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A B S T R A C T   

Research indicated that Paclitaxel (PTX) can induce immunogenic cell death (ICD) through 
immunogenic modulation. However, the combination of PTX and ICD has not been extensively 
studied in breast cancer (BRCA). The TCGA-BRCA and GSE20685 datasets were enrolled in this 
study. Samples from the TCGA-BRCA dataset were consistently clustered based on selected 
immunogenic cell death-related genes (ICD-RGs). Next, candidate genes were obtained by over-
lapping differentially expressed genes (DEGs) between BRCA and normal groups, intersecting 
genes common to DEGs between cluster1 and cluster2 and hub module genes, and target genes of 
PTX from five databases. The univariate Cox algorithm and the least absolute shrinkage and 
selection operator (LASSO) were performed to obtain biomarkers and build a risk model. 
Following observing the immune microenvironment in differential risk subgroups, single-gene 
gene set enrichment analysis (GSEA) was carried out in all biomarkers. Finally, the expression 
of biomarkers was analyzed. Enrichment analysis showed that 626 intersecting genes were linked 
with inflammatory response. Further five biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and 
UBE2L6) were identified and a risk model was built. The model’s performance was validated 
using GSE20685 dataset. Furthermore, the biomarkers were enriched with adaptive immune 
response. Lastly, the experimental results indicated that the alterations in IL18, SH2D2A, and 
CHI3L1 expression after treatment matched those in the public database. In this study, Five PTX- 
ICD-related biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified to aid in 
predicting BRCA treatment outcomes.   

1. Introduction 

Breast cancer (BRCA) remains a major epidemiologic challenge, it has become the number one killer threatening women’s health 
[1–3]. Approximately 1 in 8 women will be diagnosed with invasive BRCA in their lifetime, and 1 in 39 women will die from BRCA 
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[3–5]. BRCA is a complex disease influenced by both genetic and environmental factors, contributing to its heterogeneity, which is 
related to family genetic susceptibility and personal physique [3,4,6,7]. The age of 40–60 is the age of high incidence of BRCA, and the 
incidence of BRCA with family history of BRCA is relatively high [3,4,6]. At present, the clinical molecular classification of BRCA is 
luminal typing, which is determined by four factors: estrogen (ER), progesterone (PR), Human epidermal growth factor receptor-2 
(HER2) and Ki-67 index. It can be divided into four types: among them, ER and PR are positive, HER2 is negative, Ki-67 is less 
than 14%, which is called type A; ER, PR positive, HER2 negative, Ki-67 greater than 14%, is called type B; ER, PR and HER are all 
negative, which is called triple negative BRCA; and another type is called HER2 over-expression type. 

BRCA prognosis and treatment decisions often rely on tumor-node metastasis staging [4,8,9]. Lobular carcinoma in situ at Stage 
0 typically does not require treatment, whereas ductal carcinoma in situ may advance to invasive cancer. Treatment options for 
invasive cancer include breast-conserving surgery and radiotherapy. Breast-conserving surgery and radiotherapy are effective treat-
ments for Stage I and II BRCA, significantly reducing mortality and recurrence rates. Systemic adjuvant therapy selection is influenced 
by factors such as lymph node involvement, hormone receptor status, HER2 overexpression, patient age, and menopausal status. 
Typically, node-positive BRCA cases are managed with systemic chemotherapy, endocrine therapy for hormone receptor-positive 
cancers, and trastuzumab for cancers overexpressing HER2. Most of the chemotherapy schemes are based on anthracycline and 
PTX [8–10]. A study on the target of radiotherapy response-related genes pointed out that the radiotherapy response-related genes 
based on differential expression of prognosis can be used to classify the radiotherapy sensitivity and drug resistance clusters in 
TCGA-BRCA cohort, which can be used to evaluate the radiosensitivity of individual BRCA patients, and the possibility of synergistic 
effect between radiotherapy and immune checkpoint inhibitors is expounded [11]. 

