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Abstract

Pathogenic protein accumulation and spread are fundamental principles of neurodegenera-

tive diseases and ultimately account for the atrophy patterns that distinguish these diseases

clinically. However, the biological mechanisms that link pathogenic proteins to specific neu-

ral network damage patterns have not been defined. We developed computational models

for mechanisms of pathogenic protein accumulation, spread and toxic effects in an artificial

neural network of cortical columns. By varying simulation parameters we assessed the

effects of modelled mechanisms on network breakdown patterns. Our findings suggest that

patterns of network breakdown and the convergence of patterns follow rules determined by

particular protein parameters. These rules can account for empirical data on pathogenic pro-

tein spread in neural networks. This work provides a basis for understanding the effects of

pathogenic proteins on neural circuits and predicting progression of neurodegeneration.

Introduction

Accumulation of pathogenic protein in neural tissue is the core process underpinning neuro-

degenerative brain pathologies and ultimately responsible for their phenotypic consequences.

An emerging paradigm of neurodegeneration emphasises the propagation of pathogenic pro-

teins across neural networks, leading to consistent spatiotemporal profiles of regional brain

dysfunction and atrophy that can be mapped macroscopically using neuroimaging techniques

[1–4]. Certain features of pathogenic proteins such as conformational misfolding and the pro-

pensity to ‘template’ the conversion of normal protein to pathogenic form favour the spread of

proteinopathies [5] while in vitro seeding and animal inoculation studies suggest that protein

spread co-opts neural circuitry [6, 7]. It has been proposed that neurodegenerative phenotypes

are the result of specific conjunctions of pathogenic protein and neural circuit characteristics:

‘molecular nexopathies’ [3]. However, the mechanisms that link protein accumulation to neu-

ral network breakdown are still poorly understood. Elucidating these mechanisms would
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transform the diagnosis and tracking of neurodegenerative diseases and inform the design of

rational disease-modifying therapies.

Human neuroimaging techniques are remote from the local tissue effects that induce neu-

rodegeneration while in vitro and in vivo systems are resource-and time-intensive. Computa-

tional approaches would potentially allow rapid evaluation of neurodegeneration models and

derivation of relevant parameters of protein accumulation and spread. Most computational

research on these diseases has focused on classification and prediction of atrophy [2, 8] rather

than the elucidation of underlying mechanisms. However, computational modelling

approaches are potentially of much wider utility, as illustrated by previous work applying such

methods to study the aggregation of amyloid-beta and tau in Alzheimer’s disease and evaluate

therapeutic interventions [9].

Here we describe a computational modelling approach to simulate mechanisms of patho-

genic protein accumulation, spread and toxic effects within an artificial small neural network.

Using the NEURON simulator software [10], we simulated an artificial neural network com-

prised of cortical columns [11], a representative and frequent target of neurodegenerative dis-

eases [12]. This network has been previously used to simulate pathological neuronal

communication in Parkinson’s disease and Alzheimer’s disease [13, 14]. We addressed the

general hypothesis that this model would generate protein and network dependent disease

effects, in line with empirical data for protein spread and macroscopic disease behavior. The

molecular nexopathies paradigm predicts that structural features of neural circuits confer vul-

nerability to particular pathogenic proteins [3]. To test this hypothesis, we ran simulations,

systematically varying protein and network parameters and we defined metrics that relate

these parameter variations to protein spread and the network damage pattern.

All computational models entail simplifying assumptions. For example, pathogenic proteins

often possess a number of conformational isoforms [15], but we reduced this variation to

model a normally folded and a pathogenically misfolded variant. We modelled protein solubil-

ity and misfolding properties, shown in vivo to be key determinants of cell integrity and sur-

vival [15]. In addition, we modelled protein spread through passive diffusion, active transport

and synaptic transfer, all of which are characteristics relevant to network spread [3, 4, 6, 7].

Identification of disease-specific network signatures is challenging in the presence of stochastic

variation (observed for example, between brain atrophy profiles of individual patients). Here

we used time to convergence of simulations to assess how robustly and consistently protein

and network parameters contribute to establishing patterns of spread. The null hypothesis (no

effect of modifying protein and network parameters on spread) would predict no convergence

between simulations. We also assessed how these parameters affect neural network survival

and asymmetry of network damage (key features of protein spread in real neural networks

[3, 6]).

