increases.

The pre‑process generated 24941 connected component 
regions (average ~712) from 35 images for further 
processing (i.e., feature extraction and classification).

In order to provide variations to the learning process to 
improve the generalization the feature extractor visits 
every connected component and places a bounding box 
to define a window. The window size will vary depending 
on the original region size in addition to a tolerance 
margin. The margins, which have preset values in the 
set ({5, 4, 3, 2, 1, 0}) are added to the width and height 
of the bounding box and the same region is extracted 
6 times with bounding boxes of different margins. 

Table 1:  Mean recall and precision for region detection 
(center coordinates), and region overlap accuracies 
for pre‑processing (candidate extraction)

Measure 
(%)

Narrow 
threshold

Wide 
threshold

Reconstruction +Area 
open+fill

Recall 99.37 100 98.10 98.57
Precision 1.70 0.12 0.93 1.45
Overlap 19.88 52.61 51.74 53.76
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This process increased the number of total windows to 
124,705 (only ~1300 were positive). A feature vector of 
58 individual features is calculated for each window.

For the classifier construction, we have divided the 
samples of 35 images into 3 folds of 27‑3‑5 images, for 
training, validation, and test respectively. To train the 
ensembles, each classifier of the ensemble was trained 
with samples of 27 randomly selected images where 
samples of remaining 3 images were separated for 
validation (also to allow more variations). Samples of a 
randomly selected set of five images were isolated and 
later used for tests. The settings for individual classifiers 
were as follows: The non‑cascade adaboost classifiers were 
formed using 200 rules each. On the other hand, the 
cascade adaboost classifiers were trained for maximum 
35 stages unless the false positive rate reached zero in 
an earlier stage. A decreasing cost structure is used for 
increasing levels of the cascade: Cmitosis was set 8 for 
the initial stage and reduced by a factor of 0.95, where 
Cnonmitosis was set 1 for all stages. Each stage classifier in a 
cascade could have different number of rules, which was 
limited by a constant value, which initialized to 4 and 
reached to 250 (linearly) at the end of 35 stages. Table 2 
summarizes the results for the training and validation sets. 
It can be seen that single adaboost classifier (decision 
threshold zero) provided more true positives with also 
more false positives. The cascade adaboosts provided zero 
false positives on training sets which indicates that the 
training ended because no more negative samples were 
left. If we consider the number of visited windows in a 
typical image a false positive rate more than 0.001 will be 
very inconvenient. Hence, we favored lower false positives 
over higher true positives.

We have tested both configurations on the test 
set of 5 images and calculated receiver operating 
characteristics (ROC) curves. For the non‑cascade version, 
we have extracted the ROC curve by applying different 
decision thresholds. For the cascade classifiers we have 
tested them by allowing the decision stages incrementally. 
Figure 3 shows the ROC curves plotted from the tests on 
the set of 5 images. Note that, the set was isolated during 
training and none of the classifiers had used samples 
from it. It can be clearly seen that ensemble approach 
improved both cascade and non‑cascade classifiers. It 
is also clear that cascade ensemble was better than the 
non‑cascade one in both true and false positives. We 
also observed that before the end stage cascade ensemble 
could provide better trade‑offs for true positive versus 
false positive rates as final stages seem to cut only on the 
true positive rate.

Finally, we have tested the classifiers on a separate 
evaluation test set that is provided by ICPR 2012 mitosis 
detection contest. This set included 15 images including 
100 mitosis sections; however, the ground truth file was 

not shared to contesters and performances were measured 
by the contest organizers. Table 3 summarizes the 
results, which evaluate the proposed method from start 
to end (including the pre‑processing) with two different 
classifiers. In line with our results in the validation set, 
the recall rate of the non‑cascade classifier ensemble is 
higher although providing almost half of the precision. 
F‑measure is clearly improved with the cascade ensemble. 
However, our test set ROC promised even better results. 
This may be due to the final level stages, which reduced 
true detection without much improvement on the false 
positive rate. However, we had no chance to extract a 
ROC for this evaluation set and test this hypothesis 
before writing of this manuscript.

Table 2: Performance for the training and 
validation sets

Classifier Train 
TP %

Train 
FP %

Validation 
TP %

Validation 
FP %

Single 
adaboost

79.65±0.7 3.28±0.1 72.5±10.7 3.65±1.28

Cascade 
adaboost

51±2.26 0±0 33.76±11.75 0.14±0.07

TP:  True positive, FP: False positive

Figure 3: Receiver operating characteristics curves calculated on 
the test set of five images comparing cascade and non‑cascade 
ensembles formed of nine classifiers each

Table 3: Performance of the overall method on 
ICPR 2012 mitosis detection contest evaluation set

Classifier Recall 
%TP

Precision 
%TP/

(TP+FP)

F‑measure 
%

Area 
overlap %

Non- 
cascade 
ensemble

68 28.1 39.7 76.5±4.5

Cascade 
ensemble

54 62.7 58 76.7±4.1

TP:  True positive, FP: False positive, ICPR: International conference on pattern 
recognition
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Later, we calculated histograms to reveal the utility of 
different features. We found that the mostly added rule 
to the adaboosts were based on the binary shape feature 
“number of connected components in the window, 
which has less than 10 pixels,” followed by the standard 
deviation of red and blue channels. Some other popular 
features were intersection of green channel histogram 
with the histogram of non‑mitosis random section 
histograms, first level Laplacian feature and the second 
feature of the area granulometry (this corresponds to area 
opening with a very small area threshold).

These indicate that a granular structure may be a 
strong evidence for mitosis appearance: This is mostly 
expressed with binary features and also the second 
feature of the granulometry vector. Moreover, color 
variations are important such that deviations in red 
channel and blue channel intensity distributions and the 
histogram comparisons were found useful many times. 
Area or geometry of large components in the scanned 
window (obtained by our thresholding) were found not 
important and were not included in the set of hundreds 
of rules in the ensembles. However, that can be also 
related to a possible correlation of that features with 
some already included ones.

DISCUSSION

The proposed method applied generic features and 
ensemble of adaboost classifiers to the mitosis detection 
problem. We believe the generic methodology proposed 
here is quite successful in the way it introduces new 
features and tools to the mitosis detection field.

The new features included area granulometry, difference 
of Gaussians, and histogram intersections with those of 
mitosis/non‑mitosis windows. The study revealed that the 
features, which expressed the granular structure were most 
successful compared to the others. It may be possible to 
include more texture sensitive features in the feature set.[2]

The cascade adaboost ensemble provides an easily 
controllable true positive/false positive rate by limiting 
the final effective stage. It is also quite effective since the 
usual first few stages of the classifiers rely on calculation 
of few number of features (< 20). In our tests, it provided 
over 70% recall rate for very low false positives (< 0.1%). 
In an independent evaluation by contest organizers our 
non‑cascade ensemble classifier version ranked 8th among 
14 other contestants, with an F‑measure of 0.39. If the 

cascade ensemble performance were to be ranked as 
shown in Table 3 it would take 6th position.

Despite that our methodology was built, validated, and 
tested on only the scanner Set‑A images, we believe that 
the same concept can be applied to the other scanners. 
However, it must be noted that the method presented 
here is probably vulnerable to illumination color and use 
of chromatic filters, owing to the color based features 
which rely on RGB histograms. It may also be affected 
by significant changes in scale because of some features, 
which are based on pixel counts. This issues must be 
addressed by additional phases of pre‑processing.[5]
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