Immunogenic cell death (ICD) can trigger cell death that is identifiable by the immune system [12–14]. Tumor cells undergoing ICD 
are more readily engulfed by antigen-presenting cells, leading to antigen presentation, activation of T cells, and the initiation of a 
systemic antitumor immune response. A key feature of ICD is its ability to be recognized by the immune system, primarily through the 
translocation of calreticulin (CRT) to the cell membrane. While cisplatin (CDDP) can recruit myeloid cells to the tumor and support the 
activation of tumor-specific CD8+ T cells [15] and enhance the effects of vaccines in promoting tumor cell death [16], it does not 
induce CRT exposure [17]. Combining cisplatin with CRT protein [17] or ER stress inducers like thapsigargin or tunicamycin [18] can 
restore the immunogenicity of cisplatin-induced cancer cell death. Additionally, several long-standing antitumor agents such as 
radiotherapy, cyclophosphamide, oxaliplatin (OXP), and cetuximab are known inducers of ICD [17,19,20]. Our previous research 
confirmed that PTX is a genuine inducer of ICD in various mouse and human tumor cell lines. This was demonstrated by the increased 
levels of CRT, ERp57, ATP, and HMGB1 [21]. Our research demonstrated that nanomicelle encapsulation could safeguard the effects of 
ICD by minimizing immune system side effects. This approach offers the potential to achieve both immediate tumor reduction through 
direct tumor destruction and sustained immune activation for long-term benefits in chemotherapy [21]. The immune-activating po-
tential of ICD is appealing, but it can also contribute to rapid relapse post-chemotherapy. This is because many ICD inducers are 
cytotoxic agents that not only target tumors but also cause significant harm to the immune system. As a result, the immune-activating 
aspect of ICD is often downplayed and weakened in cancer treatment strategies [12–14]. At the same time, in clinical BRCA cases, the 
detailed molecular mechanism of PTX-induced ICD effect is not very clear, which is also one of the obstacles to clinical application. In 
the case of poor effects of targeted tumor metabolic therapy and immunotherapy, the combination therapy with other drugs, that is, by 
optimizing pharmacokinetics and adjusting available chemotherapy according to molecular characteristics, is a promising research 
approach [22]. 

In our research, we executed a comprehensive analysis of transcriptome data from the Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas (TCGA) databases to identify five potential biomarkers for BRCA. Except for IL-18, other key genes were reported 
for the first time in the research of BRCA prognosis. A risk model of BRCA patients based on PTX and ICD-related genes was con-
structed, which provided a new reference for the treatment of BRCA, and also provided a basis for explaining the molecular mechanism 
of ICD induced by PTX. On the basis of genes related to ICD therapy, our research combined with specific drug targets to screen key 
genes in order to promote clinical practice. 

2. Materials and methods 

2.1. Source of data 

The TCGA-BRCA dataset (training set) including the RNA-seq data from 1072 BRCA samples (1050 BRCA samples had survival 
information and clinical indicators) and 99 normal samples was acquired from the UCSC Xene database (https://xenabrowser.net). 
The GSE20685 dataset (GPL570), including the RNA-seq, survival information and clinical indicators data of BRCA tissue from 327 
BRCA cohorts, was acquired from the GEO database (https://www.ncbi.nlm.nih.gov/gds) and regarded as an external validation 
cohort. Then, 34 ICD-related genes (ICD-RGs) were obtained from previous report [23]. 

2.2. Screening for differentially expressed genes (DEGs) and identify subtypes 

DEGs between the BRCA and normal were selected the edgeR package (v 3.36.0) [24] according to adjusted P < 0.05 and |log2FC| 
> 0.5 where the generalized linear model (GLM) and the ‘glmLRT’ function were conducted to flexibly adjust the sample design matrix 
to adapt to the unbalanced sample size between the BRCA (1072) and normal samples (99) [25]. The findings were visualized using 
volcano plots and heatmaps. The consistency clustering analysis was then executed on the BRCA samples from TCGA-BRCA dataset on 
the basis of ICD-RGs using the ConsensusClusterPlus package (v 1.54.0) [26]. Immediately after, principal component analysis (PCA) 
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plots and K-M survival curves were plotted between different subgroups. 

2.3. Identification of DEGs between the Cluster1 and Cluster2 

We used the edgeR package (v 3.36.0) to identify DEGs between Cluster1 and Cluster2 [24] with adjusted P < 0.05 and |log2FC| >
0.5. We used volcano plots and heatmaps to display the results. 

2.4. Screening for key module genes by weighted gene co-expression network analysis (WGCNA) 

The ICD scores were computed for each sample in the TCGA-BRCA dataset via ssGSEA algorithm and were considered as the clinical 
traits for the construction of co-expression network by WGCNA [27]. Firstly, the hierarchical clustering was utilized to cluster samples 
and assess the presence of any outlier samples that display unusual or deviant expression patterns compared to the majority of samples, 
where the distance matrix is used to measure the similarity between samples. Then, we selected the optimal soft threshold (β) to 
achieve a network that approximates a scale-free distribution. Subsequently, the cluster dendrogram were obtained by calculating 
adjacency and similarity. The modules were then partitioned using a dynamic tree cutting algorithm (minModuleSize = 70). Next, we 
used the ICD score as the trait data to filter relevant module genes. We identified the key module with the highest relevance to the score 
by creating a module-trait correlation heatmap, and selected the genes in this key module for further analysis. 

2.5. Screening and functional enrichment of intersecting genes 

The intersecting genes (ICD-genes) were filtered by overlapping key module genes and DEGs between the Cluster1 and Cluster2. 
Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of intersecting genes was 
executed via DAVID (v 6.8.0) [28]. Subsequently, the top 10 results for each of GO and KEGG were selected for presentation. 