Materials and methods

We used NEURON, a simulator for neural networks [10] and focused our simulations on the

interaction between pathogenic protein and cortical columns [12], based on the neural net-

work used by Neymotin et al. [11]. This network had K = 3 cortical columns, each with 470

neurons (N = 1410 total). Each neuron i 2 {1, . . ., N}, belongs to a cortical column Col(i) = {1,

2, 3}, to a layer Lay(i) = {2, 4, 5, 6} and has a type which can be excitatory Regular Spiking (RS),

excitatory Intrinsically Bursting (IB), inhibitory Fast Spiking (FS) or inhibitory Low-Threshold

Spiking (LTS), Type(i) = {RS, IB, FS, LTS}. Each neuron is modelled with 3 cylindrical ele-

ments, called sections: one for its dendrites (j = 1), one for its soma (j = 2) and one for the

axon (j = 3). A concentration of non-pathogenic (normal) protein Cnti;j and pathogenic
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(misfolded) protein Cpti;j exists within each section at time t. We set Cmax = 1 as the maximum

concentration, i.e. Cnti;j þ Cp
t
i;j � Cmax. Many neuronal properties and the neural network’s

connectivity have been defined by Neymotin et al. [11] and for our purposes we defined the

diameter Di,j, length Li,j, base area Ri,j = π(Di,j/2)2 and volume Vi,j = Li,j × Ri,j of each section, as

well as ri;j!�i;�j as the strength of a synapse starting from neuron i, connecting to the postsynaptic

neuron �i, section �j. If there is no synaptic connection, then ri;j!�i ;�j ¼ 0. We defined pi;j!�i;�j as the

intrinsic tendency of protein to spread selectively via intercolumnar synaptic connections (the

projection neurons for each column), which drive protein spread across the network. Fig 1 is a

schematic representation of a simulated neuron.

We modelled protein production, misfolding, clearance, passive diffusion, active transport,

synaptic transfer, a toxic effect on the firing frequencies of neurons, neuronal toxicity (overall

damage to the neuron) and neuronal death. These processes were applied for all neurons, at

every timestep (simulation iteration), in the aforementioned order and we use the notation

Cnt;ti;j and Cpt;ti;j to signify intermediate updates to the concentrations, where τ indicates an

intermediate timestep. Except for misfolding, these processes were applied in the same manner

for both normal and pathogenic proteins. Therefore, henceforth we will only refer to patho-

genic protein (readers can assume similar equations for normal protein).

Simulation setup

Common settings for all simulations were: timestep interval dt = 0.025msec, passive diffusion

fraction fpd = 0.05, production and clearance rates RPn = RCn = 0.0002, RPp = RCp = 0.00002 and

normal concentration levels Cnn = Cpn = 0.01. We ran 11016 simulations, varying eight param-

eters: 1) two random instances of neural network connectivities based on the connection den-

sities in Table 2 of Lytton et al. [11]; 2) soluble/clearable (there is evidence suggesting soluble

tau and amyloid-beta oligomers are toxic, whereas larger, insoluble aggregates are not toxic

[16]) or insoluble/unclearable pathogenic protein (in the latter case there is no clearance and

negligible production of pathogenic protein); 3) 17 types of seeds—in the first three types

(Seed All 1, 2 or 3) all neurons start with Cnt¼0
i;j ¼ Cp

t¼0
i;j ¼ 0:01 in simulations with soluble

pathogenic protein and Cnt¼0
i;j ¼ 0:01;Cpt¼0

i;j ¼ 0:0001 with insoluble pathogenic protein (the

difference between these three seeds was variation in the random number generation of NEU-

RON)—for the remaining types of seeds we added extra pathogenic protein at the start of the

simulation to a single neuron of the first cortical column, varying the cortical layer and neuro-

nal type of the seeded neuron (Seed L2RS); 4) low misfolding rate RM = 0.08 or high misfolding

rate RM = 0.09; 5) no diffusion, low diffusion speed σz = 50 or high diffusion speed σz = 500; 6)

no active transport fat = 0, weak active transport fat = 0.0001 or strong active transport

fat = 0.001; 7) three settings for synaptic transfer and the toxic effect of the pathogenic

