
 

www.aging-us.com 23284 AGING 

www.aging-us.com AGING 2021, Vol. 13, No. 19 

Research Paper 

Transcriptome research identifies four hub genes related to primary 
myelofibrosis: a holistic research by weighted gene co-expression 
network analysis 
 

Weihang Li1,*, Yingjing Zhao2,*, Dong Wang1, Ziyi Ding1 Chengfei Li3, Bo Wang5, Xiong Xue5,  
Jun Ma5, Yajun Deng5, Quancheng Liu5, Guohua Zhang5, Ying Zhang5, Kai Wang4, Bin Yuan5 
 
1Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China 
2Department of Intensive Care Unit, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu 
Province, China 
3Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 
Xi’an 710032, Shaanxi, China 
4Department of Hematology, Daxing Hospital, Xi’an 710016, Shaanxi, China 
5Department of Spine Surgery, Daxing Hospital, Xi’an 710016, Shaanxi, China 
*Co-first author 
 
Correspondence to: Bin Yuan; email: yuanbin_8210@163.com, https://orcid.org/0000-0002-8223-5916  
Keywords: bioinformatics, WGCNA, myeloproliferative, neoplasm, myelofibrosis 
Received: May 9, 2021 Accepted: September 29, 2021       Published: October 11, 2021 
 
Copyright: © 2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Objectives: This study aimed to identify specific diagnostic as well as predictive targets of primary myelofibrosis 
(PMF). 
Methods: The gene expression profiles of GSE26049 were obtained from Gene Expression Omnibus (GEO) 
dataset, WGCNA was constructed to identify the most related module of PMF. Subsequently, Gene Ontology 
(GO), Kyoto Encyclopedia Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) and Protein-
Protein interaction (PPI) network were conducted to fully understand the detailed information of the 
interested green module. Machine learning, Principal component analysis (PCA), and expression pattern 
analysis including immunohistochemistry and immunofluorescence of genes and proteins were performed to 
validate the reliability of these hub genes. 
Results: Green module was strongly correlated with PMF disease after WGCNA analysis. 20 genes in green 
module were identified as hub genes responsible for the progression of PMF. GO, KEGG revealed that these hub 
genes were primarily enriched in erythrocyte differentiation, transcription factor binding, hemoglobin complex, 
transcription factor complex and cell cycle, etc. Among them, EPB42, CALR, SLC4A1 and MPL had the most 
correlations with PMF. Machine learning, Principal component analysis (PCA), and expression pattern analysis 
proved the results in this study. 
Conclusions: EPB42, CALR, SLC4A1 and MPL were significantly highly expressed in PMF samples. These  
four genes may be considered as candidate prognostic biomarkers and potential therapeutic targets for  
early stage of PMF. The effects are worth expected whether in the diagnosis at early stage or as therapeutic 
target. 
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INTRODUCTION 
 

World Health Organization (WHO) revised and updated 

the hematopoietic tumor classification system in 2016, 

which confirmed seven major categories of myeloid 

malignancies including acute myeloid leukemia  

(AML) and related neoplasms, myeloproliferative 

neoplasms (MPN), myelodysplastic syndromes (MDS), 

mastocytosis, eosinophilia-associated myeloid/lymphoid 

neoplasms with specific mutations, and MDS/MPN 

overlap and myeloid neoplasms with germline 

predisposition [1], among which MPNs are clonal 

hematopoietic disorders characterized by excessive 

production of differentiated hematopoietic cells in 

chronic phase [2]. The Philadelphia-negative MPNs 

contained 3 major diseases including polycythemia vera 

(PV), essential thrombocythemia (ET) and primary 

myelofibrosis (PMF). Among MPNs, PMF is the most 

essential neoplasms which could evolve from other 

MPNs such as PV and ET. Later in their courses, both 

PV and ET disorders may evolve into myelofibrotic 

phases termed “post polycythemia vera myelofibrosis” 

or “post-essential thrombocythemia myelofibrosis”, 

respectively [3, 4]. In this situation, PMF is referred to as 

post-PV MF or post-ET MF. 

 

PMF is a nascent, myeloproliferative, neoplastic disorder 

characterized by clonal proliferation of myeloid cells in 

bone marrow, which could result in fibrosis and lead to 

the devastation of healthy marrow [3, 5, 6]. Common 

clinical manifestations of PMF include marked 

splenomegaly, anemia as well as constitutional symptoms 

such as fatigue, fever, weight loss and night sweats. 

Patients with severe symptoms of PMF may show upper 

abdomen flatulence feeling, bone pain, bleeding, and 

cachexia, etc. [7–9]. Besides, the overall treatment and 

prognosis of PMF is generally poor. Epidemiology 

findings showed that the estimated prevalence of PMF is 

between 4 - 6/100000 people per year, with a median 

survival time of 15 years for patients younger than 60 and 

6 years for patients older than 60, respectively [10, 11]. 

Chemotherapy is regarded as a treatment of PMF, 

however, chemotherapy, including JAK2 inhibitors does 

not provide a promising prospective view at this moment 

[12, 13], which may result from inadequate exploration 

of genes in the occurrence and development of PMF. 

Consequently, there is an urgent need to discover novel 

targeted chemotherapy from exploring therapeutic and 

diagnostic targets of PMF. 

 

Recent decades, bioinformatics combined with 

microarray technology have displayed a promising view 

for analyzing molecular and genetic mechanisms of 

malignant neoplasms [14–16], which prompted study  

on the initiation, development, and metastasis of  

tumor. Weighted Gene Co-expression Network 

Analysis (WGCNA) is a holistic and systematic 

biological method, which is used to construct network 

analysis for exploring the correlation between genes and 

given features [17, 18]. The mathematical principle of 

WGCNA was firstly proposed in 2005 [19], and the 

algorithm was implemented in R environment in 2008, 

namely “WGCNA package” [18]. Recent years, 

WGCNA has been witnessed for extensive application 

in many fields, such as identifying the candidate 

biomarkers from uveal melanoma, breast cancer and 

adrenocortical carcinoma, etc. [20–24]. With the 

assistance of WGCNA, researchers could explore 

potential mechanisms among highly co-related genes 

and discover novel diagnostic or therapeutic targets 

from gene cluster associated with disease. To the best 

knowledge, the application of WGCNA in the 

identification of PMF has rarely been reported, so this 

study may provide a new thinking to analyze PMF. 