2.6. Identification of target genes 

Firstly, the targets for PTX were searched using PTX as the keyword through the Drugbank (https://go.drugbank.com/), herb 
(http://herb.ac.cn/), CTD (http://ctdbase.org/), and batman (http://bionet.ncpsb.org.cn/batman-tcm/) databases. The targets for 
PTX were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) using “Compound CID: 36314” as search 
criteria. Finally, the targets acquired from the five databases were combined to obtain the PTX target genes (target genes). 

2.7. Screening for candidate genes and construction of risk model 

We identified candidate genes by finding the overlapping intersection of genes, target genes and DEGs between the BRCA and 
normal. The univariate Cox algorithm [29] was conducted for candidate genes to acquire survival-related feature genes. Afterwards, 
least absolute shrinkage and selection operator (LASSO) analysis (known as L1 regularization) was performed to solve the multi-
collinearity problem of various influencing feature genes and reduce the number of covariates in the Cox regression [30,31] The 
selected genes were utilized as biomarkers for this study, further, their expressions were extracted from the TCGA-BRCA dataset and 
compared using the Wilcoxon rank sum test. The results were presented by box plot and drawn by ggplot2 package (v 3.3.5) [32]. 

Next, patients were divided into high- and low-risk groups based on the median values of the risk scores calculated from the 
biomarkers. Riskscore = (Coefi represents the regression coefficient of the i th gene, xi represents the expression value of the i th gene, 
and n represents the number of biomarkers). Kaplan-Meier (K-M) survival curves were plotted. The survivalROC package (v 1.0.3) [33] 
was utilized to compute the area under the curve (AUC) values for receiver operating characteristic (ROC) curves to assess the pre-
dictive accuracy of the model. The risk model was verified with an external validation cohort (GSE20685 dataset). Besides, clinical 
information of the cohorts in TCGA-BRCA dataset was extracted for detecting the survival difference using K-M analysis. 

2.8. Immune microenvironment analysis 

We used the CIBERSORT algorithm to calculate the proportions of 22 immune cell subtypes for each of the 1050 BRCA samples in 
the TCGA-BRCA dataset [34]. The difference in scores for each immune cell between two differential risk subgroups was compared by 
Wilcoxon rank sum test after excluding samples with P > 0.05. Subsequently, we analyzed the correlation between biomarkers and 
differential immune cells using the Spearman method. Finally, the scatter plots were plotted to show the two sets of relationships with 
the strongest positive and negative correlations respectively. 

2.9. Single-gene gene set enrichment analysis (GSEA) analysis 

In this study, single-gene GSEA analysis (GO-BP and KEGG) was executed using clusterProfiler [35], and the top 5 most significant 
results for each biomarker were visualized individually. 
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2.10. Construction of a ceRNA regulatory network 

The miRWalk3.0 and miRDB databases were used to predict miRNAs targeting biomarkers. Targeting relationships between 
lncRNAs and miRNAs were predicted by the LncBaseV2.0 database (score = 1). Finally, using Cytoscape software (v 3.6.1) [36], the 
lncRNA-miRNA-mRNA network was established. 

2.11. qRT-PCR 

We collected twenty frozen mouse tissues, including 10 PTX-treated samples and 10 control (BRCA) samples. Total RNA from the 
20 samples were extracted with the TRIzol reagent (Ambion, USA) according to the manufacturer’s protocol. The cDNA synthesis was 
reverse-transcribed using the SureScript First-strand cDNA Synthesis kit (Servicebio, China). The qRT-PCR assay was performed with 
CFX Connect Thermal Cycler (Bio-Rad, USA). The relative quantification of mRNAs was calculated using the 2− ΔΔCT method [37]. All 
primers sequence information were shown in Table 1. Graphpad Prism 5 was utilized for graph creation and p-value calculation. 

2.12. Statistical analysis 

All bioinformatics analyses were executed using R language, and the data from different groups were compared using the Wilcoxon 
rank sum test. Spearman method was used to conduct the correlation analysis. 

3. Results 

3.1. Identification of DEGs and subtypes analysis 

A sum of 4876 DEGs were identified between the BRCA and normal groups, comprising 2466 up-regulated genes and 2410 down- 
regulated genes (Fig. 1A), and the expression heatmap of DEGs were exhibited in Fig. 1B. The consistency clustering results indicated 
that the samples were classified into two subtypes (Cluster1 and Cluster2) with clear discrimination between the subtypes (Fig. 1C–F). 
The survival analysis curves demonstrated that Cluster2 had a higher survival rate (Fig. 1G). 