Fig 1. A visual representation of a simulated neuron and its section parameters.

https://doi.org/10.1371/journal.pone.0192518.g001
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protein—no synaptic transfer fst = 0 with an increase of voltage thresholds Vth adapti , low synap-

tic transfer fst = 1 with an increase of voltage thresholds or high synaptic transfer fs t = 1 with a

decrease of voltage thresholds (since a decrease of voltage thresholds increases firing frequen-

cies, this indirectly strengthens the synaptic transfer mechanism); 8) tendency to avoid inter-

columnar connections pi;j!�i;�j ¼ 0:01, no spread selectivity pi;j!�i ;�j ¼ 1 or tendency to spread via

intercolumnar connections pi;j!�i ;�j ¼ 100.

Production

Pathogenic protein could in general be created by the processes either of transcription and

translation (production) and/or by post-translational modification (misfolding) of normal

protein. We assumed production remains at a specific rate of protein molecules per unit of

time (with little variation), which is unaffected by protein accumulation [17], until cellular

death. We modelled production as anti;j, ap
t
i;j (Eq 1), which were samples from normal distribu-

tions, based on mean production rates RPn, RPp:

apti;2 � N ðRPp;RPp
2Þ; apti;1 ¼ ap

t
i;3 ¼ 0 ð1Þ

Cpt;1i;j ¼ Cpti;j þ ap
t
i;j ð2Þ

Misfolding

Generally, the proteins associated with neurodegeneration are misfolded from a soluble to an

insoluble state, with a number of intermediates and it is primarily larger aggregates that cause

normal protein to misfold [18]. We hypothesised that normal protein is misfolded when it

comes in close proximity to pathogenic protein [3, 7, 15]. To derive a model based on our

hypothesis, we simulated a cube volume, within which we added normal and pathogenic pro-

tein molecules and let them diffuse. Normal protein molecules would misfold and become

pathogenic whenever they came in close proximity. At the end of the simulation we calculated

the concentration of normal protein molecules that misfolded. We repeated this simulation

varying the initial number of normal and pathogenic protein concentrations. Considering sim-

ulation results (Fig 2, left) as ground truth, our proposed model of the product of the two

Fig 2. Left: Concentration of normal protein (Cn) misfolded to pathogenic (Cp) based on simulations. Right:

Proposed misfolding model: RM � Cn � Cp, with RM = 1. Adjusting RM can negate the scaling difference.

https://doi.org/10.1371/journal.pone.0192518.g002
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concentrations (Eq 3, Fig 2, right), was in close agreement with the ground truth:

bti;j ¼ RMCnti;jCp
t
i;j ð3Þ

Cnt;2i;j ¼ Cnt;1i;j � bti;j

Cpt;2i;j ¼ Cpt;1i;j þ bti;j
ð4Þ

Clearance

Protein accumulation is caused by an imbalance between overall protein production and clear-

ance due to three mutually compatible scenarios: (a) clearance mechanisms remain healthy, but

insoluble pathogenic proteins accumulate, (b) clearance mechanisms remain healthy, but are

overwhelmed by the accumulation of protein due to other mechanisms, or (c) clearance mecha-

nisms weaken, reducing clearance rates [19, 20]. We modelled protein clearance such that the

concentration of every protein variant tends to be maintained at a normal level within a cell.

When protein levels are below or above normal, production rates remain unchanged, but clear-

ance rates adapt to return protein levels to normality. Given clearance rates RCn, RCp at normal

levels of protein concentration Cnn, Cpn, the protein clearance terms qnti;j, qp
t
i;j (Eq 5) were:

qpti;j � N ðmtCp; m
t
Cp

2Þ ð5Þ

mtCp ¼ RCp log 1þ ðe � 1Þ
Cpti;j
Cpn

 !

ð6Þ

Cpt;3i;j ¼ Cpt;2i;j � qpti;j; ð7Þ

where mtCn, mtCp are considered as the adaptive clearance rates. Although our choice of a logarith-

mic function is somewhat arbitrary, it is adaptive to the concentration levels and biologically

plausible.

