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Abstract
The existing therapeutical options for the tracheal and pharyngeal re-
construction by use of implant materials are described. Inspite of a
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of these methods applied for tracheal reconstruction were successfully
introduced into the clinical routine. Essential problems are insufficiencies Throat Diseases, Ulm,

Germanyof anastomoses, stenoses, lack of mucociliary clearance and vascular-
isation. The advances in Tissue Engineering (TE) offer new therapeutical
options also in the field of the reconstructive surgery of the trachea. In
pharyngeal reconstruction far reaching developments cannot be recog-
nized at the moment which would allow to give a prognosis of their
success in clinical application. A new polymeric implant material con-
sisting of multiblock copolymers was applied in our own work which
was regarded as a promisingmaterial for the reconstruction of the upper
aerodigestive tract (ADT) due to its physicochemical characteristics. In
order to test this material for applications in the ADT under extreme
chemical, enzymatical, bacterial andmechanical conditions we applied
it for the reconstruction of a complete defect of the gastric wall in an
animal model. In none of the animals tested either gastrointestinal
complications or negative systemic events occurred, however, there
was a multilayered regeneration of the gastric wall implying a regular
structured mucosa.
In future the advanced stem cell technology will allow further progress
in the reconstruction of different kind of tissues also in the field of head
and neck surgery following the principles of Tissue Engineering.
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1 Introduction

1.1 History of implant materials

Body foreign materials were used for medical purposes
already in the ancient times. In Egypt linen soaked with
rubber were used for wound closure. Sculls also dating
back to ancient times with gold inlays in teeth were found
in Ecuador. Descriptions of urological catheters exist from
the Romans. Arm-, hand-, leg- and food prostheses were
developed during the Renaissance. The missing know-
ledge, however, with respect to the importance of sterility
and sterilization was the biggest problem until the second
halve of the 19th century because infections endangered
the implantations.
The 20th century can be called the era of synthetical
polymers. In 1920 Staudinger published his idea of big
macro molecules (polymers) built up from smaller sub-
structures (monomers). Poly(methylmethacrylat) (PMMA)
was introduced in dental medicine in 1937 although the

advantageous characteristics of PMMA implants became
first known through war wounded pilots in World War II:
Soft tissue and eye injuries induced by and containing
small fractions of bursting airplane cockpits (PMMA) led
to minute foreign body reactions only. Szilagyi et al. repor-
ted first clinical experiences with Poly(ethylenterephthal-
ate) (trade name: Dacron®) as vascular arterial prostheses
in 1958 [1]. In the 60th of the last century, Dr. John
Charnley, an orthopedic surgeon from U.K. developed a
functional and cemented total hip endoprosthesis based
on steel and ultra high molecular weight polyethylene in-
lays which were cemented into the femoral bone using
PMMA as “cement”. Beginning at the end of the 90th of
the last century there was a focus on the development
of degradable polymeric implant materials.
Since then the required profile of a biomaterial wasmore
and more adapted to its application. The availability of
so called polymer systems allows a large scale variation
of material characteristics like mechanical performance
and hydrolytic degradation and thus to adapt these ma-
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terials to specific local requirements in the organism.
Now even the functionality of implant materials was ex-
tended so that cellular and biological processes can now
be assessed and influenced on site. The technological
potential of these new implant materials is enormous
and it is assumed that they will potentiate the develop-
ment of new therapeutical options in medicine [2].

1.2 Regenerative Medicine

Due to the shift in morbidity during the last decades and
the modern demographic development in the western
world the clinical medicine has to deal more and more
with diseases gradually leading to a loss of function of
important cell and organ systems. In many cases these
diseases cannot be cured by the currently available
therapies and these patients have to remain in permanent
therapy causing high costs. New therapies will hopefully
be developed for many of these diseases by the Regener-
ative Medicine. Comprised are many of the wide spread
diseases with high morbidity, serious reduction of life
quality and high costs for the public health system.
Problem solutions offered by the Regenerative Medicine
are expected to offer a fully functional replacement of
destroyed or damaged tissues so that permanent symp-
tomatic therapies become dispensable in the interest of
both, the patient and the public health system.
Regenerative Medicine is highly interdisciplinary and
deals with the restitution, substitution, regeneration of
non functional or more or less functionally impaired cells,
tissues, organs through biological replacement, e.g.
through tissues produced in vitro or through the stimula-
tion of the body’s own regeneration and/or repair pro-
cesses [3], [4], [5]. This area is focused not only on organ
and tissue replacement (Tissue Engineering) but com-
prises also new therapeutical options and further devel-
opments in classical transplantation medicine and cell
therapies including the stem cell technology [6], [7]. Im-
plied, too, are pharmacological options to be developed
and aimed at the specific stimulated regeneration of tis-
sues/organs [8]. All the actions recently started in this
area are aimed to translate the results from research and
development into new therapeutical options for the clin-
ical medicine [9], [10], [11].
Important clinical success in stem cell research [12], [13]
and the extracorporeal growth in bioreactors of cartilage,
muscle and vascular endothelial tissues for transplanta-
tion purposes show the extensive potential of Regenera-
tive Medicine [14], [15], [16], [17], [18]. The euphoric
visions to grow complete and functional organs in vitro
right now, however, were recognized to be very premature
and led to the understanding that there are still serious
deficits in our knowledge of regeneration in organisms.
This implies basic research in the fields of cell- and devel-
opmental biology, of differentiation of cells and growth
and maturation of tissues and organs, of immunological
tolerance, of tissue and organ regeneration and wound
healing, of stem cell development, of the development
of multifunctional implant materials and of functional

molecular imaging. In the field of applied research inno-
vative solutions are needed to couple technical systems
to the organism. This is necessary for adapted bioreactor
systems as well as for drug delivery-systems with bio-
sensor regulated local release of biomolecules and also,
especially, for the non-invasive assessment and continu-
ous validation of the local success of regenerative pro-
cesses.
Nationally and internationally the area of Regenerative
Medicine is characterized by an outstanding speed of
progress. A high number of different fields of science and
technology have to be combined and united to arrive at
innovative problem solutions. Since 1990 the German
Ministry for Research and Education (BMBF) and German
Research Council (DFG) spent 230,000,000 Euro for
basic research and translation in the area of Regenerative
Medicine [19]. The rate of publications in Regenerative
Medicine increased exponentially in the last years. The
annual number of publications meanwhile amounts to
9000 (August 2008). However, the participation of clini-
cians is necessary right from the beginning of the devel-
opment of new therapeutical options. Clinicians, espe-
cially, recognize the necessity of innovative therapeutic
developments and their adaptation to the clinical practice.
A major hurdle in the clinical establishment of new ther-
apies based on Regenerative Medicine is thought to be
the financial aspect [20], [21]. A study published by the
BMBF (April 2007) recognized the practice of reimburse-
ment by the health insurance companies as the biggest
obstacle for the development of products to be applied
in clinical routine. Mentioned further in this study were
the legal regulations of approval of medicinal products
and of clinical studies. It was assumed that health insur-
ance companies are willing to reimburse new products
only after extensive and long-term studies [19].
From a clinical perspective further developmental
obstacles result from complex legal regulations of e.g.
transplants/embryonic stem cells in Europe and in Ger-
many especially. As far as the Medical Preparations Act
(Arzneimittelgesetz, AMG) will continue to be applied to
tissues and tissue related products, very extensive and
lengthy processes of approval for therapies based on
extra corporeal growth of tissues in bioreactors will be
afforded [22], [23], [24], [25]. According to the new Ger-
man Tissue Law all cell containing parts of the human
body which are no organs are defined as tissues where
the AMG applies. The Federal Chamber of Physicians
(Bundesärztekammer, BÄK) recognized further legal and
practical obstacles that might endanger the supply with
extracorporeally grown tissues in Germany. These are
especially the definitions of institutions for the explanta-
tion of tissues and for the tissue processing as they are
found in the Transplantation Law (Transplantationsgesetz,
TPG) which was generated following an EU directive.
These definitions are neither in concordance with the EU
directive nor with the Medical Preparations Act (AMG).
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1.3 Functionalized implant materials

