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The development and progression of cancer, a collection of diseases with complex

genetic architectures, is facilitated by the interplay of multiple etiological factors.

This complexity challenges the traditional single-platform study design and calls for

an integrated approach to data analysis. However, integration of heterogeneous

measurements of biological variation is a non-trivial exercise due to the diversity of

the human genome and the variety of output data formats and genome coverage

obtained from the commonly used molecular platforms. This review article will provide

an introduction to integration strategies used for analyzing genetic risk factors for cancer.

We critically examine the ability of these strategies to handle the complexity of the

human genome and also accommodate information about the biological and functional

interactions between the elements that have been measured—making the assessment

of disease risk against a composite genomic factor possible. The focus of this review

is to provide an overview and introduction to the main strategies and to discuss where

there is a need for further development.

Keywords: integrated analysis, array data, massive parallel sequencing (MPS), DNA methylation, gene expression

INTRODUCTION

Aberrant function of proteins and changes in gene expression are central elements of disease onset
and progression. A key focus of genetic research is to identify the molecular aberration(s) that
“cause” and promote disease development. However, the size and complexity of the human genome,
combined with the epigenome, renders the identification and interpretation of genetic findings very
difficult, time consuming, and computationally intense.

Many types of variations, both genetic and epigenetic, have been identified that can disrupt gene
function. Key examples of variations that can impact gene function include, gene copy number
(CN), DNA methylation, single nucleotide variations (SNV), and indels (small insertions and
deletions). When located in the coding region of genes CNs, SNVs and indels can alter the function
of the gene product and when located in untranslated regions (UTRs) these variations can interfere
with gene expression by inhibiting transcription. Non-coding RNAs exhibit a regulatory function
on target genes causing alternations in transcribed RNAs and thereby indirectly influence gene
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expression. As molecular methods becomemore sophisticated an
increasing number and variety of molecular variants are being
described and associated with disease susceptibility (Patch et al.,
2015).

Recent technological developments have enabled the creation
of genome-wide data for multiple types of variations. Each
dataset generally provides information about one type of
variation, and singular analyses of these datasets have led to our
understanding of a long list of single gene disorders. However,
with increasing knowledge of the genome and of complex
disorders, it is becoming clear that isolated analyses of the
different types of variations may only provide a linear view of
a multidimensional landscape. Therefore, integrated analysis is
necessary to reach in-depth understanding of common disorders
and measure the possible interactions of risk factors identified in
the linear, yet often genome-wide, analyses.

The number of studies in which integration has been
successfully applied, as well as the number of tools developed
to facilitate the integration is rapidly increasing. The goal of this
review is to provide an overview of:

1. The main integration strategies for identification of genetic
variation functionally relevant to cancer susceptibility and
progression, together with an evaluation of the strategies
biological and statistical limitations.

2. The main applications of the integration strategies in cancer
research addressing somatic and heritable genetic variations.

Data integration can be divided into two main categories (a)
integrated analysis of data with information on one type of
variation, such as the integration of expression data generated in
different studies (single-platform integration), and (b) integrated
analysis of data with information on different types of variation
such as integrated analysis of expression and methylation
data (cross-platform integration). A similar distinction was
introduced previously by Hamid et al. (2009).

Combining similar data sets generated in different
laboratories, at different times or on different versions of
a platform, is common and referred to as meta-studies
(combining data by using the summary statistics) or mega-
studies (combining raw data). The advantages of meta-studies
have led to the development of a number of statistical models
(Hong and Breitling, 2008; Natarajan et al., 2012; Evangelou
and Ioannidis, 2013).This review will address cross-platform
integration [category (b) above] due to the potential these
approaches have to significantly improve our understanding of
complex diseases such as cancer.

CANCER AND DATA INTEGRATION

In the context of cancer research, it is important to distinguish
between the issues related to the analysis of tumor-derived and
non-tumor-derived (e.g., blood-derived) data. Tumor genomes
are usually highly altered comprising both driver mutations and
passenger mutations caused by an increased genomic instability.
As a consequence, the aim of studies working with the integration
of tumor-derived data differs from the aim of studies focusing
on heritable risk factors. Studies of data from tumors often aim

to identify driver mutations among the long lists of somatic
mutations, whereas studies focusing on inheritance of cancer
risk aim to identify one or a few disease associated mutation in
cancer susceptibility genes. Examples of strategies and tools for
integrated analysis of heritable cancer-causing variations are few.
However, examples of data integration exist for the analysis of
heritable risk factors for other complex disorders such as asthma
and as these methods could inspire development of methods for
cancer we will in the discussion of heritable risk factors include
methods used in the context of other diseases.