Normal and pathogenic protein equilibrium

The equilibrium between normal and pathogenic protein concentrations is commonly

hypothesised to be lost in some neurodegenerative diseases [21]. We ran simulations with nor-

mal and pathogenic protein concentration at a single point, varying the misfolding rate RM to

observe behavioural differences on the protein equilibrium (Fig 3). When RM = 0.0626, the

protein concentrations reached equilibrium, but after a small number of timesteps this equilib-

rium was lost. When RM = 0.0624, the same process occurred, but the equilibrium was lost

after a larger number of timesteps. When RM = 0.622, the equilibrium was maintained after a

much larger number of timesteps. Notably, the behaviour of this process is sensitive to small

changes to RM. While these were simple simulations, biochemical variations of this kind could

contribute to individual variation in vulnerability to neurodegenerative diseases. Protein

aggregation may occur all the time, but in most individuals, neurons may be able to degrade

small soluble aggregates, preventing the formation of large insoluble aggregates [18]. Tau

strains that seed more efficiently (i.e. have a high misfolding rate) may be significantly more

toxic to cells that express high levels of monomeric tau [22]. These simulations demonstrate

how these two hypotheses could be true.
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Spread

There are many hypotheses regarding the spread of pathogenic proteins [7, 15, 23] (e.g. diffu-

sion, exocytosis, etc.). Proteins spread primarily through the neural network [16, 24], in either

anterograde or retrograde fashion [24]. We modelled intracellular and intercellular passive dif-

fusion, intracellular active transport and intercellular synaptic transfer. We defined fpd, fat and

fst as fractions, restricting the maximum protein quantity that can spread out of a neuronal sec-

tion within a single timestep for passive diffusion, active transport and synaptic transfer

respectively. Based on available empirical data [18, 25], we modelled both normal and patho-

genic protein spread via the same mechanisms.

Passive diffusion. We modelled passive diffusion of protein as Brownian motion,

restricted to the cylindrical shape of neuronal sections intracellularly and the synapses and

their synaptic strengths intercellularly. We defined zi;j!�i;�j (Eq 10) as the fraction of Cpt;3i;j that

diffuses past the boundary of section i, j and enters a neighbouring section �i,�j. These coeffi-

cients comprise four terms: 1) yi;j!�i;�j models Brownian motion in the primary spatial dimen-

sion by taking the integral of the one-dimensional normal distribution with its mean at the

centre of i, j and its standard deviation σz controls the speed of passive diffusion (Eq 8); 2) the

ratio of the area of the entrance to the source’s base area Ri,j accounts for the other two spatial

dimensions; 3) predetermined weights wi;j!�i ;�j had values equal to the synaptic strengths for

intercellular spread or were set arbitrarily to a high value for intracellular spread; 4) the intrin-

sic spread selectivity of the protein pi;j!�i ;�j .

yi;j!�i ;�j ¼
1
ffiffiffiffiffiffi
2p
p

Z
� Li;j
2sz

� 1

e
x2

2 dx; if �i;�j neighbour of i; j ð8Þ

wi;j!�i ;�j ¼
20; if i ¼ �i

ri;j!�i;�j ; if i 6¼ �i

(

ð9Þ

Fig 3. Three simulations showing the equilibrium between normal and pathogenic protein within a single volume,

in conjunction with our modelled production, misfolding and clearance, with different misfolding rates RM. The

initial protein concentrations are Cn = 0.05, Cp = 0.01, the normal concentration levels are Cnn = 0.05, Cpn = 0.01 and

the production and clearance rates are RPn = RCn = 4e − 4, RPp = RCp = 0.8e − 4. Left: RM = 0.0626. Middle: RM = 0.0624.

Right: RM = 0.622. Note the different time scales.

https://doi.org/10.1371/journal.pone.0192518.g003
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zi;j!�i ;�j ¼ yi;j!�i ;�j

min ðRi;j;R�i ;�jÞ

Ri;j
wi;j!�i ;�jpi;j!�i ;�j ð10Þ

However, this model spreads protein to neighbouring neuronal sections only and not to

every geodesically nearby section. We calculated coefficients di;j!�i;�j , indicating what fraction of