The experiences with polymer implants used in medicine
which will be described in the following with respect to
their development and therapeutical applications led to
clear requirement profiles for the future use of polymeric
implant materials. The functionality of implant materials
has to be broadened so that they are stimuli sensitive
and e.g. change their physico-chemical behavior in answer
to external stimuli or induced biological processes at the
site of implantation. Bioactive substances like peptides,
proteins or carbohydrates might be immobilized by poly-
mers or released from implants in a well defined process.
The most up-to-date trend in polymer sciences is the de-
velopment of degradable biomaterials showingmultifunc-
tionality. This means that specific functionalities like e.g.
hydrolytic degradation, physiological and biomechanical
tissue compatibilities and shapememory can be adapted
to the region specific requirements of the site of implan-
tation [26], [27].
AB-Copolymernetworks are an example for an implant
material which can be functionalized. These networks
are produced by photocrosslinking of Oligo(ε-caprolac-
ton)dimethacrylate and polybutylacrylate segments [28],
[29]. The incorporation of flexible polybutylacrylate seg-
ments allows e.g. the tailoring of material elasticity which
is an important condition for the biomechanical function-
ality of this polymer system in the temperature range
between room and body temperature. AB-Copolymernet-
works are biodegradable due to their hydrolytically
cleavable polyester chain segments. Beside the hydrolys-
able ester bonds the polymer networks contain oli-
gomethacrylate- and polybutylacrylate chains which can-
not be cleaved hydrolytically. With the progressing hydro-
lytical degradation an increasing amount of oligomeres
of methacryle acid and acryle acid derivatives is derived
from these segments. These are water soluble and non-
toxic in low doses [30]. In case of the AB-Copolymernet-
works a high residual polymer weight is expected for the
oligobutylacrylate derivatives. A molecular weight of
200,000 g mol-1 is discussed as critical upper limit for
water soluble biostabile macromolecules in biomedical
applications because there can be an accumulation in
the blood circulation above this molecular weight limit
[31]. Due to their degradability, stimuli sensitivity,
biocompatibility and -functionality these copolymer net-
works are termedmultifunctional. Biomechanical charac-
teristics as well as types and periods of degradation can
be adjusted as well.

1.4 Sterilization of polymer based
degradable implant materials

The sterilization of implant materials is a precondition for
their biomedical use. Polymer based and especially hydro-
lytically degradable biomaterials in general have a consid-
erably lower thermal and chemical stability as ceramic
or metallic materials. That is why they are generally not

sterilized with conventional sterilizationmethods like heat
sterilization (temperatures between 160–190°C) or
steam sterilization (121–134°C) because otherwise the
polymers could be damaged. Sterilization applying ionizing
irradiation can change the chemical structure of polymers
either by chain degradation or by new crosslinking of
chains so that surface characteristics as well as thermal
andmechanical bulk properties can be strongly influenced
[32]. A change of the chemical surface structure of im-
plant materials can influence their biocompatibility in
vitro and in vivo [33]. Since the sterilization of polymer
based biomaterials makes high demands on the steriliza-
tion method, low-temperature sterilization methods like
plasma sterilization (low-temperature plasma sterilization,
LTP) and ethyleneoxide (EO) sterilization are in the focus
of intensive contemporary research [34], [35], [36], [37].

2 Regenerative Medicine for the
reconstruction of the upper
aerodigestive tract
Head and neck surgery is concerned with the reconstruc-
tion of damaged local tissues likemucosa, cartilage, bone
or skin due to congenital anomalies, progressive diseases
as well as therapeutical interventions. Fistulae of different
genesis are associated with most serious complications
in the head and neck area [38], [39], [40], [41]. These
fistulae cause high rates of morbidity and mortality
through the development of sepsis, pneumonia or
bleeding from destruction of the carotid wall. The
permanent secretion from fistulae and the cervical soft
tissue defects especially of pharyngocutaneous fistulae
is associated with a tremendous reduction of life quality
of patients and their stigmatization [38]. Due to postoper-
ative salivary fistulae in oncological patients their irradi-
ation may not be possible within the planned periods so
that therapeutical aims cannot be reached. Salivary fistu-
lae are a relevant cost factor since the introduction of
DRGs (Diagnosis Related Groups) in the german health
system [42], [43]. Contemporary therapeutical options
in the treatment of pharyngocutaneous fistulae depend
on the size of fistulae and on the indication of a postoper-
ative adjuvant irradiation therapy.

2.1 First applications of different implant
materials in tracheal surgery

The modern tracheal surgery started with the first suc-
cessful reanastomosis of the cervical trachea in dogs by
Gluck and Zeller in 1881. First results of the tracheal re-
construction using implant materials were published by
Daniel in 1948 [44]. Rigid tubes made of glass or metal
were used for the defect reconstruction after the resection
of tracheal segments (between 1 and 13 tracheal carti-
lage rings were excised) of dogs. These tubes had lips at
the proximal and distal ends which were fixed by ligatures
with the tracheal ends (Figure 1). The postoperative ob-
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servation period lasted up to 6 months. In those animals
surviving the surgery (14/15) extensive foreign bodies
appeared after the embedding of implant materials in
granulation tissues. There was also the development of
dyspnoe. Daniel et al. published another study dealing
with the reconstruction of tracheal and bronchus defects
in dogs in 1950 [45]. While in the first publication the
scientific focus was set on the surgical method, the au-
thors dealt with functional aspects in the second one.
The rates of healing or stenosis in tracheal reconstruction
using rigid metallic prosthesis depended according to the
authors on the anatomical localization: A higher success
in reconstruction combined with lower rates of stenosis
was found in the thoracic trachea than in the cervical
trachea. In all experiments there was an extensive forma-
tion of granulation tissues around the implant materials
with a consecutive tracheal stenosis. As further problems
appeared the breakdown of sutures and infections [45].
In the 50ies a great number of experiments for the
tracheal reconstruction was performed in animals using
different materials like acrylresin [46], tantalum [47],
stainless steel [48], polyethylene [49], nylon [50] and
teflon [51]. The great number of materials used and the
short survival time of the animals demonstrated that the
problem of tracheal reconstruction using implant materi-
als could not be solved at this time. The importance of
biocompatibility of implant materials and the variable
requirements depending on the implantation site became
obvious at the end of the 50ies. After the successful ap-
plication of Dacron® as arterial prosthesis (1958) it was
realized that an appropriate material was not available
for the tracheal reconstructive surgery showing the neces-
sary elasticity, rigidity, and biocompatibility. At the end of
the 50ies and the beginning 60ies there were first trials
for the temporary application of polymeric implant mate-
rials in the tracheal reconstruction. Thesematerials were
covered with mucosa from the urinary or gall bladders to
induce connective tissues or bone around tracheal stents.
The temporary application meant that the implant mate-
rial should be removed after the newly grown cartilage
or bone in the former tracheal defect zone gave a suffi-
cient stability so that the reconstructed tracheal tissues
would not collapse. Although cartilage and bone tissues
could be demonstrated histologically at the site of implant-
ation, a sufficient tracheal stability could not be gained
in any one of the animals and all animals died of respir-
atory insufficiency following tracheal obstruction after the
removal of the differently coated implant materials [52],
[53]. In the 60ies and 70ies furthermaterials were tested
for tracheal reconstruction e.g. Marlex networks (polyethyl-
ene/polypropylene networks) [54], silicon rubber [55]
and Marlex networks covered with cartilage and/or
tracheal mucosa [56], [57]. These newmaterials also did
not fulfill the comprehensive requirements for tracheal
reconstruction regarding mechanical strength and ad-
equate flexibility to avoid vascular arrosion induced by
mechanical irritation. Thesematerials lacked biocompat-
ibility, an air- and liquid tight integration of the implant
materials into the adjacent body tissues, an adequate

stability against bacterial invasion and, especially, the
epithelialization of the implant with a functional tracheal
epithelium [54], [55], [56], [57].

Figure 1: Method of fixation of rigid tubes of metal in the
proximal and distal trachea of the tracheal defects in dogs
with ligatures, from: Daniel RA, Taliaferro RM, Schaffarzick
WR. Experimental Studies on theRepair ofWounds andDefects

of the Trachea and Bronchi. Chest. 1950;17:427 [45].