The complex genetic architecture associated with common
disorders such as cancer complicate the identification of disease-
associated genetic variations. A high level of allelic and locus
heterogeneity are some of the factors associated with complex
disorders (McClellan et al., 2007). This heterogeneity can cause
diseases with similar clinical features to be associated with
different genetic and epigenetic variations across cases. Multiple
etiological disease-associated factors may be, (1) co-located
resulting in an additive or inter-dependent effect or (2) found at
specific loci and cause a high level of allelic heterogeneity across
affected individuals. The success of cross-platform integration
studies for identification of genetic locations involved in cancer
susceptibility is therefore highly dependent on the ability of
the statistical method to identify rare, perhaps case specific
variations.

Ideally, the analysis method should be sensitive to an additive
or multiplicative influence from low effect events and at the same
time be capable of identifying variants of very low frequency
associated with high risk. For the analysis to be successful the
data must be specific for each individual in the sample set,
which means that each type of variation can be identified, if
present, for each individual. This presents a statistical challenge
in situations where the aim is to identify a difference in a
continuous variable/measurement between cases and controls
(such as for DNA methylation or gene expression).

For gene expression data, commonly collected in studies of
tumor genomes, this challenge is often met by calculating a mean
level across controls if such are available, and then identify the
extent to which the gene expression level in each case deviates
from the mean. If no control data is available, a mean expression
level or gene expression distribution can be calculated across
all cases to which the individual case can be compared. The
hypothesis supporting this approach is that each gene/transcript
is expected to only “cause” cancer in a subset of the cases in the
sample set. Many different approaches can be used depending on
the research question being addressed. For example, Gevaert et al.
(2013) used disease-specific genomic analysis (DSGA) (Nicolau
et al., 2007) to model disease-specific gene expression for the
AMARETTO (Gevaert et al., 2013) tool, andMethylMix has been
developed to identify genes that are significantly differentially
methylated in a subset of cases in the dataset when compared to
normal tissue (Gevaert, 2015). Further aspects of these tools are
discussed below.

Basic principles of cancer tumorigenic models may be
implemented in the identification of driver genes. Classically,
cancer driver genes are divided into tumor suppressor genes
(TSG) and oncogenes. Tumor suppressor genes are required to
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prevent uncontrolled cell growth and according to the classical
two hit hypothesis (Knudson, 1971) both copies of a TSG needs
to be inactivated for a cancer to develop. In hereditary cancer an
inherited mutation in a tumor suppressor gene is often followed
by loss of the wildtype allele via somatic mutation. Both first and
second hit mutations are expected to be inactivating mutations
(Vogelstein and Kinzler, 1992). Contradictorily, an oncogene is
the activated form of a proto-oncogene that typically code for
genes involved in growth factor signaling pathways (Huebner and
Todaro, 1969). The mutations activate oncogenes, i.e., mutations
in active sites, regulatory regions or via gene amplification. A
classical example is the fusion of the BCR gene on chromosome
22, regulated by a constitutive promotor, with the ABL kinase
gene involved in intracellular secondarymessage of growth factor
signaling on chromosome 9, causal for chronic myelogenous
leukemia (Heisterkamp et al., 1985). These principles are to some
extend implemented in the strategies discussed in the following
sections.

To summarize, research into the genetic landscape of cancer
distinguish between tumor genomes and non-tumor genomes.
Both settings are characterized by a high level of genetic
complexity including different types of variations that can be
rare or common with high or low effects. The mechanism by
which the genetic variations contribute to disease development
and progression differs between the two settings and current
strategies show how knowledge of the different mechanisms can
support development of tools for the identification of relevant
variations.

IDENTIFICATION OF DRIVER GENES IN
TUMOR-DERIVED DATA SETS

A large fraction of today’s cross-platform integration projects
analyze tumor genomes with the aim of identifying driver
genes. Some general strategies can be observed in these studies,
depending on the type of tissue and measurements that are
available and the level of genetic complexity that the study aims to
consider. In the simplest situation, studies evaluate the presence
of different types of variations at the same genetic location, e.g.,
when a copy number deletion in gene A is found to be associated
with a down-regulation of gene A expression.

As an in-sequence variation must have a functional effect
in order to lead to disease, many studies integrate in-sequence
data with gene expression data, arguing that if an in-sequence
variation leads to a change in expression of a co-located
or distant gene, the variation is more likely to be disease
relevant. TSGs are expected to have a decreased function, while
oncogenes are expected to have an increased function. Addou-
Klouche et al. used this theory to identify TSGs by identifying
genes harboring CNVs and showing that these tumors have a
decreased expression level of the gene as compared to tumors
not containing the CNV (Addou-Klouche et al., 2010). The
difference in expression levels between the two groups is tested
with a student t-test. A similar approach can be used for the
identification of oncogenes by identifying CNVs associated with
increases in gene expression.