Cpt;3�i;�j spreads to section i, j using the following approach: choose a source section �i,�j and spread

fractions of Cpt�i;�j to its neighbour sections based on z�i ;�j!i;j. Then, iterate the following: if the

amount of protein that a neighbour section received is above a threshold tsig, repeat the process

for every such section as a source, spreading the quantity those sections received, until conver-

gence to an equilibrium. The updated concentrations are (Eq 13):

xtk ¼ Cpt;3i;j Vi;j ð11Þ

Mk;l ¼
fpddi;j!�i ;�j ; k 6¼ l

1 � fpd þ fpddi;j!�i ;�j ; k ¼ l

(

ð12Þ

Cpt;4i;j ¼
Mk;:xt

Vi;j
; ð13Þ

where k ¼ 3ði � 1Þ þ j; l ¼ 3ð�i � 1Þ þ�j and the notation Mk,: is the row vector consisting of

the elements of the k-th row of M.

Active transport. We modelled active transport based on data for the axonal transport of

tau protein [24, 26], a relevant pathogenic protein in many neurodegenerative diseases. We

concluded that tau shows anterograde movement, no movement and retrograde movement

15.4%, 73%, 11.6% of the time, respectively. Due to lack of evidence for transport rates in den-

drites and somas, we adjusted these percentages for all neuronal sections, favouring antero-

grade movement. We defined eti;j!�i ;�j as the fraction of protein that is actively transported from

i, j to �i,�j at time t.

Cpt;5i;j ¼
P

�j e
t
i;�j!i;jCp

t;4
i;�j Vi;�j

Vi;j
ð14Þ

Synaptic transfer. We hypothesised that every action potential transfers a large quantity

of protein to postsynaptic neurons. There is evidence that more tau (250% increase [25]) and

amyloid-beta are released from neurons when those neurons are actively stimulated [16, 25].

We defined gti;j!�i ;�j as the fraction of protein that is synaptically transferred when an action

potential occurs.

gti;j!�i;�j ¼
0:154fstpi;j!�i ;�j ri;j!�i;�j
P

~i

P
~jpi;j!~i;~j ri;j!~i ;~j

ð15Þ

Cptþ1
i;j ¼

P
�i

P
�j g
t
�i;�j!i;jCp

t;5
�i ;�j V�i;�j

Vi;j
ð16Þ
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Neuronal toxicity, toxic effects and cellular death

We assumed that the toxicity level within neurons, txcti (starting at 0), increases due to protein

accumulation, based on an exponential function of the protein concentration (Eq 17). There

are many hypotheses regarding the toxic effects of pathogenic proteins [3, 21, 23]. Amyloid-

beta may cause hyperexcitability [16, 25], whereas tau causes synaptic loss [16]. We modelled

that neuronal toxicity causes a toxic effect on the voltage threshold Vth adapti [11] required for

triggering an action potential. As neuronal toxicity increases, the threshold either increases,

indirectly reducing firing frequencies (toxic loss of function) or decreases, indirectly increasing

firing frequencies (toxic gain of function). Once toxicity reached txctii ¼ 1, we assumed cellular

death occurred at time ti, after which only the processes of misfolding and diffusion out of the

neuron would continue.

txcti ¼ txc
t� 1
i þ 0:001 exp 10

X

j

Cnti;j þ Cp
t
i;j

3

 !

� 1

 !

ð17Þ

Results metrics

SSGi ¼
X

8�ini;8�j;8j

ri;j!�i ;�j �
X

8�ini;8�j;8j

r�i ;�j!i;j ð18Þ

Ds;�sðnÞ ¼
#fGsðnÞ \ G�sðnÞg

n ð19Þ

tcðs;�sÞ ¼ arg min
n
jDs;�sðnÞ � tconvj;

s:t: Ds;�sðmÞ � tconv; 8m 2 ftcðs;�sÞ; . . . ;Ng
ð20Þ

CONVij ¼

P
s2Hi

P
�s2Hj
tcðs;�sÞ

jHijjHjj
ð21Þ

ASY ¼ max
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
iðtxc

t
i �
P
jtxc

t
j=NÞ

2

N � 1

s

ð22Þ

Results

We ran 11016 simulations, varying eight parameters (see Simulation Setup under Materials

and methods): network connectivity, protein seed location, pathogenic protein solubility, mis-

folding rate, passive diffusion speed, active transport rate, synaptic transfer and the tendency

of protein to spread selectively via intercolumnar synaptic connections (predicted to be a key

determinant of the pattern of circuit breakdown [3]).