Wenig et al. showed in 1987 that through application of
a fibroblast collagenmatrix for the tracheal reconstruction
of circumscript defects the rate of tracheal stenosis could
be reduced significantly [58]. In 1989, Schauwecker et
al. demonstrated the importance of biomechanical
properties of the implantmaterials depending on the site
of implantation and that the porosity of the material sur-
face was important for the integration of implants in sur-
rounding tissues. These authors applied an isoelastic
polyurethane prosthesis with different porosities at the
luminal and abluminal surfaces for the reconstruction of
38 mm long defects of the cervical trachea of 19 dogs.
Besides end-to-end anastomosis these authors applied
inverted and everted techniques of anastomosis. The
mean survival time of animals in case of the inverted
technique was 27.7 days, in case of the everted tech-
nique 11.3 days and in case of the end-to-end anastomo-
sis 19.5 days. The worst complications leading to a ter-
mination of these trials were local infections and insuffi-
ciencies of anastomosis in 12 of the animals and exten-
sive stenoses accompanied by respiratory insufficiency
in 7 animals. The authors observed that polyurethane
prostheses with porous surfaces developed a tight integ-
ration into surrounding tissues but in none of the animals
the luminal prosthetic surface was inhabited by a muco-
ciliary epithelium. The authors attributed the high rate of
complications primarily to the animal model chosen be-
cause the cervical mobility in dogs was said to be much
higher than in humans, pigs or rats [59].
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2.2 New methods and approaches for
tracheal reconstruction

Key factors compromising the therapeutical success seem
to be the regeneration of a functionalmucociliary tracheal
epithelium enabling the mucociliary clearance, foreign
body reactions induced by implant materials, infections,
and the necessity of reoperations in preoperated areas.
The tissue engineering techniquewas described by Langer
and Vacanti in 1993 and had 3 key components: cells
for the tissue regeneration, polymer scaffolds as amatrix
which support migration, proliferation and differentiation
of cells as well as regulating factors which specifically
influence the cellular behavior [60]. The following de-
mands on tracheal prostheses were made: It should be
a flexible but compression stable construct which is in-
habited by a functional respiratory epithelium [61]. The
complete epithelialization of prostheses is thought to be
the main condition to allow an adequate mucociliary
clearance and guarantee a reliable barrier against infec-
tion and invading connective tissue. There are still very
few studies applying the methods of Tissue Engineering
to produce tracheal replacements and to examine these
in vitro and in vivo. Studies introduced by Vacanti et al.
in 1994 were trend-setting where constructs based on
Poly(glycolid) acid (PGA) and inhabited by bovine chondro-
cytes and tracheal epithelial cells were applied to close
circumferential tracheal defects in rats [62]. In a consec-
utive study respiratory epithelial cells were isolated and
injected into cartilage cylinders grown in vitro [63]. Exam-
inations of these constructs revealed mature cartilage
tissues as well as epithelial structures with a submucosal
connective tissue. After 3 weeks in culture different
stages of differentiation of amultilayered highly prismatic
epithelium could be documented showing also some cili-
ary cells. In consecutive experiments these authors de-
veloped a tracheal replacement based on chondrocytes
and fibroblasts which was implanted into sheep. The
tracheal replacement thus generated could not be shown
to develop kinocilia within the respiratory epithelial cells
and therefore was not fully functional [64].
Besides the use of different implant materials in experi-
mental and clinical trials throughout the last 50 years
[45], [46], [47], [48], [49] there weremany other attempts
with autologous or allogenic tissues of different origin
like fasciae, skin, bone and periost, cartilage and
perichondrium,muscle, esophagus, pericardium, intestine
and dura mater [65], [66], [67], [68], [69]. Again, high
rates of complications were reported e.g. high rates of
stenosis and necrosis, of anastomotic insufficiencies and
a lack of mucociliary clearance.
At the end of the 90ies and the beginning of 2000 biode-
gradable stents were introduced in reconstructive tracheal
surgery. Lochbihler et al. described in 1997 for the first
time the application of a resorbable intratracheal stent
made of polyglactine 910 filaments copolymerized with
polydioxanone for the temporary stabilization of a tracheal
stenosis in rats [70]. Korpela et al. applied a spirally

shaped and reinforced stent made of poly(L-lactid) (PLA)
to brigde tracheal stenoses in an animal model [71], [72].
Robey et al. described in 2000 the application of a biode-
gradable poly(L-lactid-co-glycolid) (PLGA) stent for the
endotracheal stabilization of reconstructed circumscript
defects in the anterior tracheal wall of rabbits using the
faszia lata. Stenoses in those animals receiving intra-
tracheal resorbable stents were significantly smaller than
those in animals without stents. The high mortality rates
of 17% in the implant group and 23% in the control group
were mainly caused by the functionally relevant tracheal
stenoses. This was the reason why the approach combin-
ing the use of autologous materials and biodegradable
stents did not become accepted. The authors assumed
that through controlled release of growth relevant factors
from the biodegradable polymeric scaffolds the potential
of this method could be enhanced so that the enhance-
ment especially of cartilage growth would render the re-
constructed tracheal segments more stabile [73].
The treatment of subglottic stenoses, especially in chil-
dren, still is a high challenge in spite of all the progress
in surgery. Cotton and Seid in 1980 introduced the anteri-
or cricoid-split [74]. After several modifications of this
technique and bearing in mind the contraindications,
more than 90% of the children can nowadays be ex-
tubated without problems. In spite of the progress, in
children undergoing single-step surgical therapy to treat
subglottic stenoses it is necessary to use postoperative
intubation over several days as an intratracheal splinting.
An external splinting by metallic microplates in the surgi-
cal tracheal reconstruction was described first time by
Zalzal and Deutch in 1991 [75]. Weisberger and Nguyen
applied metallic Vitallium miniplates for the external
splinting of cartilage transplants in the reconstructive
tracheal surgery and 10 of 13 patients (77%) were suc-
cessfully extubated immediately after surgery [76]. Willner
andModlin introduced resorbableminiplates in the recon-
structive tracheal surgery. These resorbable plates were
fixed by sutures in the region of the tracheal defect which
diminished the stability in comparison to fixation by
screws [77]. Following the successful application of re-
sorbable plates and screwsmade of PLGA in the pediatric
craniofacial surgery [78], [79], Long et al. described the
external fixation of rib cartilage transplants by PLGA
miniplates and screws in the tracheal reconstruction of
subglottic stenoses in dogs in 2001. All of the 10 animals
operated could be extubated without problems directly
postoperatively. In all of these animals there was an ad-
equate widening of the subglottic stenoses over the whole
period of observation (up to 90 days postoperatively).
Two of the animals developed necroses in the cartilage
transplants but in spite of this an endoluminal epithelial-
ization was demonstrated histologically. The 8 other an-
imals showed a complete epithelialization of the trans-
plants [80]. Since the degradation of PLGA in vivo [79]
clearly exceeds an observation period of 90 days like in
this study, long-term results are missing concerning the
resorption of PLGA in tracheal applications and also the
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influence of degradation products of PLGA on the muco-
ciliary clearance.
Kojima et al. described the production of tissue engi-
neered tracheal equivalents from cylindrical pieces of
cartilage and equipped with an endoluminal epithelium
in 2003. Cartilage and epithelial cells were harvested
from the septal cartilage of sheep and grown in vitro. After
proliferation and cultivation in vitro the cartilage cells
were seeded on a PGA matrix. For shaping, the cell poly-
mer scaffold was fixed around a silicon tube and for cul-
tivation under in vivo conditions, the whole construct was
implanted under the skin in the back of nude mice. Pre-
cultivated epithelial cells were suspended in a hydrogel
and injected into the cartilage cylinders. After removal of
the stabilizing silicon tubes the tissue engineered con-
structs were harvested after 4 weeks of implantation.
The morphology of the constructs produced by Tissue
Engineering was described to be similar to the native
sheep trachea. Mature cartilage and the generation of a
pseudolayered epitheliumwere demonstrated histologic-
ally. Proteoglycanes and hydroxyproline contents of the
constructs were comparable to native cartilage so that
the authors assumed that there might be a sufficient
stability of such a construct in vivo [81]. It is thought that
such a tissue engineered construct in comparison to the
earlier applied methods might have the potential to fur-
ther growth after implantation in vivo which could open
new perspectives for the tracheal reconstruction in chil-
dren. Cartilage was harvested so far from ribs, nasal
septum and ears and also from tracheal and joint carti-
lage. While Kojima et al. assumed that the elastic carti-
lage from ears might not have the ideal biomechanical
properties needed to produce tracheal constructs [81],
other authors were less critical in the application of
elastic cartilage from ears for the Tissue Engineering of
cartilage in tracheal reconstruction [82].
Tracheal resection with the following end-to-end anasto-
mosis is currently the therapeutical “gold standard” in
the treatment of tracheal stenoses, when less than 50%
of the tracheal length in adults and less than 1/3 of the
tracheal length in small children have to be removed [83],
[84]. The reconstruction of longer stenoses is a therapeut-
ical challenge not solved at the moment. The tracheal
reconstruction of such long segments by transplants ne-
cessitates an adequate blood supply to avoid the necrosis
of the transplants. Jaquet et al. examined different 3-
component grafts in animals to simulate the anatomical
structure of the trachea composed of mucosa, cartilage
and adventitia. Transplants consisting of cartilage from
the ear and from oral mucosa were revascularized
through the latero thoracic fascia in rabbits. The epitheli-
alization of 3-component grafts was significantly en-
hanced through the application of perforated mucosa
(40% epithelialization of the constructs after application
of perforated mucosa versus 10% epithelialization after
application of non perforated mucosa). In all of the 20
operated animals there was a sufficient vascularization,
and necroses were not detected in the transplants [85].
The authors assumed that the production of vascularized