Another integration strategy based on co-location of
variations for identification of drivers is the identification of
overlapping hits between the two or more datasets. First, each
variation type is analyzed separately to identify a ranked list of
affected genes. The data-specific analysis and filtering performed
to obtain these lists can vary greatly, which is a strength in
the aspect that most types of data can be used, but when
pre-integration analysis and filtering is not supported by the
larger amount of information available in the additional datasets
possible integration-dependent discoveries can be lost. In these
instances data is integrated by the identification of genes present
on both the lists, and results are often illustrated using Venn
diagrams. For example, Hassan et al. uses a list intersection-based
strategy to identify genes showing both differential expression
and CNV between colorectal cancer samples and non-cancerous
tissue (Ali Hassan et al., 2014).

An increasing number of studies include both CNV and
mutations (SNPs and indels) in integration studies. The
motivation here is the anticipation that multiple types of genetic
variation can either be the cause of, or contribute to, the same
phenotype. If a given gene or pathway is altered at a high
frequency across modalities, but at a low frequency for any one
modality, it is likely that the gene/pathway would be overlooked
in single-variation analysis. In this setting, the number of cases
whose causative variation is included in the analysis increases
when multiple modalities are considered.

Leary et al. integrated CNV and mutation data for breast and
colorectal cancers by a co-location approach. Datasets were pre-
analyzed to obtain a list of variant-containing genes for each
data type (Leary et al., 2008). They then distinguished between
drivers and passengers by utilizing the theory that drivers will
be affected by in-sequence variation at a higher frequency than
passenger genes. For each type of variation they calculated the
probability that a gene was a driver gene by comparing observed
mutation frequencies with mutation frequencies expected for
passenger mutations. This probability was calculated for each
gene for each type of variation and integrated, thereby identifying
possible driver genes and pathways.

Ding et al. (2008) also utilizes the assumption that drivers
contain variation at a higher frequency than expected by chance
(Wood et al., 2007) for analysis of data derived from lung
adenocarcinomas. Here, different types of variations were not
integrated for the identification of possible drivers but the study
provides a thorough discussion about the consequences of using
different approaches to calculate driver probabilities. Following
identification of possible driver mutations, the mutations were
further evaluated by analyzing their co-location with CNVs and
their correlation (Pearson) with CNV and gene expression, again
basing the integration on co-location.

DNA methylation is known to affect gene expression and
has been associated with tumor development. It is therefore
relevant to include DNA methylation in studies aiming to
identify the full set of driver genes in tumor-derived datasets.
Wrzeszczynski et al. analyzed CNV, gene expression and DNA
methylation data derived from ovarian tumors (Wrzeszczynski
et al., 2011). One of their many analyses aimed to identify
TSG and oncogenes affected by all three types of variations.
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For genes affected by CNV they calculate DNA methylation
and gene expression levels and identified TSGs as genes with
CN deletion, increased methylation and decreased expression.
Oncogenes were identified as amplified genes with decreased
DNAmethylation and increased expression. They further defined
a possible regulatory feature exercised by DNA methylation
to regulate gene expression of drivers affected by CNVs and
identified genes for which CN amplification appears to be
overruled by increased methylation resulting in decreased gene
expression. They provide a good example of how the many
regulatory possibilities complicate the integrated analysis and
how the analysis would be further complicated by including
regulatory features that can differ between individual tumor
samples.

Chari et al. has argued that the power to detect disrupted
genes and pathways increase when multiple types of variations
are analyzed (Chari et al., 2010). Showing how integrated analysis
of structural variation and DNA methylation changes in tumor
samples allowed for detection of nearly five times as many
disrupted genes in more than 50% of samples as compared to
analysis of each variation type separately. Their results illustrate
the greater sensitivity of an integrated approach thereby allowing
for detection of disrupted genes that would be missed by single-
platform analysis because the frequency or effect of each type of
disruption is too low to be detected. This example also highlights
the pressing need for proper approaches to correct for multiple
testing and FDR when performing integration studies.

Strategies discussed so far in this section are built on co-
location of variations for integration and identification of drivers.
An overview of strategies can be found in Table 1. When a
number of potential drivers are identified, the next step for many
studies is to evaluate a potential connection between the genes
in the form of shared pathways or networks (Ding et al., 2008;
Wrzeszczynski et al., 2011). For evaluation of possible higher-
level interaction different enrichment approaches are popular
and easy-to-use online tools are becoming increasingly available.

