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Abstract
Bone marrow, spleen, liver and kidney proton transverse relaxation rates (R2), together

with cardiac R2* from patients with sickle cell disease (SCD), paroxysmal nocturnal hemo-

globinuria (PNH) and non-transfusion dependent thalassemia (NTDT) have been compared

with a control group. Increased liver and bone marrow R2 values for the three groups of

patients in comparison with the controls have been found. SCD and PNH patients also pres-

ent an increased spleen R2 in comparison with the controls. The simultaneous measure-

ment of R2 values for several tissue types by magnetic resonance imaging (MRI) has

allowed the identification of iron distribution patterns in diseases associated with iron imbal-

ance. Preferential liver iron loading is found in the highly transfused SCD patients, while the

low transfused ones present a preferential iron loading of the spleen. Similar to the highly

transfused SCD group, PNH patients preferentially accumulate iron in the liver. A reduced

spleen iron accumulation in comparison with the liver and bone marrow loading has been

found in NTDT patients, presumably related to the differential increased intestinal iron

absorption. The correlation between serum ferritin and tissue R2 is moderate to good for the

liver, spleen and bone marrow in SCD and PNH patients. However, serum ferritin does not

correlate with NTDT liver R2, spleen R2 or heart R2*. As opposed to serum ferritin mea-

surements, tissue R2 values are a more direct measurement of each tissue’s iron loading.

This kind of determination will allow a better understanding of the different patterns of tissue

iron biodistribution in diseases predisposed to tissue iron accumulation.

Introduction
Anemia and ineffective erythropoiesis with consequent increased gastrointestinal absorption of
iron, and frequent blood transfusions are the predominant causes of iron accumulation in
patients with red blood cell disorders [1, 2]. The body lacks mechanisms for increasing excretion
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of the accumulated iron [3], leading to iron overload, most of which is stored in the liver. But
iron may also accumulate in other organs such as the spleen, kidneys or the bone marrow [4].
The pattern of iron accumulation within the different organs appears to depend on the disease
[4]. In particular, pathogenic iron species (e.g. non-transferrin bound iron (NTBI)) may appear
when the plasma iron concentration exceeds the binding capacity of transferrin. NTBI is the
main source of iron that generates myocardial iron overload and reactive oxygen species [5].
Although cardiac iron accumulation is frequent in transfusion-dependent β-thalassemia (TDT)
patients, this effect is very unusual in sickle cell disease [6] or non-transfusion dependent thalas-
semia patients. The relationship between the different iron-containing species present in blood
and the specific tissue iron accumulation is still poorly understood. Iron can exit some cells via
the iron exporter ferroportin [7], hence iron accumulated in tissues may not remain there indef-
initely. Furthermore, efficiency of iron removed in different organs varies with the different che-
lators used to reduce the iron accumulated in the tissues in patients with iron overload [8]. As
yet, little is known about the pathways of iron flow between the different organs.

Conventionally serum ferritin measurements have been used to estimate body iron accumu-
lation. Although this measurement can be repeated frequently, it is known that serum ferritin
does not always correlate with liver iron concentration [9–11]. In addition, serum ferritin does
not provide information about the relative iron accumulation in different organs [12]. A more
accurate approach is a tissue biopsy [13], but this invasive procedure has associated risks [14]
and cannot be repeated frequently. Magnetic resonance imaging (MRI) has been used to ana-
lyze iron accumulation in different tissues [6, 15–18]. This non-invasive technique can provide
information on the concentration of iron in several tissues simultaneously. MRI methods are
also well suited for longitudinal studies on iron biodistribution in which repeated measure-
ments are needed.

In this study, we investigated the pattern of iron accumulation in liver, spleen, heart, kidneys
and bone marrow in patients with sickle cell disease (SCD), paroxysmal nocturnal hemoglobin-
uria (PNH) and β-thalassemia intermedia (also referred to as non-transfusion dependent thal-
assemia, NTDT) by MRI. For this purpose, mean proton transverse relaxation rates (R2) of
liver, spleen, kidney and bone marrow, and cardiac R2� have been measured as surrogate deter-
minates of the iron concentration in the various tissues. These data have been compared with
serum ferritin measurements. Iron estimated from bone marrow aspirates using Perl’s stain
have also been compared with the quantitative MRI measurements in a subset of patients with
PNH.