In order to assess the vulnerability of specific neurons we calculated for each neuron its

Geodesic Distance to the Seed (GDS) and its “Synaptic Strength Gradient” (SSG, Eq 18), which

is the difference between the sum of its presynaptic connection strengths and the sum of its

postsynaptic connection strengths. Neurons with a high SSG have many and strong presynap-

tic connections, but few and weak postsynaptic connections (here termed ‘bottleneck’

Computational modelling of pathogenic protein spread in neurodegenerative diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0192518 February 5, 2018 8 / 15

https://doi.org/10.1371/journal.pone.0192518


neurons). Modulation of information transfer between input and output connections is a basic

concept of neuron biology and neurons have widely varying input:output relations [27]. We

hypothesised that neurons with a high SSG or a low GDS value are more vulnerable and reach

cellular death earlier. In Fig 4, every neuron is plotted as a point, using their respective SSG

and GDS values against the simulation time that they reached cellular death; we performed lin-

ear regression and calculated R2 values in order to assess the relation between these neuronal

characteristics and time to cellular death. We will refer to SSG R2 as the ‘bottleneck’ neuron

survival characteristic and to GDS R2 as the distance to seed survival characteristic.

We quantified the asymmetry of network damage ASY by taking the maximum value over

time of the standard deviation of the neuronal toxicity (Eq 22). We assume that a high varia-

tion in neural network damage is similar to what one would call asymmetric neural network

damage. This maximum value typically occurred during the first few cellular deaths. We

also calculated the time it took for all neurons to reach cellular death (time to network break-

down—TTNB) in each simulation. Table 1 indicates the magnitude of the effect each parame-

ter had on SSG R2, GDS R2, ASY and TTNB.

Fig 4. Each point indicates a neuron i, at the time of its cellular death ti and its respective SSGi (left) or GDSi
(right) value for simulations primarily driven by passive diffusion of pathogenic protein (seed L2FS, low

misfolding rate, strong active transport, no synaptic transfer and no spread selectivity). (a) SSG and (b) GDS with

soluble pathogenic protein. (c) SSG and (d) GDS with insoluble pathogenic protein.

https://doi.org/10.1371/journal.pone.0192518.g004
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In order to assess each parameter’s impact on protein spread patterns, we quantified the

similarity and time to convergence between the order of cellular deaths for all pairs of simula-

tions. Given a pair of simulations s and �s, we created the sets Gsn;G
�s
n; n 2 f1; :::;Ng (N is total

number of neurons), indicating the set of the first n neurons to reach cellular death in simula-

tion s, �s. We calculated the Dice coefficient (a measure of similarity between two sets) Ds;�sðnÞ
(Eq 19) between sets Gsn, G

�s
n for n 2 {1, . . ., N}. The higher the Dice coefficient value between

two sets, the larger the number of dead neurons in common between the sets. We defined time

to convergence as the time tcðs;�sÞ (Eq 20), normalised by N, that the Dice coefficient reached

and continued to exceed a high threshold value tconv = 0.8. After convergence, since the Dice

coefficient remains high, the two simulations show similar spread patterns. Simulations with a

low tcðs;�sÞ (i.e. early convergence) have similar spread patterns during the entire simulation.

Fig 5 summarises the time to convergence for all pairs of simulations. We created the sets

Hi, i 2 {1, . . ., 35}, each of which includes all simulations with one common parameter value

indicated by the underscript i. The value of i is indicated on the i-th row of the y-axis of Fig 5.

For example, all simulations with a ‘Low misfolding rate’ belong to setH22. We computed a

matrix CONV 2 R35�35, where element CONVij is the mean time to convergence between all

simulations in setHi against all simulations in setHj (Eq 21). Comparing diagonal elements

illustrates the effect of a single protein mechanism on time to convergence, whereas by com-

paring non-diagonal elements within a row or a column one can study how variation of a sec-

ond protein mechanism affects time to convergence.

Fig 6 displays the mean firing frequencies and toxicity over time for certain neuron types in

a simulation with an increase of firing voltage thresholds toxic effect.