Alternatively, strategies can aim to directly implement the
interaction between genetic locations in the identification of
drivers. An example scenario is that a mutation in location A co-
occurs with a change in expression of gene B located at a distant
genomic location. Such studies can implement prior knowledge
of the interaction between genetic locations or can aim to identify
novel interactions. The interactions considered can be the one-
to-one as with gene A regulating gene B or at the higher pattern
level of pathways or networks.

Masica et al. have developed a multistep workflow to identify
genes with a mutation status that associates with the expression
of genes that are not necessarily co-located (Masica and Karchin,
2011). The mutation data is pre-analyzed to the gene level
resulting in a binary table of samples vs. genes with cells
specifying if the gene is mutated in the sample or not. The
expression data is similarly analyzed to the gene level and a
table with relative expression of each gene for each sample
is produced. Pairs of mutation-expression correlated genes are
identified through a number of steps repeated for each gene
in the mutation table. The process includes a 2-class, unpaired
Significance Analysis of Microarrays (SAM) (Tusher et al., 2001)

which uses a t-test to measure significance of expression between
groups defined by the “response variable”—in this study the
mutation status. Then genes from the expression table identified
in the SAM step are converted to two binary matrices, one for
overexpression and one for underexpression. Fisher’s exact P
value is calculated for a 2 × 2 contingency table (containing the
binary expression and mutation data) to further filter the list of
genes. The process is well explained and easy to follow including
a number of corrections for multiple testing and false discovery
rates. However, no code or tool is published to facilitate easy
implementation of the strategy. The simple form of the mutation
table does allow for easy extension to use the strategy on more
types of variations e.g., CNV data.

Bashashati et al. have presented the R package DriverNet,
developed for analyzing mutation, CNV and expression data
(Bashashati et al., 2012). The aim of the tool is to identify
functionally important drivers, where functional importance
is seen as the number of connections a gene has to genes
with outlying expression. The connections are based on prior
knowledge of gene pathways obtained from Reactome (http://
www.reactome.org/). An influence graph based on the network
information is used to connect the variation types and a greedy
algorithm finds the lowest number of genes connected to the
most genes with outlying expression. Outlying expression of a
gene in a sample is defined as the extremes of the expression
distribution for the gene across all samples. Data on all variations
considered to possibly affect expression levels is simplified to
a binary matrix with samples as columns and genes as rows
and with cells containing 1 if the gene contains variation
in the patient or 0 if no variation is found. This requires
a high level of preprocessing and does not consider possible
interactions between the variations themselves or any additive
effects. However, it is easy to include additional variation types
in the analysis such as DNA mutation data.

DriverNet belongs to a group of tools built on the
assumption that driver genes affect the expression of gene
modules to a higher extend than single genes, and thereby
on the underlying assumption that driver genes affect gene
expression. The tools deviate in the types of expression-
affecting variations they analyze and in their analytical approach.
The strategy often depends on the assumptions of driver
properties. CONEXIC assumes, in addition to the already
stated assumptions, that driver mutations occur in multiple
tumors more often than can be expected by chance (Akavia
et al., 2010). It scores genes located in CNV regions in a
significant number of samples based on how well they explain
expression patterns of gene modules across tumors. Input data
is gene expression levels and discrete CN values (normal,
amplified, or deleted) for genes. The software is available online
(www.c2b2.columbia.edu/danapeerlab/html/software.html).

AMARETTO developed by Gevaert et al. goes through two
steps to identify drivers and their potential targets (Gevaert et al.,
2013). The strategy implements CNV,DNAmethylation and gene
expression data. As it requires disease associated gene expression
and DNA methylation it is necessary to have data from tumor
and normal tissue. The first step uses a linear model for the
effect of methylation and CNV on disease specific expression

Frontiers in Genetics | www.frontiersin.org 4 February 2016 | Volume 7 | Article 2

http://www.reactome.org/
http://www.reactome.org/
http://www.c2b2.columbia.edu/danapeerlab/html/software.html
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Thingholm et al. Integrated Analysis of Genetic Data

TABLE 1 | Overview of integration strategies based on co-location of variations.

Integration strategies based on co-location of variations

In-sequence variation Supporting data Integration strategies Example study and tool

if available

CNV Gene expression Identification of CNV affected genes, followed

by identification of a functional effect in the

form of a change in gene expression of the

co-located gene.

Select genes by:

• Difference in mean expression

between variant containing and

not-containing tumors.

(Addou-Klouche et al.,

2010) CMDD for

identification of candidate

genes (Ping et al., 2015)

• Intersecting gene lists (Venn

diagram).