composite grafts is an option for the reconstruction of
longer tracheal stenoses. A successful application of
these constructs in animals and clinical studies ismissing,
however.
A completely different approach for the reconstruction of
longer tracheal segments was chosen by other groups
who applied aortal autografts for the tracheal reconstruc-
tion in pigs [86] and in sheep [87], [88]. In both animals
the implants were stabilized postoperatively by silicon
stents. Immunosuppression was not applied in either of
the animal models. In pigs an epithelialization with
metaplastic epithelial cells, newly grown cartilage and
non-organized elastic fibres were demonstrated in the
implants. In sheep there were initial inflammatory reac-
tions followed by growth of a mucociliary epithelium and
the development of new cartilaginous tracheal rings [87].
In 2006 this group published results from the tracheal
reconstruction of a longer segment in a human patient
applying an aortal autograft. After the resection of a 7 cm
long cervical tracheal segment due to a tracheal car-
cinoma situated directly caudal of the cricoid cartilage
and localized clearly intratracheally without regional lymph
nodes or distantmetastases, there was a tracheal recon-
struction applying a segment of the autologous, infrarenal
aorta of this 68 year old patient. The excised aortal seg-
ment was replaced by a Dacron® prosthesis. A chronical
obstructive pulmonary disease (COPD), a peripheral
arterial occlusive disease (PAOD) and amyocardial infarc-
tion (17 years before the tracheal reconstruction) were
known from this patient. The patient was extubated
without problems 12 hours postoperatively. There was
an endotracheal stabilization applying a silicon stent 3
months postoperatively. An adjuvant irradiation of the
whole trachea with 30 Gy was started on the 15th day
postoperatively. 4 weeks postoperatively an acute
dyspnoe appeared in the patient due to granulation in
the region of the proximal anastomosis which was treated
with a further stent application proximal to the first stent.
Both stents could be removedwithout problems 3months
later. Afterwards no further granulomatous tissues could
be diagnosed endoscopically at the anastomotic sites.
Clinically no more states of dispnoea appeared. The pa-
tient died due to septical shock in the course of pneumo-
nia in both lungs 6 months post operatively. Since family
members did not accept autopsy no further details of the
performance of the aorta based tracheal construct could
be revealed [89].
Although the aorta based allogenic tracheal constructs
did not perform too well in the pig, this approach in 2
animalmodels and in humanswas remarkable both from
clinical and from scientific perspectives. From a clinical
perspective, the use of aortal segments offers a tubular
structure, comparable in diameter to the trachea, which
is air and fluid tight, flexible and with high mechanical
strength and which is available in the afforded amount.
There are problems, however, with the lack of biomechan-
ical stability not avoiding the collapse of air ways and with
themissing epithelialization. From a scientific perspective
this approach allows the use of decellularized tissues,
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even of allogenic ones, as preformed, long distance
scaffolds in tracheal reconstruction which enable the in-
growth and differentiation of the patient's own precurs-
or/stem cells assumed to be needed for the regeneration
of functional tissues. A lot of efforts in basic science and
clinical research have still to be spent until the growth of
biomechanically loadable segmental cartilage can be
engineered on demand and tissue engineered tracheal
constructs will be inhabited by fully functional epithelial
cells [90].

2.2.1 Epithelialization of tracheal scaffolds

The first application in humans of an artificial trachea
produced according to principles of Regenerative Medi-
cine was published by Omori in 2005. A papillary car-
cinoma in the thyroid of a 78 years old woman necessi-
tated a hemithyroidectomy together with the resection of
the anterior tracheal wall. The tracheal wall defect was
reconstructed by a patch based on anMarlex net covered
with collagen. 2 months postoperatively, endoscopic
analysis revealed the epithelialization of the scaffold. And
there was also a sufficient mechanical stability in the
scaffold. 2 years after surgery there were still no respira-
tory complications or insufficiencies. In spite of missing
long-term results the authors were convinced that new
therapeutical options will be offered for the reconstructive
tracheal surgery by Regenerative Medicine [91].
The relatively long period of 2 months needed to epitheli-
alize the patch which was applied in the tracheal recon-
struction points to a problem not adequately solved. After
application of novel polypropylene collagen scaffolds for
the reconstruction of circumscript tracheal defects in
dogs, the complete epithelialization of the scaffold could
be demonstrated 8 months postoperatively only [92]. A
fully functional tracheal epithelium is essential as a
physical barrier against the extratracheal milieu, as regu-
lator for the comprehensive metabolic functions of the
airways including transport of fluids and ions and for the
mucociliary clearance and the patency of the airways
[93]. The early development of a complete and function-
ally adequate epithelialization of tracheal scaffolds is of
critical importance for the biofunctionality of implants
and constructs produced following the principles of Tissue
Engineering. The research onmechanismsof regeneration
and differentiation of respiratory epithelial cells in contact
with tissue engineered constructs started only recently.
Before that, the research concerning the differentiation
mechanisms of respiratory epithelial cells was focused
on their differentiation in the embryonic phase [94] and
on the development and differentiation of epithelial cells
from precursor/stem cells [95]. It was shown that basal
cells of the human trachea probably are precursors of
respiratory epithelial cells [95], [96]. Labelling of cells
with specific lectins [97] and applying flow cytometry [98]
allowed to recognize basal cells from cells with higher
differentiation. Cytokeratines play an important role here
as markers of differentiation. The tracheal epithelium is
mainly composed of ciliary cells, goblet cells and basal