 

In the current study, microarray dataset GSE26049 has 

been analyzed to construct a weighted co-expression 

network and to find a module with specific interest to 

the development of PMF, then the most related module 

was applied by functional enrichment analysis including 

GO, KEGG, and GSEA, to discover molecular function 

and aberrant regulated pathways. Next, PPI network 

analysis was conducted on the interested module, to 

visualize the relationships between co-related genes and 

identify the top related genes. A series of validation 

methods including machine learning, principal 

component analysis, qRT-PCR, etc., were performed to 

verify the conclusions. Results may contribute to assess 

the prognosis of PMF and ultimately offer new ideas in 

the treatment of PMF. 

 

RESULTS 
 

Profile’s quality control and preprocess 

 

The microarray dataset GSE26049 was applied in this 

study, gene expression profiles of normal samples and 

different tumor samples (total n=90) were normalized 

and generated. Unqualified samples were eliminated 

according to the quality control of these gene chips, and 

standard samples were filtered by calculating the 

normalized unscaled standard errors (NUSE), NUSE plot 

was displayed for quality check (Figure 1A). Results 

illustrated that all these 90 samples had a good chip 

quality and could be used for further research. Then 

RMA algorithm was performed for data preprocessing, 

the boxplot of normalized and background corrected 

value was plotted (Figure 1B), results showed that the 

median amount of gene expression in each sample was 

on a straight line, indicating that the preprocessed data 

was served as standard data and could be analyzed in the 

following study. 
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Figure 1. (A) Normalized unscaled standard error (NUSE) plot of GSE26049 for quality control. (B) box plot of gene expression level in 

GSE26049 after RMA background correction and normalization. 
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Construction of weighted gene co-expression network 

 

Hierarchical clustering analysis was applied to check the 

heterogeneity of each sample to detect and remove the 

outliers (Figure 2A). Red line, namely cutoff threshold 

height, was set as 85 to filter outliers. Finally, sample 

GSM639674 was excluded, and the gene expression 

matrix containing 20482 genes in the rest of 89 samples 

were used for WGCNA analysis. Then the optimal  

soft threshold power was calculated, as presented in 

Figure 2B, when the soft threshold power β reached 16, 

the scale free topology model fit index (R^2) was higher 

than 0.90 and mean connectivity was infinitely 

approaching 0. As a result, power 16 was selected as the 

optimal soft threshold power value. 

 

Based on the co-expression relationships, hierarchical 

clustering analysis was then performed to obtain the 

weighted co-expression network (Figure 3A), results 

illustrated that 14 distinct co-expression modules, 

characterized by their unique module color, were 

identified and clustered. The module colors included 

salmon, tan, blue, purple, yellow, brown, pink, magenta, 

black, red, turquoise, green, green-yellow, and grey, 

respectively. Interaction relationships of these 14  

co-expression modules in all genes were shown in  

Figure 3B, topological overlap heatmap revealed that 

each co-expression module could independently 

validate each other in the network, and dendrogram 

branches indicated that genes in each module were 

highly heterogenous. Consequently, it was necessary  

to further identify the interested modules in each 

subgroup. 

 

Key module identification of PMF 

 

After obtaining WGCNA network data, the module-trait 

relationships heatmap was then performed. The 

interaction relationships between each module and each 

different feature including control, PV, ET, and PMF 

subgroups were fully assessed (Figure 4A, 4B). X axis 

indicated the features and Y axis represented the module, 

from the heatmap and histogram, results demonstrated 

that black module was significantly associated with PV 

(P = 3e-05), no co-expression module was significantly 

related to ET (P > 0.05). As for PMF, results visualized 

that correlations of PMF samples in the green (P = 8e-05) 

and red (P = 0.009) modules had strong positive 

correlation compared to normal samples, while purple (P 

= 2e-04) and yellow (P = 2e-04) modules had a strong 

negative correlation, indicating that modules green, red, 

purple and yellow could significantly differentiate the 

PMF samples from the normal samples, and genes in 
these modules could promote or suppress in the 

progression of PMF. Among them, green module had the 

strongest correlation (r = 0.46) and the lowest P value  

(p = 8e-5), elucidating green module was most correlated 

with PMF, genes in green module were essential in the 

pathogenesis and oncogenesis of PMF. Besides, Module 

Membership (MM) versus Gene Significance (GS) 

scatter plot (MM-GS plot) illustrated that MM was 

highly correlated with GS in green module (cor= 0.48, p 

= 3.6e-5) (Figure 4C). 

 

Module eigengene adjacency was subsequently 

calculated to cluster and assess the identified modules 

with PMF feature, heatmap was plotted to depict their 

interactions between modules and PMF subgroup. Based 

on the dendrogram, result illustrated that the PMF 

subgroup clustered with green module, implying that 

these two eigenvalues had a highly correlations with 

each other (Figure 5A). As for heat map, each module 

exhibited their independent validation to the other. The 

color depth (red to blue) represented the different 

strength of co-expression interactions, results verified 

that PMF subgroup had a highly correlations with green 

module (Figure 5B). 

 

Then we performed hierarchical clustering analysis 

based on gene expression value in green module 

between four subgroups: control, PV, ET and PMF. As 

presented in Figure 5C, results demonstrated that the 

genes in green module could significantly differentiate 

PMF group from other three groups, and PMF samples 

clustered tightly with each other compared to other 

groups, which was consistent with above results. 

Consequently, green module was identified as key 

module accounting for the progression of PMF and 

subsequent research was pooled based on the green 

module genes. 