Methods

Study design and participants
Magnetic resonance imaging data from patients that had already had an assessment of hepatic
iron loading as part of their clinical care programme and/or as part of another study approved
by the NHS Research Ethics Committee (REC 05/Q0703/21), were retrospectively analyzed.
The King’s College Hospital Research Ethics Committee confirmed that informed consent was
not required from patients as this was a retrospective review of existing image data. Images
were anonymized and de-identified prior to analysis.

Image data were available for 15 PNH patients (7 females and 8 males, aged 45.5 ± 15.7
years), all chelation naïve at the scan date. Being retrospective, there were some limitations on
the analysis of the imaging data; images of the kidneys could be observed in only 3 of the 15,
and cardiac R2� values were available from 14 of the 15 patients.

Image data were available for 40 chelation naïve SCD patients (25 females and 15 males,
and 36 HbSS, 2 HbSβ0 and 2 HbSC). The average age at the date of scan was 40.2 ± 20 years.
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Kidney R2 data from the patients with SCD have been previously analyzed [16]. Cardiac R2�

was measured for 12 of these patients. Cardiac MRI data were acquired during the same visit as
the liver, bone marrow, kidney, and spleen MRI data.

Image data were available for 9 NTDT (β-thalassemia intermedia) patients (6 females and 3
males). Two of the patients had repeated scans; the time difference between the scans was 1
and 3.6 years and both measurements were considered in the study. The average age at the date
of the scan was 37.8 ± 11.3 years. Cardiac R2� values, recorded during the same visit as the R2
imaging, were available for 4 of the 11 patients.

Image data for 17 healthy control participants (4 females and 13 males, aged 37 ± 7.7 years)
that had already participated in another study were acquired with approval from the Fremantle
Hospital Human Research Ethics Committee (08/404) and The University of Western Austra-
lia Human Research Ethics Committee to provide a reference range of normal R2 values. Being
retrospective, no cardiac R2� data were available for the control group.

Magnetic Resonance Imaging Data Acquisition and Analysis
Axial images of the abdomen covering the liver, spleen, kidneys and part of the thoracic and
lumbar vertebrae were obtained from clinical MRI scanners operating at 1.5 T. Images were
acquired using a single spin-echo sequence (FerriScan

1

) with 5 echo times (TE of 6, 9, 12, 15,
and 18 ms), a repetition time of 2500 ms and slice thickness of 5 mm.

Spin density projection assisted R2-MRI (FerriScan
1

) [19, 20] had been used to assess liver
iron concentration (LIC) in the participants. Liver R2 values were obtained from FerriScan

1

reports. R2 values derived from pixel-wise mono-exponential fits to the image data were
obtained from the FerriScan1 raw image data for the bone marrow, kidney and spleen. Bone
marrow values are reported as the average R2 value obtained from the vertebral body of 6 slices,
corresponding in most of the patients to lower thoracic vertebrae and higher lumbar vertebrae.
Kidney R2 values were determined as previously described as the average from multiple slices
from both kidneys [16]. Spleen R2 values are reported as the average value from at least three
different slices in each patient. While homogenous spleen signals were found in control sub-
jects, PNH and the NTDT patients, only 24 of the 40 SCD patients showed homogeneous
splenic R2 values, the lack of homogeneity most likely caused by splenic infarction. Very low
standard deviations were obtained in the analysis of the different slices from each organ to
obtain the mean R2 value.

Cardiac R2� data were acquired on 1.5 T MRI scanners using a breath hold gradient echo
sequence with 8 echo times between 2.97 ms and 21.68 ms, a repetition time of 200 ms and
slice thickness of 10 mm. R2� values were derived from pixel-wise bi-exponential fits to the
image data after subtraction of background noise in quadrature.

Clinical Data
Clinical data were collected retrospectively from the Electronic Patient Records (EPR) system
and clinical notes. Seven PNH patients had bone marrow aspirate performed as part of the rou-
tine work-up; iron stores were scored (anonymized by AGK) after Perls’ staining following
standard protocols [21, 22].