3.2. Filtering of DEGs between the Cluster1 and Cluster2 and key module genes 

In total, the volcano map of 1119 DEGs between the two Cluster were generated (Fig. S1A) and the expression pattern of which was 
showed as a heatmap in Fig. S1B. The ICD scores exhibited a obvious difference between the BRCA and normal groups based on the 
Wilcoxon rank sum test comparison (Fig. S2A). After the ICD scores were computed by the ssGSEA algorithm, WGCNA was performed. 
Sample clustering results showed there were no outliers (Fig. S2B). When using a soft threshold of 7 (R2 = 0.85, indicated by the blue 
line), the average connectivity approached 0. (Fig. S2C). A total of 19 modules were initially acquired. Subsequently, by setting the 
MEDissThres to 0.3 for merging similar modules, the number of modules was reduced to 16 (Fig. S2D). According to the module-trait 
correlation heatmap, MEmagenta (Cor = 0.91, P ≤ 0.05) had the highest correlation, hence 1148 genes were considered as key module 
genes (Fig. S2E). 

3.3. Screening and functional enrichment of 626 intersecting genes 

After intersecting the DEGs between Cluster1 and Cluster2 with the key module genes, totally 626 intersecting genes were iden-
tified (Fig. 2A). The enrichment analysis results revealed that the intersecting genes were linked with 609 GO entries and 68 KEGG 
pathways. Specifically, the GO-BP category encompassed functions such as innate immune response and inflammatory response, while 
the GO-CC category included terms like immunological synapse and MHC class II protein complex. Additionally, the GO-MF category 

Table 1 
The primer informations in the quantitative real-time polymerase 
chain reaction (qRT-PCR).  

Gene Primer sequences 

CHI3L1 F AGACGCCATCCAACCTTTCC 
CHI3L1 R GTTCGACTCGTCATTCCACTC 
IL18 F TCAGACAACTTTGGCCGACT 
IL18 R GGTGGATCCATTTCCACTTTGA 
PAPLN F GGCTTTCGTAGTCGGTGC 
PAPLN R ATTTCGAGCCCAAGACCCTG 
SH2D2A F GCTCAAGACTGCCCCTCTTT 
SH2D2A R ACTTGCCATTTCTTCCCCCA 
UBE2L6 F GAAGCTCACCCTGTGCCTAA 
UBE2L6 R AGGGAAGGAGCACACATCAC 
GAPDH F CCTTCCGTGTTCCTACCCC 
GAPDH R GCCCAAGATGCCCTTCAGT  
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Fig. 1. Identification of two subgroups based on the immunogenic cell death-related genes (ICD-RGs) in TCGA-BRCA dataset. (A) Volcano map and 
(B) Heatmap of 4876 differentially expressed genes (DEGs) between the BRCA and normal groups. (C) Delta area plot exhibited the relative change 
in area under the cumulative distribution function (CDF) curve comparing K and K-1 (K ranges from two to ten), and the relative increases in 
consensus are used to determine K at which there is an appreciable increase. (D) The CDF of the consensus matrix for each K (indicated by colors). 
(E) Clustering matrix in TCGA-BRCA dataset when k = 2. (F) Principal Component Analysis (PCA) diagram for distribution of two clusters. (G) 
Kaplan-meier (K–M) survival analysis of two clusters in TCGA-BRCA dataset. 

Fig. 2. Collection and functional enrichment analysis of the 626 intersecting genes. (A) Venn diagram for the intersecting genes common to DEGs 
between the Cluster1 and Cluster2 and key module genes. (b–e) Dot plot for the functions and pathways enriched by intersecting genes, including 
(B) gene ontology (GO)-biological process (BP), (C) cellular component (CC), (D) molecular function (MF) terms, and (E) Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses. 
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was linked to functions like protein binding and chemokine activity (Fig. 2B–D). KEGG enrichment results included chemokine 
signaling pathway, etc. (Fig. 2E). 

3.4. Biomarkers screening and risk model 

A total of 989 target genes were identified through the Drugbank (n = 18), PubChem (n = 202), herb (n = 49), CTD (n = 1878), and 
batman (n = 70) databases (Table S1) after merging and de-duplication, and 33 candidate genes were obtained by overlapping 
intersecting genes, target genes, and DEGs between the BRCA and normal groups (Fig. 3A). Next, five ICD-PTX-related biomarkers 
(CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were acquired by univariate Cox analysis and LASSO (Fig. 3B–D). 