 

Functional and pathway enrichment analysis 

 

Totally green module contained 217 genes (as shown in 

Supplementary Table 1), to obtain a comprehensive 

understanding of the biological functions and aberrant 

signaling pathway of the genes in green module, GO, 

KEGG and GSEA methods were conducted. These 

genes were uploaded into DAVID database for BPs, 

MFs, and CCs analysis, the detailed results of GO, 

KEGG was shown in Table 1 and Figure 6. GO results 

indicated that these genes were mainly associated with 

several BPs including erythrocyte differentiation, 

hemopoiesis, positive regulation of transcription from 

RNA polymerase II promoter and negative regulation of 

apoptosis process, etc.; CCs including cytosol, 

hemoglobin complex, transcription factor complex, etc.; 

and several MFs such as protein binding, transcription 

factor binding, heme binding, etc. KEGG analysis 
revealed that some signaling pathways were 

significantly changed, such as cell cycle, protein 

processing in endoplasmic reticulum, bile secretion and 
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Figure 2. (A) Cluster dendrogram of samples in GSE26049 to detect outliers. The dendrogram branches represented the clustered samples. 

(B) Selection of soft threshold power value through WGCNA analysis. The left panel showed the scale-free model fit index (y axis) as function 
of soft thresholding power value (x axis). Red line represented the y-axis value. Right panel displayed the mean connectivity (y axis) as a 
function of soft thresholding powers (x axis). 
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Figure 3. (A) Cluster dendrogram of all genes enriched based on the dissimilarity measure and the assignment modules. Highly 

interconnected groups of genes were clustered. Every color below represented one co-expression module, totally 14 distinct modules were 
identified with the hierarchical clustering tree analysis. (B) Topological overlap heatmap of the gene co-expression network. Each row and 
column represented a gene. Light color indicated high topological overlap and dark color represented low topological overlap. Different 
colors on x and y axis indicated different modules. The dendrogram suggested that the clustering of these genes was based on the similarity 
of their gene expression levels. 



 

www.aging-us.com 23290 AGING 

 
 

Figure 4. (A) The module-trait relationship heatmap between MEs and features. Each row corresponded to a module eigengene and column 

to a feature. The first column was normal samples; the second column was essential thrombocythemia; the third column was primary 
myelofibrosis; and the fourth column was polycythemia vera. Each square contained corresponding correlation (first line) and p value 
(second line). The left side of heat map indicated the module name, right side of heat map indicated the colors of correlation (blue 
represented negatively correlated, red represented positively correlated). (B) Histogram of gene significance across modules in PMF group. 
(C) The correlation between gene significance and module membership in green module. The y-axis indicated gene significance in green 
module, and x-axis represented the module membership in green module. 
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Figure 5. (A) The cluster dendrogram of adjacencies in the eigengene network. (B) The heat map of adjacencies in the eigengene network. 
Blue represented a negative correlation, while red represented a positive correlation. (C) Green module genes expression heat map of 
different groups (Control, ET, PV and PMF). 
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Table 1. Functional and pathway (GO, KEGG) enrichment analysis of the genes in green module. 

Category Term Count % P Value 

GOTERM_BP_DIRECT GO:0030218~erythrocyte differentiation 5 2.304147 9.37E-04 

GOTERM_BP_DIRECT GO:0030097~hemopoiesis 5 2.304147 0.003971 

GOTERM_BP_DIRECT GO:0043066~negative regulation of apoptotic process 13 5.990783 0.004454 

GOTERM_BP_DIRECT GO:0008285~negative regulation of cell proliferation 11 5.069124 0.012111 

GOTERM_BP_DIRECT 
GO:0000122~negative regulation of transcription from 

RNA polymerase II promoter 
16 7.373272 0.012984 

GOTERM_BP_DIRECT GO:0007050~cell cycle arrest 6 2.764977 0.019582 

GOTERM_BP_DIRECT GO:0008584~male gonad development 5 2.304147 0.019829 

GOTERM_BP_DIRECT 
GO:0045944~positive regulation of transcription from 

RNA polymerase II promoter 
19 8.75576 0.022256 

GOTERM_BP_DIRECT 
GO:0043161~proteasome-mediated ubiquitin-dependent 

protein catabolic process 
7 3.225806 0.024531 

GOTERM_BP_DIRECT GO:0006810~transport 9 4.147465 0.03818 

GOTERM_BP_DIRECT GO:0030308~negative regulation of cell growth 5 2.304147 0.044148 

GOTERM_BP_DIRECT GO:0043065~positive regulation of apoptotic process 8 3.686636 0.047575 

GOTERM_CC_DIRECT GO:0005829~cytosol 63 29.03226 2.93E-06 

GOTERM_CC_DIRECT GO:0030863~cortical cytoskeleton 6 2.764977 3.03E-06 

GOTERM_CC_DIRECT GO:0005833~hemoglobin complex 4 1.843318 2.47E-04 

GOTERM_CC_DIRECT GO:0016020~membrane 39 17.97235 0.001861 

GOTERM_CC_DIRECT GO:0005737~cytoplasm 76 35.02304 0.001901 

GOTERM_CC_DIRECT GO:0080008~Cul4-RING E3 ubiquitin ligase complex 3 1.382488 0.013939 

GOTERM_CC_DIRECT GO:0005667~transcription factor complex 7 3.225806 0.017789 

GOTERM_CC_DIRECT GO:0016323~basolateral plasma membrane 6 2.764977 0.044445 

GOTERM_CC_DIRECT GO:0005856~cytoskeleton 9 4.147465 0.046641 

GOTERM_MF_DIRECT GO:0005515~protein binding 124 57.14286 9.16E-05 

GOTERM_MF_DIRECT GO:0051537~2 iron, 2 sulfur cluster binding 4 1.843318 0.002571 

GOTERM_MF_DIRECT GO:0008134~transcription factor binding 9 4.147465 0.014121 

GOTERM_MF_DIRECT GO:0042803~protein homodimerization activity 16 7.373272 0.015948 