Statistical Analysis
Statistical analysis was performed by GraphPad Prism Software (CA, USA). Normal distribu-
tions of R2 and R2� values for each organ and group of patients were checked using Kolmogo-
rov-Smirnov test. Several data sets (Control BMR2, SCD Liver R2, SCD Spleen R2, PNH
BMR2, SCD Ferritin, PNH Ferritin and NTDT Ferritin) did not pass this test and therefore
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significant differences were checked using Kruskal Wallis analysis with Dunn post test for the
comparison of all the tissues R2, R2� and R2 ratios. Correlations between tissue R2 in different
organs and between R2 values and serum ferritin measurements were assessed using Pearson’s
test for normally distributed variables and Spearman’s test for non normal distributions. The
threshold for significance was P = 0.05 and P values< 0.05 (�),< 0.01 (��) and< 0.001 (���)
were considered as significant.

Limitations
One limitation of this retrospective study is that patient selection bias is very likely. Patients
were selected because they had an assessment of hepatic iron loading by MRI as part of their
clinical care programme. Thus the studied cohort will not necessarily represent the complete
spectrum of PNH, SCD or NTDT patients and, in particular, those patients who were not
referred for a liver iron MRI measurement. A future prospective study could address this issue.

MRI analysis to quantify liver and cardiac iron accumulation is a technique validated by the
U.S. Food and Drug Administration (FDA). This technique has not been validated against tis-
sue biopsies for the analysis of other organs yet. Spleen, kidney and bone marrow R2 values are
measured as surrogate values of the iron concentration.

Results

Comparison of tissue R2 values between patients and the control group
The mean liver and bone marrow R2 values in controls were significantly lower from those in
patients (Fig 1 and Table 1). The mean R2 values for the liver were similar between the three
groups of patients (Fig 1A) as were the mean bone marrow R2 values (Fig 1B). Although the
mean liver R2 values were similar in the three diseases, it should be noted that half of the
patients with SCD had liver R2 values within that of the control group, producing a large stan-
dard deviation of R2 values for this organ. The differences in liver R2 values within the SCD
data are related to the number of transfusions (see discussion below).

A more varied pattern of iron accumulation between the different groups of patients is
observed in the spleens and kidneys. The mean spleen R2 value in the control group was signif-
icantly lower than that in the SCD and PNH patients (Fig 1C). The patients with NTDT did
not seem to accumulate as much iron in the spleen relative to the liver and bone marrow when
compared with the patients with PNH and SCD. The mean spleen R2 value for the NTDT
patients is significantly different from that for the SCD patients (Fig 1C). Significant differences
in the mean kidney R2 values were only observed between the patients with SCD and the con-
trol group (Fig 1D); mean kidney R2 values were also significantly different between the SCD
and NTDT patients (Fig 1D). No cardiac R2� data were available for the control subjects and
no significant differences in mean cardiac R2� values were observed between any of the patient
groups (Fig 1E).

Comparison of R2 ratios
To characterize the biodistribution of the iron loading among the different organs, we evalu-
ated the ratios of R2 in pairs of tissue types for the three groups of patients and control subjects
(Table 2 and Fig 2). Ratios were calculated for tissue showing preferential iron accumulation:
Spleen R2/ Liver R2, Bone Marrow R2/Liver R2, and Bone Marrow R2 /Spleen R2.

The tissue R2 ratios from the 4 groups of patients are shown in Fig 2 and Table 2. Regarding
the Spleen R2/ Liver R2 ratio, no significant differences have been found between the controls
and the SCD patients, when analyzing the whole SCD data set together (Fig 2A). When
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Fig 1. Proton transverse relaxation rates (R2) for (A) liver, (B) bonemarrow, (C) spleen, (D) kidneys
and (E) heart for the four different groups of subjects: control subjects (black), SCD (blue), PNH
(purple) and NTDT (green) patients.Mean values ± SD are represented by the horizontal bars.(*) p < 0.05,
(**) p < 0.01, (***) p < 0.001 for Kruskal Wallis analysis with Dunn post test. The asterisk color indicates the
group with which the difference was found.

doi:10.1371/journal.pone.0139220.g001
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considering two subgroups within the SCD patients, depending on the number of transfusions
received (more or less than 20 top up units) (Table 2), it can be observed that those patients
with higher number of transfusions accumulate more iron in the liver relative to spleen in com-
parison with those patients that had received less transfusions. Comparing the low and high
transfused SCD patients with the rest of the groups, the low transfused SCD patients had a
spleen/liver R2 ratio that exceeded 1 and that ratio was significantly higher than the PNH and
NTDT groups. These differences were not found with the highly transfused SCD patients
(Table 2).