Patients were divided into high-risk (n = 525) and low-risk groups (n = 525) based on the median value (− 1.189112268) (Fig. 4A 
and B). Survival analysis demonstrated that the low-risk group in the training set exhibited a higher survival rate (P = 0.0014) 
(Fig. 4C). The ROC curve analysis displayed a good predictive performance of the model with AUC values exceeding 0.6 for 1-, 3-, and 
5-year time points (Fig. 4D). Subsequently, an external validation cohort was used to assess the model’s predictive capability. The 
result were consistent with the training set (P = 0.043) (Fig. 4E–G), and the AUC values for the validation cohort also exceeded 0.6 
(Fig. 4H). Moreover, the cohorts with different clinical features (pathologic T, pathologic M, pathologic N, Age) were utilized for the K- 
M analysis as Table 2, and exhibited considerable difference in survival between two risk groups (Fig. S3). 

Fig. 3. Screening of five ICD-PTX-related biomarkers related to patient survival. (A) Venn diagram of 33 candidate genes. (B) Forest plot for the 
univariate Cox analysis to screen survival related candidate genes. (C) Least absolute shrinkage and selection operator (LASSO) coefficients profiles 
and (D) Cross-validation for tuning parameter selection. 
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3.5. Immune analysis between different risk groups 

The bars displayed the distribution of 22 immune cell types (Fig. 5A). The box-plot displayed the presence of 16 differential types 
(memory B cells, Plasma cells, etc.) of immune infiltrating cells (Fig. 5B). In addition, the correlation analysis revealed that all the 
biomarkers except PAPLN were correlated with differential immune cells (adjusted P < 0.05 and |r| > 0.3) (Fig. 5C). SH2D2A exhibited 
the highest positive correlation with activated CD4 memory T cells and the strongest negative association with M2 Macrophages 
(Fig. 5D and E). 

3.6. Single-gene GSEA analysis of biomarkers 

The result of Single-gene GSEA showed that CHI3L1, IL18, SH2D2A, and UBE2L6 were mainly enriched in adaptive immune 
response, etc. GO-BP terms (Fig. S4A-B, Fig. S4D-E); PAPLN was mainly enriched in ATP synthesis coupled electron transport, DNA 
replication initiation and so on GO terms (Fig. S4C). 

CHI3L1 and IL18 were found to enrich KEGG pathways such as hematopoietic cell lineage (Figs. S5A–B). PAPLN was mainly 
enriched to KEGG pathways such as DNA replication, hematopoietic cell lineage, etc. (Fig. S5C). SH2D2A and UBE2L6 were mainly 
enriched in autoimmune thyroid disease etc. KEGG pathway (Figs. S5D–E). 

3.7. The ceRNA regulatory network of biomarkers 

The 55 miRNAs targeting biomarkers were obtained through miRWalk3.0 and miRDB databases. Then, 13 targeting lncRNAs were 
predicted based on the above miRNAs. The network contained 5 biomarkers, 26 miRNAs and 13 lncRNAs (Fig. 6) were generated, 
including the interaction pairs of chr22-38_28785274-29006793.1-hsa-miR-765-SH2D2A, chr22-38_28785274-29006793.1-miR-197- 
IL-18, etc. 

3.8. Expression analysis of biomarkers 

The results of the expression of UBE2L6, IL18, and SH2D2A was higher in the BRCA group, while the opposite trend was observed 
for PAPLN and CHI3L1 (Fig. 7A). The qRT-PCR analysis was conducted to investigate the expression changes of biomarkers in both 
groups. The expression levels of IL8 and SH2D2A were notably lower in control samples compared to PTX-treated tissues, while 
CHI3L1 exhibited the opposite trend (Fig. 7B–D). There were no obvious differences in the expression levels of Papln and UBE2L6 
between the two groups (Fig. 7E and F). 

4. Discussion 

BRCA is an immune heterogeneous disease that show great differences in different subtypes and individuals [4,7]. Anti-tumor 
immunity, which can effectively activate the immune system, is also one of the important factors in the selection of drugs for 
BRCA treatment [4]. ICD is a cell death process characterized by alterations in cell surface proteins and the release of soluble me-
diators. These changes stimulate phagocytes to present tumor antigens to immune cells like dendritic cells (DCs), macrophages, natural 
killer (NK) cells, and T cells [12,38,39]. By rendering tumor cells "visible" to the immune system, ICD triggers a robust anti-tumor 
response, especially through phagocytosis by DCs [12,38]. During ICD, tumor cells enhance the expression of calreticulin (CRT) on 
their surface, facilitating phagocytosis by DCs [12,40]. Additionally, the release of high-mobility-group box 1 (HMGB1) and ATP plays 
a crucial role in promoting DC chemotaxis, antigen presentation, and T cell activation [41–43]. Certain chemotherapy drugs, such as 
oxaliplatin (OXP), anthracyclines, and PTX, induce ICD, while others like cisplatin (CDDP) do not have this effect [12,17,21]. 