GOTERM_MF_DIRECT GO:0003714~transcription corepressor activity 7 3.225806 0.025659 

GOTERM_MF_DIRECT GO:0004842~ubiquitin-protein transferase activity 9 4.147465 0.030192 

KEGG_PATHWAY hsa05144: Malaria 5 2.304147 0.003013 

KEGG_PATHWAY hsa04976: Bile secretion 5 2.304147 0.010206 

KEGG_PATHWAY hsa00860: Porphyrin and chlorophyll metabolism 4 1.843318 0.014778 

KEGG_PATHWAY hsa04141: Protein processing in endoplasmic reticulum 7 3.225806 0.017796 

KEGG_PATHWAY hsa00910: Cell Cycle 3 1.382488 0.018195 

KEGG_PATHWAY hsa05211: Renal cell carcinoma 4 1.843318 0.047755 

 

porphyrin metabolism. As shown in Figure 7A–7F, GSEA 

results indicated that the mutual genes in green module 

were commonly evolved in critical signaling pathways 

that were correlated with carcinogenesis of tumor, 

including cell cycle, hematopoietic cell lineage, JAK-

STAT signaling pathway, oocyte meiosis, P53 signaling 

pathway and toll-like receptor signaling pathway, etc. 

 

Identification of hub genes by PPI construction 

 

After screening the interested green module, the PPI 
network was constructed by STRING database, and 

then it was uploaded into Cytoscape software to further 

construct sub-network and identify hub genes. 

Co-related sub-modules in green module were also 

identified by MCODE plug-in in Cytoscape, totally 155 

nodes and 863 edges were acquired, together with the 

top 2 significant sub-modules, as shown in Figure 8A. 

Module 1 contained 10 nodes and 55 edges, module 2 

contained 7 nodes and 30 edges. Functional annotation 

and pathway enrichment of screened modules were 

conducted again using DAVID database. As Table 2 

showed, results suggested that genes in module 1 were 

mainly focused on hemoglobin metabolic process, 

erythrocyte differentiation, iron ion binding and 
hemoglobin complex; genes in module 2 were primarily 

enriched in protein polyubiquitination, protein binding 

and cytoplasm, etc. 
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Subsequently, hub genes in this weighted network were 

filtered with degrees ≥ 36, degrees meant the level of 

correlation between two genes. Altogether, 20 genes 

were identified as hub genes including EPB42, SLC4A1, 

CALR, MPL, FECH, GYPB, KLF1, DMTN, RBX1, 

HBD, GYPA, GLRX5, UBE2H, KAT2B, RHAG, 

SELENBP1, CDC34, TAL1, NEDD4L, and SNCA, as 

listed in Table 3. Meanwhile, the gene expression levels 

of the hub genes between PMF and normal samples were 

tested, as shown in Figure 8B. Illustration elucidated that 

expression levels of these hub genes in PMF samples 

were much higher compared to normal samples, 

indicating that these genes were responsible for the 

development of PMF. Additionally, EPB42, CALR, 

SLC4A1 and MPL associated genes including HBM, 

KLF1, GYPB, MYL4, AHSP, RHAG were also 

expressed abnormally, which demonstrated that EPB42, 

CALR, SLC4A1 and MPL associated pathways were 

activated aberrantly. 

 

Among those genes, the node degree of genes EPB42, 

CALR, SLC4A1 and MPL ranked highest, suggesting 

that EPB42, CALR, SLC4A1 and MPL had the most 

links with other proteins, which indicated that they were 

pivotal in the pathogenesis and oncogenesis of PMF. 

Consequently, these four genes were regarded as hub 

genes of PMF. 

 

Verification of expression patterns and protein 

expression of hub genes 

 

After EPB42, CALR, SLC4A1 and MPL were finally 

identified as hub genes of PMF, we established machine 

learning model to confirm the reliability of these genes, 

learning methods included Elastic Net regression, Ridge 

regression, Logistic regression, Random Forest, K-

nearest neighbors, and Support vector machine models. 

Each of the machine model displayed high accuracy  

in Figure 9A. The most appropriate predicting model 

SVM (Support vector machine) was chosen as 

appropriate model and applied for testing sets in third 

party datasets, results were presented in Figure 9B, auc 

of GSE53482 and GSE61629 were 0.922 and 0.875, 

respectively. 

 

 
 

Figure 6. Functional and pathway enrichment analysis of genes in green module. 
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Figure 7. (A–F) Gene set enrichment analysis of KEGG pathways in green module. 
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Figure 8. (A) Visualization of protein-protein interaction (PPI) network of genes in green module as well as the top 2 modules from PPI 
network. Every edge represented the interaction between two genes. (B) hub genes expression heat map identified in green module. 
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Table 2. Functional and pathway enrichment analysis of MCODE identified genes. 

Module Term Count % P Value 

1 

GO:0020027~hemoglobin metabolic process 5 50 0.002856 

GO:0030218~erythrocyte differentiation 4 40 0.018902 

GO:0005833~hemoglobin complex 4 40 0.005912 

GO:0005887~integral component of plasma membrane 3 30 0.027505 

GO:0005506~iron ion binding 2 20 0.078693 

2 

GO:0000209~protein polyubiquitination 5 71.42857 2.06E-07 

GO:0016567~protein ubiquitination 4 57.14286 1.85E-04 

GO:0005737~cytoplasm 5 71.42857 0.025964 

GO:0005654~nucleoplasm 4 57.14286 0.027962 

GO:0004842~ubiquitin-protein transferase activity 7 100 5.24E-11 

GO:0005515~protein binding 7 100 0.019848 

 

Table 3. Detailed information of the hub genes screened in green module. 