Fig 2B and Table 2 show the Bone Marrow R2/Liver R2 ratios. No significant differences
have been found between the controls and the whole set of SCD patients but significantly lower
Bone Marrow R2/Liver R2 ratios are observed in the PNH patients in comparison with the con-
trols and SCD patients (Fig 2B). These differences remain for the low transfused SCD patients
(Table 2), but are not significantly different to the highly transfused ones.

Although, when analyzing each tissue independently, Bone Marrow R2 and Spleen R2 val-
ues were higher in the NTDT patients in comparison with the controls (Fig 1), the Bone Mar-
row R2/Spleen R2 ratios from these two groups are not significantly different (Fig 2C and
Table 2). In addition, NTDT patients and controls have significantly higher Bone Marrow R2/
Spleen R2 ratios than the SCD (both high and low transfused) and PNH patients (Fig 2C and
Table 2).

Table 1. Proton transverse relaxation rates (R2) of the different tissues from each group of subjects.

Liver R2(s-1) Bone Marrow R2(s-1) Spleen R2(s-1) Kidney R2(s-1) Heart R2*(s-1)

Control 33.7 ± 7.6 21.8 ± 4.9 19.6 ± 2.8 17.1 ± 2.9

(21–45) (14.5–34.4) (14.2–23.5) (12.2–22)

SCD 123.7 ± 108.1 43.2 ± 21.1 67.2 ± 31.5 27.1 ± 8.7 31.6 ± 6.3

(26.7–366) (18.3–105.7) (23.9–149) (12.6–54.4) (22–46.2)

PNH 144.3 ± 79.8 36.1 ± 19.2 52.3 ± 31.8 18.1 ± 3.5 33.2 ± 10.6

(48.8–354.9) (17.8–90.6) (20.5–130.9) (14.6–21.5) (18–59.8)

NTDT 94.7 ± 36.3 32.6 ± 7.0 26.4 ± 8.2 16.1 ± 2.6 26.6 ± 5.2

(52.5–163.0) (23.3–45.1) (11.0–36.3) (12.6–20.3) (22.0–33.4)

Numbers correspond to mean ± SD, and those in brackets are the range of values. Statistical differences between the groups are presented in Fig 1.

doi:10.1371/journal.pone.0139220.t001

Table 2. Mean values and standard deviations of the different tissue ratios for each group of patients.

Spleen R2 / Liver R2 BM R2/ Liver R2 BM R2 /Spleen R2

Control 0.6 ± 0.2 0.7 ± 0.2 1.1 ± 0.3 (l, h)

SCD 0.9 ± 0.8 0.5 ± 0.3 0.7 ± 0.3

SCD Transfused < 20 units 1.2 ± 0.8 0.7 ± 0.2 (h) 0.5 ± 0.2

SCD Transfused > 20 units 0.8 ± 0.4 0.4 ± 0.3 (l) 0.8 ± 0.3

PNH 0.4 ± 0.2 (l) 0.3 ± 0.1 (l) 0.7 ± 0.3

NTDT 0.3 ± 0.1 (l) 0.4 ± 0.2 1.2 ± 0.2 (l, h)

Numbers correspond to mean ± SD. Two subgroups from the SCD patients have been analyzed splitting them into those who had received more or less

than 20 top up transfusions. Statistical differences between the whole groups are presented in Fig 2. In this table, only the significant differences found for

the low (l, p < 0.05) and high (h, p < 0.05) transfusion SCD sub groups for Kruskal Wallis analysis with Dunn post test are presented.

doi:10.1371/journal.pone.0139220.t002
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Fig 2. Comparison of tissue R2 ratios for four different groups of subjects: controls (black) and SCD
(blue), PNH (purple) and NTDT (green) patients. (A) Spleen R2 / Liver R2, (B) Bone Marrow R2 / Liver R2
and (C) Bone Marrow R2 / Spleen R2. Mean values ± SD are represented by the horizontal bars. (*) p < 0.05,

Tissue Iron Distribution by MRI
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Correlations between R2 in different tissues within each group of
patients
We analyzed correlations between R2 values of the different tissues for the four groups studied:
control subjects, PNH, SCD and NTDT patients (Fig 3). No significant correlations between
the different R2 values were found in the control group.