Discussion

Across simulations, passive diffusion was the primary driver of the spread patterns (Fig 5),

strongly influencing neuronal survival characteristics based on distance to seed (GDS) and

synaptic input:output relations (SSG) as well as the asymmetry of network breakdown (Fig 4,

Table 1); in combination with soluble protein, spread patterns showed a relationship with the

input:output (SSG) metric, whereas with insoluble protein spread patterns showed a relation-

ship with the distance to seed (GDS) metric. Assuming a primarily anterograde spread of pro-

tein, our findings suggest that a high SSG value (high neuronal input:output) may confer

Table 1. Impact of simulation parameters on ‘bottleneck’ neuron survival characteristic (SSG R2), distance to seed

survival characteristic (GDS R2), spread asymmetry (ASY) and time to network breakdown (TTNB). Number of

+/- signs indicate strength of impact on the metric compared to a baseline observation, with 0 indicating no impact. 1

N/A since initial protein seed concentrations were different (see Materials and methods; for similar seeds, TTNB

would be much higher with soluble pathogenic protein). 2 The first three seeds had higher values. 3 Layer 4 and 5 seeds

had lower values, whereas layer 6 had highest values. 4 �,� indicates the relationships: [tendency of pathogenic protein

to avoid intercolumnar connections vs no spread selectivity], [tendency of pathogenic protein to spread via interco-

lumnar connections vs no spread selectivity].

Parameter SSG R2 GDS R2 ASY TTNB

1) Network connectivity 0 0 0 0

2) Protein insolubility −− ++ ++ N/A1

3) Seed location 2 3 0 0

4) Misfolding rate 0 0 + −
5) Diffusion speed +++ +++ ++ 0

6) Active transport strength ++ + ++ −−
7) Synaptic transfer strength ++ + ++ +

8) Spread selectivity4 +++, + −−, −− +, +++ 0, 0

https://doi.org/10.1371/journal.pone.0192518.t001
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vulnerability to the neurodegenerative process, rather than general connectedness (high neu-

ronal input+output), which is typically considered [4] a determinant of neuronal survival. This

accords with recent formulations assigning the diffusive spread of pathogenic proteins a cen-

tral role in the evolution of neurodegenerative proteinopathies [1–5, 15] and with evidence

from animal models of protein propagation [6].

Increased misfolding rate and active transport of pathogenic protein hastened network

breakdown, consistent with an amplification of intracellular toxic effects, as predicted empiri-

cally [5, 6, 28]. A higher misfolding rate hastened neurodegeneration (reduced TTNB) far

more than a higher initial seed concentration in the case of insoluble pathogenic protein, in

agreement with in vivo data [22].

The asymmetry of network breakdown increased with insoluble protein, increased misfold-

ing, diffusion speed, active transport, synaptic transfer or when protein had the tendency to

spread selectively via intercolumnar connections: these mechanisms tend to ‘focus’ neuronal

toxicity in particular neurons, a mechanism previously proposed to underpin the strikingly

asymmetric atrophy profiles of TDP-43-opathies [3]. In addition, inspection of Fig 5 suggests

that the conjunction of particular protein and network factors promoted more rapid conver-

gence of patterns of network breakdown, in keeping with a molecular nexopathy mechanism

[3]. Pathogenic protein solubility, higher diffusion speed, stronger active transport and synap-

tic transfer and any spread selectivity all consistently accelerated convergence of the spread

pattern.

Our findings endorse an important role of local neuronal geometry in modulating network

breakdown (Figs 4, 5 and 6, Table 1). Whereas changing the overall network connectivity had

Fig 5. Heatmap of mean time to convergence between all pairs of simulation sets Hi (e.g. a value of 0.65 indicates

that convergence occurred after 65% of neurons reached cellular death). The x-axis labels are replicated from the y-

axis labels.

https://doi.org/10.1371/journal.pone.0192518.g005
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no effect, the laminar location of seeded neurons importantly affected the pathogenic protein

spread pattern. This might suggest a computational basis for the exquisite histopathological

selectivity and regional vulnerability that characterise a range of neurodegenerative diseases

[1–6, 15, 23]. Although our simulations were not designed primarily to capture alterations in

neuronal electrophysiology, the relatively simple model parameters yielded complex neuronal

activity profiles that showed a dependence both on neuronal type and time. For example,

L4LTS neurons showed an initial increase in firing frequency under a ‘loss of function’ toxic

effect (Fig 6), potentially due to the removal of inhibitory effects from connected neurons and

in line with previous predictions based on biological disease models [23].