Gene symbol Degree Betweenness Gene symbol Degree Betweenness 

CALR 68 0.178851 GYPA 40 0.013157 

EPB42 63 0.171656 GLRX5 38 0.048597 

MPL 62 0.090448 UBE2H 38 0.104637 

SLC4A1 53 0.026492 KAT2B 38 0.106015 

FECH 52 0.073644 RHAG 37 0.00664 

GYPB 52 0.01537 SELENBP1 37 0.050267 

KLF1 46 0.013714 CDC34 36 0.025117 

DMTN 43 0.077598 TAL1 36 0.080359 

RBX1 43 0.050277 NEDD4L 36 0.048756 

HBD 41 0.004011 SNCA 36 0.093156 

 

Principal component analysis (PCA) was subsequently 

performed to reduce dimension of these hub genes so that 

we could observe the spatial distribution and clustering 

properties of the data. After dimension reduction, three 

principal components PC1, PC2 and PC3 were obtained, 

results displayed that these three components of the  

hub genes could differentiate the normal samples  

from PMF samples clearly in three-dimensional cube, 

from GSE26049, GSE61629, GSE53482, respectively 

(Figure 9C–9E). 

 

Expression values of these four hub genes in different 

third-party GEO datasets were further analyzed, we 

verified the expression of EPB42, CALR, SLC4A1  

and MPL among normal and PMF patients from 

GSE53482 and GSE61629 datasets (Figure 9F, 9G), 

results elucidated the hub genes were significantly 

overexpressed in PMF patients in both GSE53482 and 

GSE61629 series (P < 0.05). To further validate the 

expression of these hub genes, we collected the 
peripheral blood from healthy donors and PMF patients 

from our institution, and conducted qRT-PCR analysis. 

The results, presented in Figure 9H, suggested a 

significant difference between normal and PMF patients 

among these hub genes (P < 0.05). 

 

Finally, immunohistochemistry (IHC) as well as 

immunofluorescence (IF) were performed to detect 

relative location and abundance of proteins. The protein 

level of CALR gene was significantly overexpressed in 

tumor tissues compared to normal tissues based on HPA 

database (Figure 10A, 10B). The protein expression 

location of EPB42 was highly expressed in myeloid 

tissues as well as erythrocytes in gallbladder, results 

suggested that they were enriched in nucleoplasm and 

cytosol (Figure 10C–10E). The detailed expression 

information of EPB42 in different kinds of cells and 

tissues could be known in Figure 11, they were highly 

expressed in HEL cell lines, and Peripheral blood 

mononuclear cell (PBMC). 

 

DISCUSSION 
 

PMF, one of the most complex and rare malignant 

tumors in MPNs, is frequently but not always 

accompanied by JAK2, CALR mutation, aberrant 
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Figure 9. (A) Summary plot of different machine learning models. (B) ROC curves of support vector machine. (C–E) 3D scatter plot after 

principal component analysis of hub genes. (F) Expression values of hub genes between different groups in GSE53482. (G) Expression values 
of hub genes between different groups in GSE61629. ***: P < 0.001, **: P < 0.01, *: P < 0.05, ns: P> 0.05. (H) Expression of the hub genes 
EPB42, CALR, SLC4A1, MPL between PMF patients and healthy donors collected at our institution. 
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cytokine expression, bone marrow fibrosis and anemia, 

etc. [25–27]. Even though great progress has been made 

in the diagnosis of MPN during the last decades, the 

relevant research of PMF, is not sufficient, overall 

treatment and prognosis of PMF is still unsatisfactory, 

followed by a short median survival time as well as an 

inadequate exploration of chemotherapy [10–13]. This 

situation may be blamed for lack of effective 

biomarkers for targeted therapy. Consequently, to better 

discover novel biomarkers that could effectively and 

accurately predict the progression of PMF, this study 

extracted gene expression profile of GSE26049 from 

GEO database, and made a holistic WGCNA analysis. 

 

WGCNA, a powerful global research tool for data mining 

from multiple genes in large-scale datasets, is developed 

rapidly in recent years, which is characterized by filtering 

significant modules from phenotype features and clinical 

traits. WGCNA has already been used in recent years  

and has made a great progress in the identification  

of biomarkers and targeted chemotherapy [28–32]. 

Therefore, WGCNA is a reliable analysis tool, to our 

knowledge, whether the application of WGCNA methods 

or related research in PMF has rarely been reported.  

As a result, a comprehensive understanding in the 

pathogenesis of PMF at the early stage is imperative, to 

provide effective therapeutic strategies. 

 

In the present study, 14 co-expression modules were 

generated based on 20482 genes from 89 samples in 

GEO database by WGCNA. This study aimed to 

elucidate the association between modules and PMF 

feature and excavate the real biological meaning behind 

hub genes. First, hierarchical clustering analysis was 

generated to detect outliers and cutoff threshold was set 

as 85 to eliminate the outliers. Next, the optimal soft 

threshold power was picked by “pickSoftThreshold” 

function in R to construct a scale-free topology network, 

 

 
 

Figure 10. (A, B) Immunohistochemistry of CALR gene in normal and tumor tissues from HPA database. (A) Normal tissues (antibody: 

CAB019952; staining: low; intensity: moderate; quantity: < 25%). (B) Tumor samples (antibody: CAB019952; staining: medium; intensity: 
moderate; quantity: > 75%). (C) Immunohistochemical staining of human gallbladder shows positivity in erythrocytes, (original magnification: 
20x). (D, E), Immunofluorescence of EPB42 gene in HEL cell lines (myeloid tissues, antibody: HPA040261) (original magnification: 400x). 
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Figure 11. Detailed expression information of EPB42 in different kinds of cells and tissues. (A) Expression situation of EPB42 in 

different tissues; (B) Expression situation of EPB42 in different kinds of cells; (C–F) Expression situation of EPB42 in different immune cells. 
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which could get access to the real biological network 

state. Soft threshold power was a key value to amplify 

the disparity among strong and weak correlation genes, 

which could affect the mean connectivity and the scale 

independence of co-expression modules. Ultimately, soft 

threshold power β was determined as 16. 

 

After the weighted co-expression network was 

constructed based on soft threshold power, hierarchical 

clustering was performed to visualize the subgroups of 

weighted network. Altogether, 14 distinct co-expression 

modules were generated, and each module contained the 

genes that had the most correlations with each other. 