In PNH patients, significant correlations were found between spleen R2 and bone marrow
R2 (Fig 3A), liver R2 and bone marrow R2 (Fig 3B), liver R2 and spleen R2 (Fig 3C) bone mar-
row R2 and heart R2� (Fig 3D), spleen R2 and heart R2� (Fig 3E) and liver R2 and heart R2�

(Fig 3F).
In SCD, significant correlations were found between spleen R2 and bone marrow R2 (Fig

3G), liver R2 and bone marrow R2 (Fig 3H), and between liver R2 and spleen R2 (Fig 3I). In
these patients, kidney R2 was available, but no correlations were found between kidney R2 and
heart R2� or R2 values of the other organs characterized.

In the NTDT patients, a significant correlation was only found between bone marrow R2
and heart R2� (Fig 3J). No significant correlations in iron load were found between tissues of
the other organs.

Correlations of tissue R2 with serum ferritin and iron scores
The correlations between serum ferritin and the tissue R2 are shown in Fig 4. In patients with
SCD, there were no significant correlations between serum ferritin and spleen R2, kidney R2
(not shown) and heart R2�, but significant correlations were found between serum ferritin and
liver R2 (p< 0.0001) and bone marrow R2 (p< 0.0001).

In the PNH patients, significant correlations were found between serum ferritin and all the
tissues analyzed (liver R2 (p = 0.0002), bone marrow R2 (p = 0.017) and spleen R2 (p = 0.016))
except for heart R2�.

In the NTDT group significant correlations were only found between serum ferritin and
bone marrow R2 (p = 0.045).

Iron scores in bone marrow were available from 7 PNH patients. A weak but still significant
correlation was found between bone marrow R2 and bone marrow iron scores from marrow
aspirates (p = 0.048) (Fig 5).

Discussion

Bone marrow iron accumulation
We have been able to quantitatively assess a surrogate biomarker of iron accumulation in sev-
eral organs simultaneously, including the not so frequently characterized bone marrow. Our
study of bone marrow R2 in SCD, PNH and NTDT patients has shown increased R2 values for
the three groups of patients in comparison with the controls (mean bone marrow R2 values�
1.5–2 fold higher). Even from a careful visual inspection of the MRI images, hypointense bone
marrow was detected in many patients (Fig 6). Previous studies on bone marrow R2 in the con-
text of these diseases have confirmed image hypointensity related to iron deposition [23–27],
in particular, as a reflection of transfusion therapies that lead to iron accumulation over the
years.

(**) p < 0.01, (***) p < 0.001 for Kruskal Wallis analysis with Dunn post test. The asterisk color indicates the
group with which the difference was found. The whole SCD data set has been used for the analysis.

doi:10.1371/journal.pone.0139220.g002
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Fig 3. Correlations between MRI R2 values in the different organs in PNH (A-F), SCD (G-I) and NTDT
(J) patients.

doi:10.1371/journal.pone.0139220.g003
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In the PNH, SCD and NTDT patients there was generally a good correlation between bone
marrow R2 and serum ferritin suggesting that serum ferritin may be a reasonable surrogate
marker for bone marrow iron in these diseases. In addition, a significant correlation was found
between bone marrow R2 and iron scores in the PNH patients (Fig 5). Still, further studies are
needed, on more patients and with different diseases, to validate this non-invasive technique as
a surrogate measurement of iron accumulation in bone marrow.

Non-invasive measurements of bone marrow R2 could, nevertheless, add additional confir-
mation of bone marrow iron status in research or clinical studies. In particular, evaluation of
bone marrow iron by R2 measurement could be of benefit before bone marrow transplantation,
an emerging curative treatment option for patients with SCD [28, 29]. Recently it has been
shown that bone marrow iron load is a risk factor for invasive aspergillosis, a major cause of
death after hematopoietic stem cell transplantation [30]. In this context, non-invasive determi-
nation of bone marrow iron by MRI may play a key role in confirming serum ferritin observa-
tions in patients that require marrow transplants. Abdominal MRI images collected routinely
for liver iron concentration measurements by R2 may be used to characterize bone marrow
iron accumulation in future clinical practice.