Targeting bioinformatics analysis to screen key differentially expressed genes and then conducting a series of functional analysis 
and prognosis studies has been used as a mature cancer analysis method, such as the utilize of multi-omics and single-cell data [44,45], 

Fig. 4. Construction and validation of the risk model based on five ICD-PTX-related biomarkers. (A) Distribution of risk score, survival states and 
(B) gene expression of five biomarker genes in high risk group and low risk group from TCGA-BRCA dataset. (C) The K-M survival analysis of two 
risk groups in TCGA-BRCA dataset. (D) Receiver operating characteristic (ROC) curves of the risk model for survival prediction of TCGA-BRCA 
dataset at 1-, 3-, 5- years. (E) Distribution of risk score, survival states and (F) gene expression of five biomarker genes in two risk group from 
the external validation cohort (GSE20685 dataset). (G) The K-M survival analysis of two risk groups in GSE20685 dataset. (H) ROC curves of the risk 
model for survival prediction of patients in GSE20685 dataset at 1-, 3-, 5- years. 

Table 2 
The clinical information of TCGA cohorts in the high- and low-risk groups.   

Age pathologic_T pathologic_M pathologic_N  

>60 ≤60 T1/T2 T3/T4 M0 M1 N0/N1 N2/N3 
High risk 257 268 435 87 446 14 421 90 
Low risk 205 320 446 76 433 8 421 101  
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likewise, the comprehensive evaluation of cell death-related genes for BRCA diagnosis [46]. Taking into account the previous 
anti-cancer evidence for the PTX-induced ICD mechanism in tumor cells [21,47], while the underlying mechanism as well as the target 
genes has not been systematically analyzed. In the present study, following up the results of the previous studies, we performed 
bioinformatics analysis of transcriptome data for normal breast tissue and BRCA samples in the UCSC Xene database, meanwhile the 

Fig. 5. Relationship of immune infiltration and risk model as well as biomarkers. (A) Histogram of 22 immune infiltration cells abundance in 1050 
BRCA samples from the TCGA-BRCA dataset. (B) Violin plot for differences of the immune cell infiltration between two differential risk subgroups. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns not significance. (C) Heatmap of the correlation between differential immune infiltration 
cells and five biomarkers. The bigger the circle, the stronger the correlation. Red indicates a positive correlation, while blue indicates a negative 
correlation. Scatter graph for the correlation of SH2D2A and (D) activated CD4 memory T cells and (E) M2 Macrophage. 
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GSE20685 dataset was used as an external validation cohort. We screened the genes related to the anti-BRCA effect of PTX through ICD 
for the first time, and obtained 4 biomarkers (CHI3L1, PAPLN, SH2D2A, and UBE2L6) in the pathologies of BRCA as well as IL-18 to 
construct a risk model, where the prognostic value of IL-18 has been reported before [48]. 

Survival analysis and ROC analysis examined the moderate performance of the risk model for predicting prognosis of BRCA cohorts 
in the TCGA-BRCA and GSE20685 datasets. It is noteworthy that differences of sample size and follow-up time may affect the results of 
survival curve, where lost or invalid data are often excluded from K-M analysis, leading to potential selectivity bias. AUC results only 
reflect the prediction accuracy of the model when predicting whether an event occurs or not, but cannot provide information about 
survival time or survival probability. Considering the significant statistical significance of the model to a certain extent, more clinical 
samples need to be collected to further test the prognostic value of the model. 

Next, the immune microenvironment analysis were carried out, and the results exhibited in the ceRNA regulatory network and 
functional enrichment results provide a new potential molecular mechanism for elucidating the ICD effect induced by PTX. 

The SH2D2A gene encodes the T-cell-specific adapter protein (TSAd), which plays a role in regulating T-cell activation [49–51]. In 
BRCA1/2-negative high-risk families, the variation of signaling protein TSAd was positively correlated with the susceptibility to 
ovarian cancer [52]. Research in both mice and humans has suggested that the expression of TSAd in T cells is linked with the synthesis 
of IL-2 [53], which mainly stimulates the proliferation of T cells, cytotoxic T cells (CTLs) and NK cells, as well as enhances their killing 
activity and promotes lymphocytes secretion of antibodies and interferon. And meanwhile, TSAd also enhances synapse formation 
between CD4+ T cells and APCs, influencing the differentiation of activated T cells by guiding the polarization of CD4+ T cells towards 
the APC [54], and it enhances CD28-dependent costimulation [55]. The impact of SH2D2A in BCRA was firstly reported in this study. 
In our research, there is a strong correlation between SH2D2A expression and NK cells (negative) as well as activated CD4+ memory T 
cells (positive), while the level of NK cells and activated CD4+ memory T cells in the high-risk group is lower, indicating a negative 
correlation with the risk score. Our results show that SH2D2A expression was increased in BCRA samples, whereas the expression may 
be slightly lower with the increase of risk score, and meanwhile the expression level of SH2D2A is significantly up-regulated after PTX 
treatment, which is highly likely one of the intrinsic molecular mechanisms by which PTX induces ICD effect and promotes T cell 
activation. 