After acquiring WGCNA network data, the module-trait 

heatmap was displayed, we observed that green module 

had the strongest positive correlation to PMF group, 

illustrating those genes in green module were crucial  

in the pathogenesis of PMF. Meanwhile, purple and 

yellow modules had a highly positive correlation in 

normal group, indicating that genes in these modules 

may benefit for the normal organism development. 

Additionally, the correlation in PV and ET groups  

were not as significant as PMF group (Figure 4A). 

Besides, hierarchical clustering analysis in green module 

visualized that genes expression level could significantly 

differentiate PMF group from other three groups  

(Figure 5C). These findings implied, consistent with 

previous studies, that PMF is the most major neoplasms 

in MPNs, later in their courses, both PV and ET 

disorders may be evolved into post-PV MF and post-ET 

MF due to gene mutation or over-expression [3, 4]. 

 

GO, KEGG and GSEA methods were then carried out to 

further study the function and pathway regulation 

mechanisms of PMF tumorigenesis. Functional 

annotation revealed that genes in green module were 

mainly enriched in erythrocyte differentiation, hemo-

globin complex, transcription factor complex and protein 

binding, which may explain the reason why the fast 

multiplication of cancer cells and the generation of 

tumor cells. Our results implied that abnormal changes 

such as erythrocyte differentiation may occur in 

hemoglobin complex, which agreed with previous 

studies that myeloproliferative differentiation disorders 

may lead into aplastic anemia in the progression of PMF 

[33]. Results also found that molecular functions were 

primarily enriched in transcription factor binding in 

transcription factor complex, which was consistent with 

recent studies that cytokines mediated corresponding 

receptors into the nucleus to participate in transcriptional 

regulation, and finally lead into tumor growth [5]. 

Furthermore, the analysis of KEGG and GSEA revealed 

that these genes were primarily enriched in cell cycle, 
hematopoietic cell lineage, JAK-STAT signaling 

pathway, oocyte meiosis, and P53 signaling pathway. 

The oocyte meiosis was firstly contacted to PMF, and 

the mechanism was presumed to be related to 

progesterone-mediated oocyte maturation, which was 

reported to be related with many neoplasms [34]. Next, 

toll-like receptor signal pathway was found to be highly 

activated in normal samples, indicating that toll-like 

receptor behaved in resisting tumor in normal 

individuals. Besides, protein processing in endoplasmic 

reticulum, bile secretion and porphyrin metabolism were 

also aberrantly activated in PMF, the reason may be due 

to hepatomegaly and hyperfunction caused by genes 

over expression. Advanced researches reported that 

porphyria was a group of porphyrin metabolic disorders 

caused by the deficiency or the decrease of special 

enzyme in the pathway of heme synthesis. Based on the 

findings in this study that module genes of PMF may 

result in in heme binding, porphyrin metabolism, etc., 

we have reason to deduce that the development of PMF 

may also lead to the occurrence of porphyria, further 

research needs to be conducted to find out the 

correlations between these two disorders. Additionally, 

existed studies also reported that dysregulation of cell 

cycle may result in the oncogenesis of tumor [35, 36], 

which was agreed with our findings that cell cycle was 

aberrantly activated in PMF. 

 

With the aim of screening hub genes among green 

module, the interaction network of 217 mutual genes 

were constructed by PPI based on the STRING 

database. Altogether, 20 genes were selected with high 

degrees. Heatmap of these genes’ expression between 

PMF samples and normal samples illustrated that these 

genes could significantly distinguish these two groups 

(P < 0.05, Figure 8B). Particularly, EPB42, CALR, 

SLC4A1 and MPL, namely hub genes of PMF, ranked 

highest in their degree value, indicating that these genes 

had the most correlations with the progression of PMF. 

 

To further test the reliability of these hub genes, we 

established a series of methods including machine 

learning models, PCA analysis, qRT-PCR, and HPA 

database validation, etc. Machine learning is a method 

of summarizing rules, extracting information, and 

finally predicting unknown results, ROC curves 

generated by SVM suggested a good predicting ability, 

demonstrating that these hub genes had a pretty 

classification ability between normal and tumor 

samples. PCA analysis visualized that based on the 

three principal components, these hub genes could make 

a good distinction between different samples in three-

dimensional cube. Furthermore, the hub genes were all 

highly expressed in PMF samples than normal samples 

based on GEO database. HPA database including IHC 

and IF also proved the aberrant expression situation of 
the four hub genes. To confirm our findings, the results 

of our in-silico analysis were compared with qRT-RCR 

data from cases collected at our institution. Consistent 
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with the in-silico data mining results, these four hub 

genes EPB42, CALR, SLC4A1 and MPL were all 

overexpressed in PMF patients than that in healthy 

donors (P < 0.05). Consequently, these results 

mentioned above proved that the hub genes had a high 

correlation with PMF. While these differences were 

significant, the sample size were not large enough at 

this moment, due to the rare and difficult to collect of 

PMF, thus future validation about more samples at our 

institution would be required. 

 

CALR, located on chromosome 19, namely calreticulin, 

was a multifunctional protein that acted as a major Ca2+ 

binding protein in the lumen of the endoplasmic 

reticulum. Advanced researches proved that it also 

existed in nucleus, suggesting that it may activate in 

transcription regulation. Many studies had reported their 

highly correlation with the development of MPNs [5, 37, 

38], driver mutations involving CALR in 90% of patients 

mediated JAK-STAT signaling pathway, thereby leading 

to changes in the cytokine and growth factor milieu and 

accordingly potentiated fibrosis and finally resulted in 

disease. The immunohistochemistry results were 

consistent with the previous findings that CALR were 

promoted in the progression of MPNs [39], this study 

further proved that CALR was mainly associated with 

PMF. MPL, located on chromosome 1, mediated the 

expression of thrombopoietin and its receptor, activated 

in cellular signaling pathway, which were pivotal to the 

expansion and regulation of megakaryocytes as well as 

self-renewal of hematopoietic stem cells. Previous 

researches showed that mutations in both MPL and 

CALR could increase the JAK-STAT activation, of 

which CALR may induce JAK-STAT signaling pathway 

by increasing recruitment of proteins to the MPL 

promoter site [40]. 