cells [99]. These cells play important roles in the
physiology of the airways homeostasis. Ciliary cells regu-
late the content of fluids and ions and remove body for-
eign particles through highly coordinated and directed
movement of the ciliae [100]. Goblet cells secrete
products likemucin which are very important to maintain
the barrier function of mucosal layers and for the regula-
tion of cell adhesion [101]. Basal cells are essential for
the generation of precursor cells which are fundamental
for the regeneration of epithelial damage [95], [96], [102].
Nomoto et al. seeded the scaffoldmaterial used by Omori
with tracheal epithelial cells of rats in vitro. These epitheli-
al cells expressed in vitro the cytokeratines 14 and 18
as typical intermediate filaments of epithelial cells as well
as occludin, a constituent of tight junctions in epithelial
cells which is a main component of the barrier against
diffusion of soluble substances into the intercellular
space. The epithelial cells grown of the scaffold in vitro
did not differ immunocytochemically from tracheal epi-
thelial cells in vivo. The scaffolds seeded with epithelial
cells in vitro were applied for the reconstruction of cervical
tracheal defects of 3 mm length in rats. Over the whole
period of observation (30 days) in vivo the artificial
trachea was covered with epithelium. However, modifica-
tions in the stages of differentiation were observed in the
tracheal epithelial cells. Partially, a single or double
layered epithelium was found not carrying ciliae whereas
other parts displayed prismatic epithelial cells with func-
tional ciliae [103]. In a further development of this tech-
nique a thin 3-D collagen matrix (Vitrigel®) was applied
for 3-D growth of cells in the scaffold. This 3-D matrix
enhanced growth of epithelial cells as well as the invasion
of mesenchymal cells. There was a clearly accelerated
regeneration of functional epithelial cells carrying ciliae
after tracheal reconstruction in rats using Vitrigel® coated
scaffolds compared to non-coated scaffolds [104].
The importance of epithelial-mesenchymal interactions
formorphogenesis, homeostasis and regeneration of the
epithelium are well known from literature since several
years [105], [106], [107], [108]. During epithelial regen-
eration, epithelial precursors arrived from the borders of
epithelial damage to proliferate and differentiate there.
Mesenchymal cells situated below the epithelium regulate
epithelial growth and differentiation through generation
of an appropriate biomatrix and through synthesis and
release of growth relevant factors [109], [110]. Fibro-
blasts are also important participants in the interactions
between epithelial and mesenchymal cells and strongly
influence epithelial regeneration in wound healing. They
are able to secrete a variety of growth factors like kerati-
nocyte growth factor, epidermal growth factor (EGF) and
hepatocyte growth factor (HGF) [111], [112]. The import-
ance of fibroblasts was shown already for epidermal
wound healing [106], oral [113] and corneal epithelial
regeneration [114] and in 2006 by Kobayashi et al. also
for tracheal epithelial regeneration. The co-cultivation of
epithelial cells and tracheal fibroblasts in vitro induced
the generation of a layered epithelium containing epitheli-
al cells with ciliae, goblet cells and basal cells. Moreover,
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a basal membrane was constituted in vitro between epi-
thelial cells and fibroblasts where the presence of integrin
β 4 was demonstrated which is a specific marker of basal
membranes and of epithelial mucin secretion [115].
In further studies the authors demonstrated the potential
of heterotopic fibroblasts (from dermis, nasal and oral
mucosa) for tracheal epithelial regeneration. Regeneration
of epithelial cells in contact with different heterotopic
fibroblasts showed different characteristics in structure,
development of ciliae, secretion ofmucins and expression
of ion and water channels like e.g. aquaphorines and
Na/K ATPase. In contact with nasal fibroblasts, however,
no mature and fully functional tracheal epithelium was
generated in vitro. Dermal fibroblasts induced the gener-
ation of an epidermal like epithelium. Especially the co-
cultivation with fibroblasts from the oral mucosa induced
the regeneration of a morphologically and functionally
regular tracheal epithelium. This was comparable to the
regeneration of epithelium in vitro after co-cultivation with
tracheal fibroblasts. Fibroblasts from the tracheal and
the oral mucosa expressed keratinocyte growth factor,
epidermal growth factor and hepatocyte growth factor.
Fibroblasts from the oral mucosa enhanced proliferation
and migration of epithelial cells in vitro similarly to the
tracheal fibroblasts. Since the explantation of oralmucosa
is clearly less invasive than the explantation of tracheal
mucosa, there seems to be a very promising method
available now to develop scaffolds with a functionally
adequate epithelium for the tracheal reconstruction [116].
In 2008 the same group used this technique of co-culti-
vation of epithelial cells and tracheal fibroblasts to pro-
duce a tracheal scaffold seeded with cells in vitro and
applied the tissue engineered scaffold for the tracheal
reconstruction in rats [117]. The authors could demon-
strate a fully functional epithelium in vivo. Beside the co-
cultivation of tracheal epithelial cells and fibroblasts also
the co-cultivation of tracheal epithelial cells and mesen-
chymal stem cells for the “in vitro” reconstruction of a
fully functional tracheal epithelium is described in the
literature. The epithelium thus produced showedmorpho-
logical, histological and functional characteristics of the
tracheal mucosa. The authors assumed that the co-culti-
vation with mesenchymal stem cells could play a main
role in Tissue Engineering in future [118].

2.2.2 Vascular supply of tracheal constructs

A problem not adequately solved so far is the vascular
supply of scaffolds and of tissue constructs developed
from these scaffolds in vivo. A long-term functional epi-
thelium on tracheal constructs necessitates an adequate
vascular supply. In contrast to other parenchymal organs
the trachea is supplied by a network of small blood ves-
sels which is evidently not easy to generate. Microanas-
tomoses were not successful in animal models [119],
[120] and therefore not further persecuted. It is known
from the literature that after tracheal reconstruction the
capillary network present at the anastomosis proceeded
in the direction of the implant only 2 cm atmaximum and

that this process of revascularization took several months
[121]. In tracheal implants which were longer than 3 cm
there was a lysis of the epithelium with a consecutive
destruction of the basal membrane followed by the devel-
opment of granulomatous tissues producing a tracheal
stenosis. While bioreactors allow the growth of autologous
cells [122] and functional tissues and are routinely used
for the generation of osteochondral constructs, and tissue
engineered heart valves, there are very few studies
showing the application of bioreactors for the generation
of tracheal scaffolds. Decisive problems hindering the
application of tracheal scaffolds in humans are the
missing epithelialization and revascularization of the
constructs. Tan et al. published in 2006 the concept of
a so called “in vivo bioreactor” for the generation of
tracheal constructs. They proposed layered scaffolds with
a porous catheter within the inner layer of the scaffold
for a continuous supply of cells and nutrition media and
an outer layer of the construct granting the necessary
stability. In contrast to traditional bioreactors where nutri-
tion media mainly flow around the constructs, now a
perfusion systemwas plannedwithin the scaffolds similar
to the blood vessel distribution in vivo [123]. This group
seeded in a next step a phase segregated multiblock co-
polymer (DegraPol®) with human tracheal epithelial cells
and offered a continuous supply of cells and nutrition
media via a porous catheter within the scaffolds. They
also examined the influence of vascular endothelial
growth factor (VEGF) present in the perfusionmedium on
the vascularization in the chorioallantoismembrane (CAM)
assay. The continuous perfusion of the tubular biodegrad-
able scaffolds coincided with an adequate epithelializa-
tion of the constructs and an accelerated vascularization
in the CAM assay. The authors assumed that the concept
of the in vivo bioreactor allows a more physiological pro-
cess in the reconstruction of tissues and that better initial
conditions are granted for the problem so far not solved,
the vascularization of tracheal scaffolds [124].

2.3 Regenerative Medicine for
reconstruction of pharyngeal defects

The reconstruction of the pharynx by degradable, multi-
functional polymericmaterials would be a novel therapeu-
tical option in head and neck surgery. The use of implant
materials for the reconstruction of pharyngeal defects is
currently at the early beginning. Until now there are only
data concerning the use of implant materials in the area
of the oral mucosa and the palate available. Hallén et al.
injected cross-linked hyaluronic acid in rats in the dorsal
pharynx wall to treat velopharyngeal insufficiency. In all
animals an early inflammatory reaction due to the hyal-
uronic acid was found. 6 months after injection the hyal-
uronic acid was still detectable at the original localization
of injection and surrounded by connective tissues. Despite
lacking of long-term results the authors assumed that
the injection of cross-linked hyaluronic acid is appropriate
for augmentation of a slight velopharyngeal insufficiency
in humans [125]. Ophof et al. implanted skin substrates
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after cell seeding with oral keratinocytes in vitro into
palatinal wounds in dogs as a model for closure of cleft
palate by tissue engineered constructs. In all 6 animals
the loss of the epithelium and a distinctive degradation
of the skin substrates were detectable. The authors con-
cluded that an adequate integration of these tissue en-
gineered constructs required an early and sufficient re-
vascularization of the scaffolds in vivo [126]. Amain focus
in Tissue Engineering of oral mucosa is currently the use
of novel dermal scaffolds and epithelial cell culture
methods including 3-D models. An updated review is
given by Moharamzadeh et al. [127].
Despite numerous biomedical applications of tissue en-
gineered constructs in almost all medical fields, there up
to now no literature data available regarding the pharyn-
geal reconstruction with implant materials after tumor
resection neither in animal models nor in humans. The
availability of multifunctional polymeric implant materials
which can be adapted according the anatomical,
physiological, biomechanical and surgical requirements
[27], [128] facilitate the development of novel therapeu-
tical options also in head and neck surgery. A main sci-
entific topic of the own group is the biocompatibility
testing of an elastic degradable AB-copolymer network
[28], [29] in vitro and in vivo which seems to be appropri-
ate for the reconstruction of pharyngeal defects due to
its physicochemical characteristics.

3Methods and novel therapeutical
options in head and neck surgery

3.1 Primary cell cultures of the upper
aerodigestive tract

The use of cell culture is an essential tool in nearly all
biological and medical research laboratories. The
biocompatibility testing should be conductedwith cultures
of site-specific cells depending on the biomedical appli-
cation to assess the specific interaction between the
biomaterial and site-specific different cells [129]. Thus,
the biocompatibility testing of a polymericmaterials which
seems to be appropriate for the reconstruction of
pharyngeal defects should be conducted with primary
cell cultures of the pharynx. The knowledge about the
interactions between the implant materials and
cells/tissues is a basic requirement for an ideal adapta-
tion of a polymeric material according to the specific
needs of the upper aerodigestive tract. In own studies
primary cell cultures of the oral cavity, the pharynx, and
the esophagus were established and biochemically
characterized. Immuncytological investigations showed
different relative amounts of epithelial, fibroblastic and
smooth muscle cells depending on the anatomical site
of explantation [130]. Relatively little is known about the
mechanisms of regular and delayed wound healing of the
pharyngeal epithelium. Therefore, a comprehensive
characterization of primary cell cultures of the pharynx

was a first step for the development and establishment
of novel therapeutical options [130], [131].