Interleukin-18 (IL-18) is a potent stimulator of type-1 immune responses in both innate and adaptive lymphocytes [56]. Dendritic 

Fig. 6. The competing endogenous RNA (ceRNA) regulatory network of five biomarkers. The pink indicate mRNA, blue represent miRNA, and 
yellow symbolize lncRNA. 
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cells and macrophages are the main producers of active IL-18 [57], the significant alteration of these immune cell infiltration was 
observed in the tumor groups in this study. IL-18 receptor (IL-18R) is found on various cell types, including T cells, NK cells, peripheral 
B cells, macrophages, as well as non-immune cells like endothelial cells, epithelial cells, and fibroblasts [58]. IL-18 can enhance the 
lytic activity of NK cells [59], which not only promote the cytotoxicity of NK cells mediated by Fas-FasL ligand, but also promotes the 
traditional killing activity of perforin-mediated NK cells against target cells [59]. On the other hand, IL-18R serves as a new modulator 
of NK cell activity against tumors and viral infections by dampening the IL-18 pathway and facilitating IL-37-induced suppression of 
NK cells [60,61]. Our previous in vitro experiment results demonstrated that PTX-treated tumor cells conferred higher IL-18 secretion 
of BMDCs and were easier phagocytosed and presented by DCs and macrophages [21]. In addition, the IL-18 level of tumor tissue 
remarkable increased after PTX administration, echoing the high expression of IL-18 in patients with low risk group, which probably be 
an evidence for its activation of the immune system through the ICD effect. However, In cancer, inflammasomes and IL-18 can act as 
two-sided blades, as their activation may either fuel tumor growth and progression or conversely, bolster anti-tumor defense mech-
anisms and constrain tumor expansion [56,62–64]. High serum levels of IL-18 in some cancers and cancer-associated polymorphisms 
seem to escape from the immune system by suppressing CD70, while promoting metastasis by up-regulating of VEGF and CD44 [65]. 

Fig. 7. Expression verification of five biomarkers. (A) Box plots for differences of the gene expression extracted from TCGA-BRCA dataset. (B–F) 
Results for mRNA level of five biomarkers using quantitative real-time polymerase chain reaction (qRT-PCR). *P < 0.05, **P < 0.01, ns not 
significance. 
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Our bioinformatics analysis results showed that tumor tissue has a higher level of IL-18 mRNA than normal breast tissue, which also 
confirms the complexity and versatility of its regulation in the human immune system. 

Non-enzymatic chitinase-3 like-protein-1 (CHI3L1) is a member of the glycoside hydrolase family 18, and is produced and released 
by various cell types such as macrophages, neutrophils, chondrocytes, fibroblast-like cells, endothelial cells, and cancer cells [66]. 
CHI3L1 appears to play a role in the proliferation, migration, and neoplastic advancement of colonic epithelial cells (CECs) in the 
presence of inflammatory conditions [67]. Macrophages and neutrophils present in the tumor microenvironment surrounding tumor 
cells have been observed to release CHI3L1 into the extracellular space. This protein can potentially boost tumor initiation, growth, 
angiogenesis, and metastasis [68]. Furthermore, studies have indicated that the upregulation of CHI3L1 signaling can alter the 
immunosuppressive environment by influencing the polarization of tumor-associated macrophages (TAMs). This alteration is 
controlled by a transcriptional program involving NF-κB/CEBPβ within the CHI3L1/Gal3-PI3K/AKT/mTOR axis or through a 
STAT6-dependent mechanism [69–71]. High levels of CHI3L1 expression have been linked to reduced survival rates in cancer patients. 
Specifically, in individuals with BRCA, increased CHI3L1 expression is associated with poorer survival outcomes, as demonstrated by 
analyses from KMplot and CGGA datasets [66]. Therefore, CHI3L1 may be one of the more promising prognostic markers for BRCA. 
After PTX treatment, the mRNA of CHI3L1 has been significantly degraded, which may indicate that its mechanism of ICD may be 
related to the above-mentioned pathway, and we will further explore it. 

The enzyme UBE2L6, involved in protein ISGylation and ubiquitylation processes that control protein stability, has been identified 
as a novel inhibitor of autophagy. In esophageal cancer cells, UBE2L6 may impact chemosensitivity. Elevated UBE2L6 expression has 
been correlated with improved overall survival, possibly through enhancing apoptosis and suppressing autophagy. However, it is 
unclear whether this association with patient outcomes exists [72]. Furthermore, UBE2L6 is thought to play a significant role in 
tuberculosis by influencing apoptosis in macrophages infected with Mtb [73]. In human breast cells, UBE2L6 down-regulation was 
noted following the knockdown of BRCA2, a tumor suppressor protein with various functions. This down-regulation may be linked to 
the metabolism of ubiquitin cross-reacting protein (UCRP) [74]. For the first time, we found that UBE2L6 is up-regulated in BRCA 
tissues, and its detailed mechanism remains to be explored. 