In addition, this characterization protocol will be a useful tool for further studies on the
kinetics of iron loading and removal in the different diseases, especially to evaluate different
chelating therapies. These measurements will also be of great relevance to evaluate the pattern

Fig 4. Correlations between serum ferritin concentration and liver R2 (A-C), bonemarrow R2 (D-F), spleen R2 (G-I) and heart R2* (J-L) in SCD, PNH
and NTDT patients.

doi:10.1371/journal.pone.0139220.g004
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of iron accumulation in other diseases, providing a more direct measurement of each tissue
iron loading than the serum ferritin.

Serum ferritin as a marker of tissue iron overload
In addition to the good correlation between bone marrow R2 and serum ferritin, moderate to
good correlations were found between serum ferritin and the degree of iron loading (as
assessed by tissue R2) in the liver for SCD and PNH patients, but not for NTDT ones. Similar
to our findings, Papakonstantinou et al. [27] also observed significant correlations between
serum ferritin and bone marrow R2 and liver R2 in thalassemia major patients, but Drakonaki
et al. [24] did not.

However, a significant correlation between serum ferritin and tissue iron loading does not
necessarily indicate that serum ferritin is an accurate predictor of tissue iron concentration (see
e.g. [31]). Poor sensitivity and specificity are often encountered even with relatively strong sig-
nificant correlations. For example, although Brittenham et al. found a significant correlation
between plasma ferritin and liver iron concentration in 111 transfused patients with thalasse-
mia and SCD (R = 0.76, p<0.0001), the 95% prediction intervals for liver iron concentration
were so broad, such that a single determination of plasma ferritin was unreliable in predicting
liver iron concentration.

PNH iron biodistribution
In PNH, the Bone Marrow R2/ Liver R2 ratio analysis indicates that, for a given level of total
body iron stores, the patients accumulate less iron in the bone marrow when compared with
controls (Fig 2). This fact is interesting given the significantly higher bone marrow R2 values
observed in comparison with the control group (Fig 1). Taken together with the Spleen R2/
Liver R2 ratio, which is also low, we could conclude that the organ that preferentially

Fig 5. Correlations between bonemarrow R2 and bonemarrow iron stores determined from bone
marrow aspirates (graded in a scale from 1 to 6). Two of the data points of grade 5 superimpose.

doi:10.1371/journal.pone.0139220.g005
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Fig 6. Axial slices of the longest echo time (TE = 18ms) for subjects from the four different groups
characterized. (A) Control, (B) SCD, (C) PNH and (D) NTDT.

doi:10.1371/journal.pone.0139220.g006
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accumulates iron in the PNH group is the liver. The Bone marrow R2/ Spleen R2 ratio is signif-
icantly lower than the controls and NTDT groups, but similar to the SCD patients. This result
could imply an imbalance in normal iron distribution that favors the spleen, in preference to
the bone marrow, as a result of hemolysis in our PNH cases.

SCD iron biodistribution
Patients with SCD are the only group in which increased iron accumulation is observed in all 4
organs (liver, bone marrow, spleen and kidneys) in comparison with controls. A wide range of
tissue R2 values for this group of patients, however, is observed. We have previously shown
that in SCD patients liver iron accumulation is related to transfusion rate while kidney iron
accumulation is related to severity of hemolysis [16]. Due to the large range of the tissue R2
data, we have analyzed the impact of the number of transfusions on the biodistribution of the
iron accumulation as observed by the tissue R2 ratios (Fig 2 and Table 2).

The mean Bone Marrow R2/Liver R2 ratio from SCD patients that received a low number
of transfusions was similar to the control group and significantly higher than the PNH patients.
Conversely, the mean Bone Marrow R2/Spleen R2 ratio from SCD patients that received a low
number of transfusions was significantly lower than the control and NTDT groups, but similar
to the PNH patients. Interpretation of the Spleen R2/Liver R2 ratio in the SCD patients is com-
plicated by the large spread in values, even when the patients are split into low and high trans-
fusion groups. However, in the low transfused SCD group the mean Spleen R2/Liver R2 ratio is
significantly higher than in the PNH and NTDT groups and double the control mean value
without reaching statistical significance.