3.2 Assessment and regulation ofmatrix
metalloproteases and wound healing

The cell adhesion, -migration, -proliferation, angiogenesis,
degradation of extracellular matrix and remodeling of
granulation tissue are decisive steps in wound healing
[132]. The amount and organization of the extracellular
matrix in normal wounds is determined by a dynamic
balance between overall matrix synthesis, deposition and
degradation. A strictly controlled degradation of the extra-
cellular matrix is an important process for the regular
wound healing. An imbalance between degration and
synthesis of thematrix during wound healing would cause
a delayed wound healing with fistulae and ulcerations in
case of outbalanced degradation of the extracellular
matrix or hypertrophic scars and keloids in case of outbal-
anced synthesis of the extracellular matrix [133].
Matrixmetalloproteases (MMPs) are a class of structurally
related, zinc-dependent endopeptidases that are collec-
tively responsible for the degradation of extracellular
matrix proteins. MMPs have an important function in
wound healing [134], [135]. Under regular conditions in
vivo, the expression and activation of MMPs is strictly
controlled. The activity of MMPs is regulated at the level
of transcription and zymogen activation and can be inhib-
ited by specific inhibitors: the tissue inhibitors of metallo-
proteases, TIMPs. Recently, 4 different TIMPs (TIMP 1-4)
were identified and cloned [136]. In the literature different
MMP- und TIMP-levels were reported in regular and
delayed wound healing [137], [138]. The delicate balance
between the activity of MMPs and TIMPs plays a key role
in building a functional extracellular matrix. Up to know
little is known about the mechanisms of wound healing
and MMP expression of cells of the upper ADT in vitro
and in vivo [139], [140], [141].
A comprehensive characterization of the MMP- and TIMP
expression of cells of the upper ADT is a basic require-
ment to develop and establish novel therapeutical options
in head and neck surgery in case of delayed wound
healing after surgical treatment. A main focus of the own
biocompatibility testing was the analysis of theMMP- and
TIMP expression of primary cell cultures of the upper ADT
after cell seeding on different modifications of the poly-
meric implant material to gain the knowledge for an op-
timal adaptation of thesematerials to the specific require-
ments of the upper ADT.
Among the primary cell cultures investigated, cells of the
pharynx were seeded on the surface of a multifunctional
copolymer as well as on the surface of commercially
available polystyrene cell culture dishes as control. On
both surfaces cells became adherent, proliferated and
reached confluency. No statistically significant differences
of the mean cell numbers were found on Day 1, 3, 6, 9
and 12 of cell growth after cell seeding [131]. The highest
MMP-1-, MMP-2- and TIMP-levels were found on Day 1
of cells grown on both surfaces. There were decreasing
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Figure 2: Kinetics of appearance and activity levels of MMP-2, MMP-1 and TIMPs of primary cell cultures of the pharynx grown
on polystyrene (control surface) versus multiblock copolymer surface

Scanning densitometry units of the gelatinolytic activity of MMP-2 are shown in A. MMP-1 activity is represented as units per 108
cells in B. The TIMP activity was calculated as percent inhibition of MMPs (C). MMP-2 levels were determined on Days 1, 3, 9 and
12 of cell growth. MMP-1 and TIMP levels were analysed on Days 1, 6 and 12 of cell growth. Statistical analysis was performed
to determine differences in MMP-2, MMP-1 and TIMP levels between Day 1 and the subsequent days of cell growth. Statistically
significant differences (p≤0.01) are indicated by a star. Data shown are averages from three separate experiments with 9 cell

culture each (values are means ± s.d.).

levels during the following time of the investigation
(Figure 2). No statistically significant differences of the
MMP- and TIMP-expressions were detectable between
the polymer and the control surfaces. The kinetic of
MMP-2 expression were analysed on the protein level
and by RT-PCR on themRNA level (Figure 3) [131]. Based
on the current results the adhesion, proliferation, and
differentiation of the primary cell cultures of the pharynx
was not influenced by the multifunctional copolymer.

3.3 Influence of implant topography

The integration of a material in the surrounding tissues
is a basic requirement for a successful clinical application
of an implant material in vivo. The surface characteristics
of materials including their surface topography and
chemical composition are of very high importance for the
interaction between the material and cells and tissues
[142], [143], [144], [145]. Until know some cellular pro-
cesses are known which could be useful to assess the
cellular behavior on implant materials. Most of this
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Figure 3: mRNA levels of MMP-2 of primary cell cultures of the pharynx grown on polystyrene (control) versus multiblock
copolymer surface

MMP-2 mRNA levels of primary cells of the pharynx on Day 1 and 3 grown on polystyrene (control) are shown on the left side. The
kinetics of MMP-2 mRNA levels on Day 1 and 3 of cells grown on copolymer are presented on the right side. Primers used for

RT-PCR were rat MMP-2 and rat GAPDH.
Abbreviations: RT-PCR = Reverse Transkriptase Polymerase Chain Reaction

knowledge is based on cell culture investigations and it
is unknown if these mechanisms are also found in vivo
[146], [147]. A fundamental requirement for a successful
application of degradable implant materials for the
pharyngeal reconstruction in vivo is a saliva-tight integra-
tion of the material in surrounding tissues. Furthermore,
an adequate chemical stability of the implant material is
needed to avoid salivary fistulae with destruction of
neighbouring soft tissue. The development of long-term
degradable polymeric scaffolds for pharyngeal reconstruc-
tion has to guarantee an adequate biocompatibility and
biofunctionality as well as growth of a functional tissue
formation considering the specific physiological and
mechanical requirements of the upper ADT. Important
progress in biomaterial research of the last years was
made in the improvement of cell adhesion and -prolifera-
tion by the optimization of scaffold design with respect
to specific requirements of the different implantation
sites in vivo [148]. Main aspects of the the research work
were focused on the influence of different macroscopical
and microscopical design parameters on the local differ-
entiation of variable cells. Other aspects dealt with the
controlled release of growth factors [149], [150]. Until
now relatively little is known about the influence of differ-
ent surface topographies of polymeric implant materials
on the gene expression and synthesis of enzymes that
are directly involved in extracellular matrix remodeling
[151], [152].
Our own results demonstrated the importance of the
surface structure of polymeric implant materials on the
cellular behavior depending on surface roughness
(smooth versus rough surfaces). The cell adhesion, -pro-
liferation, as well as the kinetics of secretion and activity
of MMP-1, MMP-2- and TIMPs differed significantly de-
pending on the type of cells and on the surface structure
of the copolymer. Significantly greater average total cell
numbers of oral and pharyngeal primary cells were found
after cell seeding on the rough surface compared to the
smooth polymer surface. Esophageal cells showed the
highest cell numbers on the control polystyrene surface.
Oral and pharyngeal cells revealed similar kinetics of

appearance and activity of MMP-1, MMP-2 and TIMPs
with highest values on Day 1, followed by a decrease of
the activity levels on the rough polymer and the control
surface. Oral and pharyngeal cells seeded on the smooth
polymer surface displayed an opposite pattern with the
lowest activity of MMP-1, MMP-2 and TIMPs on Day 1 and
highest values on Day 12. Esophageal primary cell cul-
tures showed a comparable kinetic pattern of appearance
and activities on all three different surfaces (smooth and
rough polymer surface, control surface) with the lowest
MMP-1-, MMP-2- and TIMP expression on Day 1 and
highest values on Day 12 [153].
The presence or absence of the extracellular matrix or
components of it govern the proliferation, differentiation
and biochemical activities of the different primary cell
cultures of the upper ADT. These results were confirmed
by data from the literature which also showed the influ-
ence of the surface topography on the gene expression
and synthesis of the enzymes directly involved in extracel-
lular matrix remodeling [154], [155], [156].
The results of these experiments suggest a specific influ-
ence of surface topography on the behavior of cells in
contact with implant materials. The knowledge of the ex-
act mechanisms of the cell-biomaterial-interactions are
a basic requirement for the development of an “ideal”
implant material to establish cell- and tissue-optimized
novel therapeutical options in head and neck surgery
based on polymeric implant materials.

3.4 Application of new implantmaterials
in animal models

The use of degradable implant materials in the area of
the upper ADT makes high demands on the chemical,
enzymatical, bacterialandmechanical stability of amater-
ial. A premature degradation of the implantmaterial would
cause extensive salivary fistulae with high mortality po-
tentially culminating in carotid artery rupture. Because
of the chemical conditions in the upper ADT with changing
pH-values, enzymatical, bacterial and particular mechan-
ical load during deglutition and digestion the reconstruc-
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Figure 4: The gastric wall defect is shown in Figure 4A. The closure of the defect by a multiblock copolymer in the implantation
group is presented in Figure 4B.