 

EPB42, namely erythrocyte membrane protein band 4.2, 

was an ATP-binding protein which may activate the 

correlation of protein 3 with ankyrin. It was reported 

that EPB42 could control the shape and mechanical 

property of erythrocyte, and it had a high association 

with hereditary spherocytosis and recessive inherited 

hemolytic anemia [41, 42]. Currently, EPB42 was rarely 

reported in literature, this study proved the correlation 

between EPB42 and PMF. SLC4A1, part of the anion 

exchanger family and was expressed in the erythrocyte 

plasma membrane. The expressed protein comprised 

two domains which were structurally and functionally 

distinct, of which the N-terminal 40kDa domain was in 

the cytoplasm and acted as an attachment site for 

erythrocyte skeleton by binding with ankyrin. Many 

mutations in this gene had been known in human, and it 
was reported to be that over expression of SLC4A1 

could lead to some diseases like hereditary sphero-

cytosis caused by destabilization of cell membrane, and 

inherited distal renal tubular acidosis [43, 44]. The 

characteristics that EPB42 and SLC4A1 was over 

expressed in hereditary spherocytosis was consistent 

with the hematological features of PMF that the 

presence of large amount of erythrocyte in the 

peripheral blood cell smear. Besides, positive staining 

of EPB42 in erythrocyte and the expression of EPB42 

in PBMC also demonstrated a high correlation with 

blood diseases. Based on the findings above, this study 

found EPB42 and SLC4A1 had a strong correlation 

with PMF, immunofluorescence of EPB42 proved our 

results in this study, which were detected highly 

expressed in tumor samples. Consequently, our results 

discussed the connections between the hub genes 

EPB42, CALR, SLC4A1, MPL and PMF together with 

other related blood diseases comprehensively. 
 

Overall, this study used WGCNA analysis for a whole 

situation to conduct an elaborate, precise, and systematic 

view to analyze the DEGs from PMF disease. Currently, 

there is still lack of specific diagnostic indicators for 

malignant tumor in hematological diseases. EPB42 and 

SLC4A1, served as a biological macromolecule, which 

received little attentions in studies, have been proved in 

this study to be new biomarkers of PMF, the effects are 

worth expected whether in the diagnosis at early stage or 

as therapeutic target. However, considering all the results 

above, there were still some limitations, molecular 

biological experiments and more large patient samples 

need to be applied in the future to further validate these 

hub genes, and to determine whether they may be 

beneficial in the diagnosis or treatment of PMF. 

 

CONCLUSIONS 
 

This study attempted to explore the potential molecular 

regulatory mechanism of PMF based on WGCNA 

analysis. 14 distinct co-expression modules were 

identified from GEO dataset GSE26049. Of which, 

green module was most significantly correlated with 

PMF. EPB42, CALR, SLC4A1 and MPL in green 

module were recognized as key therapeutic targets for 

PMF. EPB42 and SLC4A1, which were rarely reported 

in literature, have been proved to be highly correlated 

with PMF. 
 

MATERIALS AND METHODS 
 

Microarray data 
 

Gene expression profile of GSE26049 was downloaded 

from the National Center for Biotechnology 

Information Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/), which is a 

functional public genomics repository, including high 

throughput gene expression data, chips, and 

https://www.ncbi.nlm.nih.gov/geo/
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microarray data. The profile totally contained 90 

samples, including 9 PMF (primary myelofibrosis) 

samples, 19 ET (essential thrombocythemia) samples, 

41 PV (polycythemia vera) samples and 21 normal 

samples. 

 

Gene expression profiles’ preprocessing 

 

The method of quality control was performed by R 

(“affy”, “affyPLM” package), standard samples were 

identified through calculating their normalized unscaled 

standard error (NUSE). Data preprocessing was 

performed to handle the raw data (“.CEL” file format) 

using robust multi-array average (RMA) background 

correction and normalization (RMA function, “affy” 

and “affyPLM” package). The Affymetrix annotation 

files from GPL570 platform were applied to annotate 

corresponding probes, and probes without annotation 

were removed. 

 

Weighted gene co-expression network analysis 

(WGCNA) 

 

WGCNA analysis was performed to identify 

corresponding expression modules. The process were 

conducted under R environment (“WGCNA” package 

[18]). First, hierarchical clustering analysis was applied 

to check the heterogeneity of samples to detect and 

eliminate the outliers. Second, clustering was performed 

according to gene expression levels in each sample to 

construct the network, to get access to the real biological 

network state (scale-free network). The soft threshold 

power was determined to select by computing a 

correlation value between every pair of genes, which 

could amplify disparity among strong and weak 

correlations, so that the network state could approach 

scale-free network topology. The optimal soft threshold 

power was selected when the scale-free topology index 

(R^2) reached 0.90 and mean connectivity approached 0. 

 

Next, weighted gene co-expression network was 

constructed based on the correlations of gene expression 

levels, and co-expression modules were identified by 

dynamic pruning method. The minimum number of 

genes in module was set as 30. Eigengenes adjacency 

was calculated to evaluate interaction of various gene 

modules. Module-trait relationships were estimated to 

identify the correlation between modules and PMF. 

 

The degree of correlation between genes was calculated 

by WGCNA using the Topological overlap measure 

(TOM) [45, 46], and Pearson’s correlation coefficient 

was also calculated to evaluate correlation between 
module eigengene and phenotype. P < 0.01 was 

regarded as statistically significant. Then relationships 

between Gene Significance (GS) and Module 

Membership (MM) was assessed. Ultimately, the 

module with the highest weighted correlation 

coefficient among all clustered modules was chosen as 

the interested module, and was pooled for further 

analysis. 