Together, these high Spleen R2/Liver ratios, normal Bone Marrow R2/Liver R2 ratios, and
low Bone Marrow R2/Spleen R2 ratios suggest preferential iron loading of the spleen in the low
transfusion SCD group. However, when the number of transfusions increases, the SCD biodis-
tribution shifts towards the one observed for the PNH patients, suggesting a greater iron accu-
mulation in the liver i.e. a parenchymal loading. Brewer et al. speculated that spleen iron
loading may be related to the enhanced trapping of the rigid sickle cells in spleen vascular and
sinusoidal spaces, which would be consistent with predominant loading in the reticuloendothe-
lial cells in spleen [32].

It has been suggested that the significantly higher mean kidney R2 observed for the SCD
patients is explained by the ongoing intravascular hemolysis, releasing cell-free hemoglobin
into the circulation. The cell-free plasma hemoglobin may then bind to haptoglobin forming
complexes that are absorbed by the reticuloendothelial system [33]. Free heme may also be
complexed by hemopexin [34] and transported mainly to the liver. In situations of ongoing
chronic hemolysis (e.g. SCD), when the binding capacity of haptoglobin and hemopexin is sat-
urated, free heme and free hemoglobin are delivered to the kidney [34, 35]. Kidney iron accu-
mulation associated with hemolysis has also been observed in PNH patients using invasive
biopsy [36] and non-invasive qualitative MRI [37]. Unfortunately, not enough MR images
from the kidneys could be obtained from the scans of our PNH group of patients for their sub-
sequent analysis.

NTDT iron biodistribution
We have found a reduced iron accumulation in the spleen of the NTDT patients, similar to the
control group, as opposed to the other two diseases. The spleen is usually enlarged to varying
degrees in patients with β-thalassemia intermedia, but not iron-loaded [38]. Iron accumulation
in β-thalassemia intermedia occurs mainly from increased intestinal iron absorption triggered
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by the chronic anemia and ineffective erythropoiesis [39, 40], which we observed as increased
mean R2 in the liver and bone marrow.

The Spleen R2/Liver R2 ratio analysis, supports the low Spleen R2 values, indicating a
reduced iron accumulation in the spleen in comparison with the liver iron levels. Interestingly,
the Spleen R2/ Liver R2 ratios in NTDT are not significantly different from those in PNH.

The similar Bone Marrow R2/Spleen R2 ratio found for the NTDT and control groups (Fig
2C) may reflect an iron loading mainly from natural routes like gut absorption for the NTDT
group. When the iron loading is a consequence of hemolysis as in the low transfused SCD
patients, iron accumulates relatively more in macrophages in the spleen, leading to significantly
lower Bone Marrow R2/Spleen R2 ratio values for the these patients in comparison with the
NTDT and controls (Fig 2C).

Finally, it should be mentioned that although MRI can estimate total iron accumulation in
each organ, it cannot discriminate iron accumulation within different cells from a given organ.

Conclusions
We have used non-invasive MRI to quantify a surrogate biomarker of iron accumulation in
liver, spleen, bone marrow and kidneys simultaneously. Of special interest is the quantitative
analysis of bone marrow, which is not so frequently characterized by this technique.

Our study of liver and bone marrow R2 in SCD, PNH and NTDT patients has shown
increased R2 values for the three groups of patients in comparison with the controls. Only
spleen R2 values from SCD and PNH patients were significantly different from the controls.
The pattern of iron accumulation in the different tissues is strongly related to the source of iron
accumulation associated with each disease. The PNH group preferentially accumulates iron in
the liver secondary to blood transfusions. Preferential liver iron loading is also found in the
highly transfused SCD patients, while the low transfused ones present a preferential iron load-
ing of the spleen, consistent with macrophage scavenging. For NTDT patients, a reduced
spleen iron accumulation in comparison with the liver and bone marrow loading has been
found, related to the increased intestinal iron absorption.

Although moderate to good correlations have been found between the degree of iron load-
ing (as assessed by tissue R2) for the liver and bone marrow and serum ferritin, this does not
necessarily indicate that serum ferritin is an accurate predictor of tissue iron concentration.
Tissue R2 measurements are a more direct measurement of each tissue iron loading, being use-
ful to evaluate the pathways of iron flow between the different organs.
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