Proteoglycan-like sulfated glycoprotein (PAPLN), as known as papilin, is a component of the extracellular matrix [75]. In an 
integrative pan-cancer analysis, it was found that PAPLN was often linked to a positive prognosis, especially in terms of heightened 
sensitivity to certain drugs like erlotinib and osimertinib [76]. Simultaneously, PAPLN exhibited a positive correlation with immune 
checkpoint molecules such as Programmed Cell Death 1 Ligand 2 (PDCD1LG2) (PD-L2), Programmed Cell Death 1 (PDCD1) (PD-1), 
Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), and Lymphocyte Activating 3 (LAG-3), suggesting its potential as targets 
and/or immune modulators for cancer therapy [76]. Experimental research on this gene is very limited, the detailed biological 
function of it in BRCA remains to be investigated. 

The analysis of different immune cell types in different risk groups in our study has outstanding clinical implications. Compre-
hending the immune cell infiltration in tumor tissue is crucial for predicting disease progression and patient prognosis. By analyzing 
the correlation between key genes and immune cell infiltration, we can develop new therapeutic methods targeting key differential 
immune cells and even their additional related genes, or predict patients’ response and sensitivity to specific therapies (such as im-
mune checkpoint inhibitor therapy). In addition, different information of immune infiltration helps us to divide patients into sub-
groups with different immune characteristics for guiding individualized treatment strategies. 

From the perspective of correlation of potential miRNAs related to the key genes predicted in this study, an in vitro experiment 
indicated that miR-765-3p may be located on the key regulatory axis of proteasome inhibitors in breast cancer cells, which affected the 
diversity of pathways [77]. And meanwhile, it can affect the functionality of various key signaling pathways, such as MAPK and NF-κB, 
and regulation the proliferation, tumor growth, metastasis and chemosensitivity of breast cancer cells. miR-765-3p was also predicted 
in our findings. MiR-197 is an anti-inflammatory agent, which can inhibit inflammation-related pathways, and one of its targets is 
IL-18, which has also been confirmed in many disease models [78]. Our analysis revealed that both has-miR-765 and has-miR-197-3p 
were linked to 5 biomarkers through lncRNA chr22-38_28785274–29006793, indicating its important regulatory roles in BRCA. In 
addition, the chr22-38_28785274-29006793.1–miR-34a/c-5p–capn 6 axis and chr22-38_28785 274-29006793.1–miR-494-3p–slc9a 7 
axis might regulate cellular activities involved by CD4+ and CD8+ T cell infiltration in BRCA, respectively [79]. This again corresponds 
to our results of immune infiltration analysis. It is indicated that lncRNA chr22-38_28785274–29006793, probably play a central role 
in PTX-induced ICD effect, and it may be a potential target for diagnosis and treatment of BRCA, which needs further exploration. 

The current study is subject to certain limitations. Despite our efforts to incorporate a wide range of datasets, only the UCSC Xene 
database and the GSE20685 dataset were utilized. This scope is insufficient to provide a comprehensive and robust profile for 
elucidating the mechanism of PTX-induced ICD effect, related genes, and associated signaling pathways. At the same time, compared 
with BRCA sample number (1072), the normal sample number (99) is lower. We use glmFit function to control the potential con-
founding effect more accurately and provide more accurate statistical inference, so as to obtain more reliable difference expression 
results. Although the sample size discrepancy will not affect the robustness of the results, it is still necessary to further expand the 
collection of clinical samples to verify the expression of key genes and related mechanisms, which can make up for the imbalance of 
samples in public data sets. In addition, we have verified by 4T1 subcutaneous model in mice, and the results obtained require further 
experiments and verification. Due to the lack of direct correlation between diseases and key genes, we may face challenges such as the 
lack of known pathophysiological mechanisms, the lack of sufficient clinical samples and the need to explore suitable animal models, 
which need to be further analyzed in combination with our predicted molecular mechanism-related clues. 
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5. Conclusion 

In summary, this research offers a thorough bioinformatics analysis of pivotal genes and signaling pathways involved in PTX’s anti- 
BRCA effect via ICD. This study obtained five biomarkers for it, constructed a prognostic related risk model and conducted immune 
microenvironment analysis and functional enrichment analysis for BRCA, represent a gap in the research so far. Our study, for the first 
time, identifies potential therapeutic targets of PTX’s ICD effect through comprehensive bioinformatics analysis. It provides a new 
reference for the mechanism research, treatment and prognosis of the BRCA. 
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