Especially pertinently, our simulations identify factors that might constitute targets for ther-

apeutic manipulation. For example, increased diffusion speed in the context of a soluble patho-

genic protein tended to prolong overall network survival. This follows as faster diffusion

spreads protein more evenly in the network, promoting overall clearance of soluble pathogenic

protein: a potential therapeutic mechanism that has attracted much recent interest [19, 20, 28].

Similar considerations may apply to synaptic transfer of pathogenic protein, which was also

protective (Table 1) and has also been proposed as a target for future interventions [14]. In

Alzheimer’s disease, amyloid-beta is associated with toxic hyperexcitability [16, 29] (which in

turn leads to even more pathogenic protein to be released from affected neurons). Our synap-

tic transfer mechanism was protective for individual neurons with a high firing frequency, but

in combination with the hyperexcitability toxic gain effect, it was protective on the entire net-

work-scale (increase of TTNB, Table 1) for both soluble and insoluble pathogenic protein. Alz-

heimer’s disease is the result of a complex interplay between amyloid-beta and tau proteins:

the neuronal loss caused by tau coupled with the neuronal hyperexcitability caused by amyloid

beta could have the effect of spreading tau outside zones of amyloid deposition, leading to dif-

ferential tissue distributions of the two proteins, in line with recent cellular and neuroimaging

data [29, 30].

Conclusion

Here we have shown that modelled pathogenic protein mechanisms and network properties

drive patterns of network breakdown in a simulated cortical neural network. Crucially,

Fig 6. Mean toxicity and firing frequencies over time for layer 4 neurons of the first cortical column, grouped by

neuronal type.

https://doi.org/10.1371/journal.pone.0192518.g006
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modification of protein and network parameters produced consistent and convergent patterns

of protein spread, rather than random sequences of cellular deaths.

The potential of computational modelling techniques to simulate neural network disinte-

gration remains largely unexplored. Such techniques seem ideally suited to define the ‘struc-

tural logic that governs the biological effects’ of neurodegenerative pathologies [22]. Our

findings suggest that a small artificial neural network under a handful of relevant parameters

can generate diverse, biologically plausible behaviour that is broadly relevant to human neuro-

degenerative diseases and consistent with empirical data.

A major limitation of all such modelling approaches is the need to simplify (sometimes rad-

ically) in order to capture a few mechanisms of pathogenic proteins which are likely to be of

general relevance. There are a number of ways in which our model should be refined in future

work. Some important factors that we have not addressed here, but which are likely to contrib-

ute to the pathogenesis of neurodegenerative diseases, include chaperone proteins, glial cell

interactions with neurons, protein aggregates of different sizes and the recruitment of addi-

tional proteins by larger aggregates, protein spread via the extracellular compartment and the

operation of intracellular endosomes. Each of these could potentially be assessed in developing

our model further and making it a more realistic simulation of the complexity of actual neuro-

degenerative diseases. However, we believe that even in the simplified approach presented

here, computational modelling approaches show promise in assisting in the development of

future diagnostic tools. If such approaches identify candidate properties of pathogenic proteins

that drive neural network breakdown, then this in principle would allow culprit proteins to be

inferred from particular profiles of network breakdown that are observed empirically (for

example, using brain imaging).

Further work is required to test the model against a range of diseases and data derived in

vitro and from animal models. By fitting the model to such data, one can derive which specific

parameters and models are likely to govern each individual pathogenic protein. As computa-

tional models are continually refined based on new neurobiological findings (e.g. production

of protein per neuron per unit of time), this framework could quickly and easily test a variety

of hypotheses regarding pathogenic proteins, so that further neurobiological research can

focus on hypotheses which were found to be more likely to be true. The ultimate goal will be to

determine how computational models of micro-circuits scale to whole-brain anatomical pro-

files of human disease, at which scale neuroimaging can be used as validation to learn which

parameters and models represent each neurodegenerative disease. This framework will poten-

tially be able to predict neurodegenerative disease progression, based on protein and neural

network characteristics and assess the impact of candidate modulatory factors, with clear

implications for rational drug discovery.
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