A standardized gastrotomy with a diameter of 10 mm was performed at the ventral side of the stomach between the smaller and
the greater curvatures. The defect of the gastric wall is marked by an arrow (Figure 4A). In the implantation group the defect was
closed with a copolymer patch (diameter 10 mm; thickness 200 µm). The defect closure by a copolymer patch is marked by an
arrow (Figure 4B). The copolymer patch was sutured into the gastric wall defect with a monofil, non-resorbable 8/0 thread in a

non-interrupted sero-muscular technique.

tion of the upper ADT by a degradable implant material
requires adequate chemical, enzymatical, bacterialand
mechanical stabilities of the scaffold material. Until now
these comprehensive needs can be tested only in animal
models. In our own group an animal model was estab-
lished creating a standardized complete defect of the
gastric wall in rats which was closed by an elastic long-
term degradable polymeric implant (Figure 4). The stom-
ach was used as a “worst case” application site to test
the stability of the implant material under extreme
chemical, enzymatical, bacterial, and mechanical load.
In this model the mortality of the gastric breakdown of
sutures and fistulae implying local or generalized perition-
itis are comparable to themortality of insufficiencies and
salivary fistulae of the pharynx. The implantation group
included 42 animals. A primary wound closure of the
gastric wall defect without biomaterial implantation was
conducted in the control group (n=21). Furthermore, a
so called baseline group which inclueded animals kept
under the same conditionswithout any surgical procedure
was investigated (n=21). The implantation periods or
times of observation were 1 week, 4 weeks and 6months
[157], [158].
Fundamental parameters investigated in this animal
model were a tight closure between the polymer and
surrounding tissues, the chemical andmechanical stabil-
ity of the implant material, the integration of the polymer
in the surrounding tissue as well as the question of tissue
regeneration after reconstruction of the defect with the
polymeric implantmaterial. Gastrointestinal complications
like fistulae, perforation or peritonitis did not occur in any

of the animals. A liquid- and gas-tight anastomosis
between the polymer and the adjacent stomach wall ex-
isted in all animals of the implantation group (Figure 5)
[157]. To test the impermeability between the implant
material and adjacent gastric wall the intragastric pres-
sure was measured after maximal dilatation of the
stomach by air insufflation (Figure 6) [157]. Neither in
the implantation nor in the control group a delayed wound
healing was observedmacroscopically or microscopically
after 1 week, 4 weeks and 6months of implantation time
respectively after primary wound closure. After 1 week a
beginning regeneration of the gastric wall was detected
starting from the border area of the gastric wall defect.
After 4 weeks and 6 months a regular multi-layered
stomach tissue as known from histology was found in the
former defect zone of the gastric wall (Figure 7). In the
control group the defect was replaced by scar tissue
[158]. The analysis of the mechanisms of the integration
of the implant material in the adjacent tissues as well as
the mechanisms of tissue regeneration are topics of
currently ongoing examinations. The importance of the
biocompatibility and biofunctionality of the implant ma-
terial on the tissue regeneration were further enlighted
by completely different results in animal experiments with
poly-L-lactid as the current “gold standard” of degradable
implantmaterials (unpublished results). After an attempt-
ed reconstruction of the gastric wall with poly-L-lactid the
same animal model, this examination had to be termin-
ated after 12 animals due to perforation of the gastric
wall and extensive peritonitis in 9 of the 12 of the animals
(75%) (Figure 8).
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Figure 5: Aspect of the explanted stomach after 1 week of copolymer implantation
The polymer implantation site is marked by arrows. A flexible tube for air insufflation was inserted in the duodenum. The pressure
was measured by a probe in the resected esophagus. The pressure probe is marked by an arrow. A special anatomical feature
of the rat stomach becomes overt: the stringent separation between the glandular part of the stomach where the copolymer was
implanted (marked by arrows) and the non-glandular part. The influence of this special anatomical feature on the biofunctionality

of the polymeric material is unknown so far and needs to be investigated in another animal model.
Abbreviations: Duod. = Duodenum; Esoph. = Esophagus

Figure 6: Graphical presentation of the measurement of the intragastric pressure (mm Hg) after maximal dilatation of the
stomach by air insufflation

Measurement of the intragastric pressure (mm Hg) after maximal dilatation by air insufflation in the implantion, the control and
the baseline group after 1 week, 4 weeks and 6 months

Furthermore, the systemical influence of the copolymer
was investigated. It is well known from literature that the
peritoneum is a very sensitive compartment for inflam-
matory reactions of the organism dependent on the
biocompatibility of implant materials [159]. Incompatibil-
ities of implant materials and/or their too early degrada-
tion are expected to cause local inflammatory reactions
originating acute-phase-reactions concomitant with the
induction of gene expression of acute-phase-proteins.
The concentrations of the acute phase proteins α1-Acid
Glycopotein and Haptoglobin, however, did not show

statistically significant differences between themultiblock
copolymer and the control group [160].
In the experiments performed until now the chemically,
hydrolytically and enzymatically stability as well as the
biomechanical functionality of the polymeric implant
material were shown under the extreme conditions of the
stomach. The postoperative increase in weight of the
animals [157], the impermeability between the implant
material and adjacent tissues of the gastric wall [157],
the concentrations of the acute-phase-proteins α1-Acid
Glycopotein and Haptoglobin [160] as well as the lack of
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Figure 7: Histological findings after 1 week, 4 weeks and 6 months of implantation time
The defect of the gastric wall (marked by arrows) is characterized by the lack of the stomach epithelium in both magnifications
(1.5x, 5x) after 1 week of implantation time. The marginal area next to the defect zone showed a regular stomach epithelium
marked by stars. After 1 week of implantation time a beginning tissue regeneration was detectable from the marginal area next
to the defect zone. The polymeric material used for defect closure was removed due to the xylene and ethanol treatment and
cutting of paraffin sections and was not detactable onmost of the histological sections. After 4 weeks and 6months of implantation
time in all animals a histological regular-layered gastric wall was detected in the former defect zone (marked by arrows). The

marginal area of the former defect is marked by stars.
Abbreviations: H.E. staining = Hematoxylin Eosin staining

gastrointestinal complications suggest that the wound
healing was not negatively influenced by the degradable
multiblock copolymer during the time investigated. On
the contrary, a support of tissue regeneration by the im-
plant material was detected. The mechanisms of bioma-
terial-tissue-integration, of tissue regeneration, of tissue
remodeling as well as themechanisms of polymer degra-
dation have to be analysed in future experiments.

The results available so far regarding the tissue compat-
ibility allow to regard the copolymer network as a very
promising implant material for the development of novel
therapeutical options in head and neck surgery based on
degradable biomaterials. In a next step the copolymer
will be used for the reconstruction of the upper ADT at
first in a large animal model. If there is a positive evalu-
ation in future and also in clinical studies, applications
of this polymer become conceivable for the reconstruction
of the pharynx in humans.
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Figure 8: Macroscopical findings in the abdominal cavity after application of Poly-L-Lactid (A) or Copolymer (B) in the gastric
wall of rats

After 1 week of implantation time after application Poly-L-Lactid (A) in the gastric wall distinctive adhesions of the whole abdominal
cavity were found. The animal experiments with Poly-L-Lactid had to be terminated after 12 animals because of perforation of
the gastric wall and serious pertonitis in 75% of the animals. In contrast to these findings a mirroring peritoneum was detected
in all animals of the implantation group (n=42) after reconstruction of the gastric wall by the Copolymer without adhesions of the

intestinal loops. Gastrointestinal complications like perforation or peritonitis did not occur in any one of the animals of the
implantation group.