 

Functional and pathway enrichment analysis on 

interested module 

 

Functional annotations and interpretations were  

applied to discover their biological meaning behind 

genes. This study used DAVID database (Database for 

Annotation, Visualization, and Integrated Discovery, 

http://david.ncifcrf.gov/), to get comprehensive 

understanding, which is a crucial repository providing a 

set of functional annotation tools, to explore the real 

biological significance. GO (Gene Ontology) is a 

powerful tool to analyze the molecular functions (MFs), 

cellular components (CCs), and biological processes 

(BPs) of genes. KEGG (Kyoto Encyclopedia Genes and 

Genomes) pathway enrichment analysis was performed 

to understand links among different genes and signaling 

pathways. This study performed GO and KEGG in 

DAVID database and P < 0.05 was set as the cutoff 

threshold. Additionally, GSEA (Gene set enrichment 

analysis) was further conducted to determine which set 

of genes showed statistical significance. Based on the 

size of set, a normal enrichment score (NES) was 

assessed for each gene set, FDR and P value were 

calculated as the cutoff criteria. 

 

PPI (protein-protein interaction) network construction 

and hub genes selection 

 

PPI analysis was then conducted by STRING online 

tool, (Search tool for retrieval of interacting genes, 

https://string-db.org/), an online database that provided 

PPI correlations. Subsequently, we used Cytoscape 

software (version 3.7.0) to screen hub genes and 

modules through Molecular Complex Detection 

(MCODE) plug-in, which was used for clustering given 

network links based on topology to identify densely 

connected regions. Each node in the network 

represented a gene, and edges represented regulatory 

relationships between genes. MCODE recognized the 

most significant modules through mathematical 

algorithm that number of nodes > 7 and MCODE scores 

> 8. P < 0.05 was regarded as statistical significance and 

hub driver genes were selected as degrees ≥ 36. 

 

Validation of hub genes in different GEO databases 

 

The identified hub genes were validated in third party 
GEO database: GSE53482 and GSE61629, which were 

set as testing sets. The gene expression profiles were 

downloaded from GEO database, and annotation file 

http://david.ncifcrf.gov/
https://string-db.org/
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were provided by platforms “GPL570, Affymetrix 

Human Genome U133 Plus 2.0 Array” for GSE61629 

and “GPL13667, Affymetrix Human Genome U219 

Array” for GSE53482. The initial downloaded file was 

“.CEL” format, “RMA” algorithm by R (“rma” 

function) was conducted to perform background 

correction and data normalization to obtain standard 

gene expression profiles, followed by probe annotation. 

Based on manufacture-provided annotation files on 

platform, probe sets without corresponding genes were 

removed. The expression of hub genes in these GEO 

datasets were analyzed between normal group and PMF 

group to validate the significance of these genes. 

 

Establishment of machine learning and principal 

component analysis 

 

To test the predictive ability and reliability of these hub 

genes, GSE26049 was set as training set, then different 

machine learning algorithms were constructed based on 

training set, including Elastic Net regression, Ridge 

regression, Logistic regression, Random forest, K-

nearest neighbors, and Support vector machine 

algorithms (“caret”, “e1071”, “kernlab” packages were 

needed). Five-fold cross validation was set to obtain the 

most suitable equation as well as the most accurate 

predicting results. GSE53482 and GSE61629 were set 

as testing sets to confirm the accuracy of these machine 

learning models, ROC curve of the most suitable model 

was plotted and auc (area under curve) was calculated. 

Subsequently, based on the hub genes expression, 

principal component analysis (PCA) was conducted to 

reduce dimension to observe whether these hub genes 

could distinguish the tumor samples from the normal 

samples. 

 

Validation of protein expression of the hub genes by 

HPA database 

 

The hub genes between PMF and normal samples in this 

study were determined using immunohistochemistry 

(IHC) as well as immunofluorescence (IF) by Human 

protein atlas database (https://www.proteinatlas.org/). 

HPA is a valuable repository which provides a large-

scale of protein and transcriptomic data in specific human 

tissues and cells for researchers to visualize the most 

valuable information [47]. In addition, the IHC-based 

protein expression pattern is the best way to detect the 

protein location and abundance of interested genes. 

 

Real-time qRT-PCR in PMF and normal patients 

 

To confirm the expression situation of these four hub 
genes in PMF patients, this study collected peripheral 

blood tissues from totally 4 PMF patients and 4 healthy 

donors between December 1, 2020 and September 10, 

2021 in Xi’an Daxing hospital. Total RNA was extracted 

from whole-blood using the Paxgene Blood RNA Kit 

(qiagen762174), and qRT-PCR was performed using 

FastStart Universal SYBR Green Master (ROX) (Roche 

Diagnostics) in a CFX96 Real-Time System (Bio-Red) 

according to the manufacturer’s instructions, and 

expression levels were normalized to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). The 2-ΔΔCt method 

was applied for qRT-PCR data analysis. The primers of 

corresponding genes were listed as follows: EPB42 

forward primer, ACATGTCAGGGTGCTCACAG; 

EPB42 reverse primer, TTGCTTCTGGGCTCCTTCTG; 

CALR forward primer, CGCTTTTATGCTCTGTCGGC; 

CALR reverse primer, CCACAGATGTCGGGACC 

AAA; SLC4A1 forward primer, CACACAACTTCAGG 

CCCCTC; SLC4A1 reverse primer, AGAGCCTGCTGT 

CTCCTACC; MPL forward primer, TCTCCTCTTC 

TAGCATTTCTTCCA; MPL reverse primer, AGCATC 

ACAGTGCTGTAGTAGA; GAPDH forward primer, 

GACAGTCAGCCGCATCTTCT; GAPDH reverse 

primer, GCGCCCAATACGACCAAATC. This research 

was approved by the Ethics Committee of Xi’an Daxing 

hospital. All participating patients and donors have 

understood the experimental procedures and signed the 

informed consents. 
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Supplementary Table 1. All of gene symbols in green module. 

 