4 Vascularization of tissue
engineered constructs
The vitality and functionalitiy of tissue engineered con-
structs depends on an adequate blood supply with oxygen
and nutrients as well as on the removal of metabolites.
Most of the tissues/organs successfully tissue engineered
until now are relatively thin and/or avascular like carti-
lage, skin or urinary bladder. Therefore, wound healing
driven angiogenesis in recipients is thought to be suffi-
cient to supply the tissue engineered constructs with
oxygen and nutrients in many cases. It was suggested
that the supply of blood and nutrient of the scaffolds ap-
plied for pharyngeal reconstruction could be sufficient
because the used implant materials are relatively thin
(<100 µm). In any case, the applied scaffolds should
support angiogenesis. The investigation of the influence
of polymeric implant materials on the angiogenesis is
therefore an important aspect of biocompatibility testing.
In our investigations we showed that bovine capillary
endothelial cells (EC) of the adrenal cortex [161] became
adherent on the copolymer surface and developed con-
fluent cell layers [162]. Also, in the chorioallantois mem-
brane (CAM) assay no negative influence of the copolymer
samples on the vascularisation was detectable [162],
[163]. A controlled release of angiogenic factors from
vesicles on the polymer surface according to the prin-
ciples of Drug Delivery to support angiogenesis is a sci-
entic topic of currently ongoing investigations.
At present an adequate vascularisation of the cellularly
colonized scaffolds in vivo is one of the most critical

points for Tissue Engineering of complex and metabolic
challenging organs like heart or liver. In case of paren-
chymal organs the tissue engineered microcirculation
has to be connected to the recipients circulation. The
currently available techniques for the vascularisation of
tissue engineered constructs can be classified in “in vitro”
and “in vivo” methods. In the last years considerable
progress was made to solve the problems of building
microcirculatory networks for comprehensive 3-D con-
structs. Kunz-Schughart et al. developed a 3-D cell culture
system with co-cultivation of human skin fibroblasts and
endothelial cells of the umbilical cord. They found a sup-
port of migration, vitality and development of tubular
structures of the endothelial cells by fibroblasts. Based
on suchmodels knowledge about the integration of capil-
lary structures in engineered tissues can be gained [164].
Au et al. suggested as approach for the vascularisation
of tissue engineered scaffolds the co-cultivation of con-
structs with blood vessel cells like endothelial and perivas-
cular cells. The authors demonstrated that the co-implan-
tation of the scaffolds with site-specific cells and with
endothelial and perivascular cells led to the development
of vascular structures in vivo connecting the scaffolds
and recipient’s circulation. The stability and adequate
functionality of these vascular structures remained now
for more than 1 year. Based on these results the authors
assumed that this technique of co-implantation is a
promising approach for the vascularisation of tissue en-
gineered constructs [165].
On the other side there are still numerous unsolved
problems like the connection of scaffolds to the recipi-
ent’s vascularisation, the maintenance or increase of
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vascular density with an increase of tissue or organmass
or activity, the maturation of functionally inadequate
vessels as well as the unwanted regression of vascular
structures. One of the answers to these problems might
be gained in future through a comprehensive knowledge
about the regulation of the heterogeneous endothelial
cells in different organs. Furthermore, an extensive
knowledge about the mechanisms of the molecular pro-
cesses of cellular interactions between endothelial cells,
pericytes and smooth muscle cells and between blood
vessels and parenchymal cells are needed. Beyond that,
the mechanical characteristics of blood vessels like per-
meability, elasticity and compressibility have to be ana-
lysed and the design non-thrombogenic surfaces of im-
plant materials have to be devised. A review about the
current knowledge of microcirculation engineering as a
basic requirement for a successful Tissue Engineering of
parenchymal organs is given by Lokmic et al. [166].

5 Application of stem cells in
Regenerative Medicine
Stem cells have the capacity for self-renewal and capabil-
ity of differentiation to various cell lineages. Thus, they
represent an important building block for Regenerative
Medicine and Tisue Engineering. These cells can be
broadly classified into embryonic stem cells and non-
embryonic or adult stem cells. Embryonic stem cells are
called pluripotent and can differentiate in all cell types
of the 3 embryonic germ layers. On the other hand, the
adult stem cells are multipotent and the differentiation
of these cells is terminated to only 1 of the germ layers.
Embryonic stem cells have a great potential but their use
is limited by several ethical and scientific considerations
which were the basis for the German law. Limited factors
for the use of embryonic and adult stem cells next to
ethical considerations [167], [168] are problems associ-
ated with extensive in vitro cell expansion [169], problems
with in vitro cultivation on implant materials [170], [171],
cell apoptosis following implantation [172], as well as
vascularisation [173] and fincancial problems of stem
cell technology [174].
Stem cells were already studied by Becker et al. 1963
who injected bone marrow cells into irradiated mice and
noticed that nodules developed in the spleens of themice
in proportion to the number of bonemarrow cells injected
[175]. They concluded that each nodule arose from a
single marrow cell. Later on, they found evidence that
these cells were capable of infinite self-renewal, one of
the central characteristics of stem cells.
Stem cells have been used successfully in experimental
and clinical studies for bone, cartilage, spinal cord, cardi-
ac and bladder regeneration. A current review about the
application of stem cells in the field of Regenerative
Medicine is given by Bajada et al. [12].
2001 Vacanti et al. reported the successful Tissue Engi-
neering of the distal phalanx and the replacement of this
bone in a 36 year old patient who suffered partial avulsion

of the thumb [176]. However, only 25% of the normal
strength were obtained. Quarto et al. reported on the use
of autologous culture-expanded bone marrow stromal
cells (BMSCs) combined with porous hydroxyapatite for
the reconstruction of critical sized defects (bone sege-
mental defects 4–7 cm long) of tibia, ulna and humerus.
The results were encouraging, with good graft integration
and return to functionality [177]. Hibi et al. published in
2006 the use of Tissue Engineering to augment bone
formation in humans in combination with vertical distrac-
tion osteogenesis (DO) by an osteocutaneous fibulartrans-
plant for the reconstruction of the mandible after irradi-
ation. DO is a method for elongation of the bone which
is used among others in the surgical reconstruction of
facial skull to bridge bony defects of different genesis.
To promote 3-D bone formation and shorten the consol-
idation period, the authors applied tissue-engineered
osteogenic material (“injectable bone”) in a patient who
was treated with vertical DO and an osteocutaneous fib-
ular flap to reconstruct themandible. Thematerial, which
comprised autologous mesenchymal stem cells was cul-
ture-expanded and then induced to be osteogenic in
character. Platelet-rich plasma (PRP) was activated with
thrombin and calcium chloride and infiltrated into the
distracted tissue at the end of distraction and injected
into a space created labially with a titanium mesh at im-
plant placement. The reconstructedmandiblewas expand-
ed from 10 mm to 25 mm in height despite a lacerated
and opened labial periosteum in the distracted area. The
authors assumed that DO assisted by Tissue Engineering
could be the therapy of choice in future for the surgical
reonstruction of bony defects [178]. Furthermore, the
authors used this technique of tissue engineered osteo-
genicmaterial („injectable bone“) successfully as well for
the osteoplastic reconstruction in cleft palate in a 9 year
old girl [179].
While stem cells are successfully in clinical use for the
regeneration of articular cartilage since several years
[180], the complete reconstruction of the auricle by Tis-
sue Engineering is still a great challenge in head and neck
surgery. The reasons are complex and especially related
to the unsolved problems of scaffold design and of the
differentiation induction of stem cells to produce elastic
ear cartilage [181]. There are numerous other less attend-
ed fields of research in head and neck surgery needing
stem cell technology, e.g. the mucosal reconstruction in
the upper ADT. A first approach is the development of
ciliated epithelium by co-cultivation of stem cells with
site-specific cells [182].
While these technologies are already in use for the recon-
struction of themucosa of the urinary tract [183] and the
cornea [184] and for teeth regeneration [185], the devel-
opment of mucosal reconstruction in head and neck
surgery except for the salivary gland tissue [186], [187],
[188] is still at the relative beginning.
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6 Conclusion
The quality of an implant material is exclusively shown in
a successful clinical use. The profil of demands is there-
fore determined by the conditions in vivo. The chemical,
enzymatical, bacterial and mechanical conditions of the
upper ADT make high demands on an implant material
for themucosal reconstruction in this area. In reconstruc-
tive surgery of the trachea, none of the different implant
materials investigated by versatilemethodical approaches
was successfully introduced in the clinical use. For the
reonstruction of pharyngeal defects based on the prin-
ciples of Regenerative Medicine until now there exist
neither animal models nor a clinical application in hu-
mans. Based on the progress in polymer chemistry multi-
functional implantmaterials are available nowadayswhich
can selectively initiate biological processes in a
physiological environment and/or change their physico-
chemical characteristics in reaction to external stimuli.
The availability of such multifunctional implant materials
and the progress in Tissue Engineering resulted in the
establishment of novel therapeutical options in different
medical fields. Applying stem cell technology further pro-
gress is expected for the reconstruction of different tis-
sues based on the principles of Tissue Engineering. To
benefit from the potential of such technologies for the
development and the establishment of novel therapeutical
options in head and neck surgery, clinicians have to be
involved in these interdisciplinary scientific projects of
Regenerative Medicine.
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