Kikuchi et al., 2013; Ali

Hassan et al., 2014

• Correlation analysis of CNV

and expression values.

DNA methylation and

gene expression

Specification of modality-patterns expected for TSG and oncogenes. Integration on

the basis of co-location and identification of genes showing specified pattern.

Wrzeszczynski et al., 2011

Using a linear model for the effect of methylation and CNV on disease specific

expression to identify potential drivers.

AMMERETTO 1. step

(Gevaert et al., 2013)

Mutation Gene expression and

CNV

Identify a functional effect in the form of correlation with gene expression or CN of

co-located gene.

Ding et al., 2008

CNV and mutation Integration of variation types by co-location and selecting of drivers by theory of

frequency.

Leary et al., 2008

to identify potential drivers. Step two identifies target genes for
the identified drivers by first identifying clusters of co-expressed
genes and then applying a linear regression with elastic net
regularization to select the drivers best regulating the expression
module.

CaMoDi is a recent example of using the expression module
approach to identify cancer drivers from expression data and
potential regulators selected based on biological criteria from a
database (Manolakos et al., 2014). As such, it is not an integration
tool, however if potential regulator genes are selected from an
available dataset, e.g., as all potentially damaging mutations in
a massive parallel sequencing (MPS) dataset, the tool can be
compared to AMARETTO and CONNEXIN as an integration
tool.

The “expression module” approaches reviewed so far, have
all identified modules directly from the available datasets.
OncoImpact is an example where prior knowledge of interactions
between genes (networks) is used (Bertrand et al., 2015). The
tool also differs from the above approaches by aiming to identify
tumor-specific drivers. An overview of strategies for integration
based on “expression modules” or interactions between non
co-located variations is found in Table 2.

The above “expression module” based strategies aim to
identify individual drivers. An alternative approach can be to
identify sets of genes that show driver potential. Zhang et al.
(2013) presented an approach that searches for “mutated core
modules in cancer” as being gene sets contributing to cancer
formation. The approach uses no prior knowledge of gene
networks but constructs two weighted networks directly on the
basis of the data. CNV and mutation data is combined to
generate the first network and gene expression data is used to
generate the second network. The two networks are combined

to identify the most coherent sub-networks. From these, core
modules are identified through further filtering including an
exclusivity test based on an assumption that driver genes
are not expected to co-occur in samples. The method takes
into account a number of biological considerations regarding
expected behavior of driver genes facilitating biologically relevant
filtering. The method utilizes MPS data at the gene level with
binary information (gene A in a DNA sample contains an in-
sequence variation or no such variation). To obtain this format
a high level of filtering and selection goes before the integration,
as is most often seen when MPS data is included in integration
studies.

Ping et al. have presented an alternative approach (CMDD)
for the identification of “driver modules” and their target genes
(Ping et al., 2015). This approach includes prior knowledge of
gene interactions for clustering of candidate drivers and uses a
linear regression model for selection of variations that affect gene
expression levels.

In addition to the identification of driver genes, many cross-
platform integration projects analyzing tumor-derived data aim
to confirm cancer subtypes, and to more completely characterize
the molecular architecture of each subtype (Nigro et al., 2005;
Sun et al., 2011; Cancer Genome Atlas, 2012; Rakosy et al.,
2013; Rhee et al., 2013). Integration with the goal of identifying
subtypes is not the focus of this review, however an approach
to stratify tumors by variation profiles in order to decrease the
heterogeneity of the sample set, and in turn improve the ability
to identify disease relevant variations is of indirect relevance to
this discussion.

Tools for tumor stratification are not included in the review,
but the improved stratification achievable through integration
is highlighted by the following example. iCluster (Shen et al.,
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TABLE 2 | Overview of strategies for integration based on expression modules or interactions of non-co-located variations.

Integration strategies based on “expression modules” or interactions of non-co-located variations

In-sequence variation Supporting data Integration strategies Example study and tool if available

CNV Gene expression Identification of drivers as genes regulating expression modules. CONEXIC (Akavia et al., 2010)

Gene expression and

DNA methylation

Step 1: identification of drivers as genes with significant relationship

between genomic/epigenomic event and expression.

AMARETTO (Gevaert et al., 2013)

Step 2: Identification of target modules for drivers.

Mutation Gene expression Identification of genes with mutation status correlating with expression

of other genes. Describes a workflow incl. SAM that compares all

possible pairs of genes with data available.

Masica and Karchin, 2011

Identification of drivers as genes regulating expression modules. Note

that potential drivers are selected from a database and not included

datasets.

CaMoDi (Manolakos et al., 2014)

CNV and mutation Gene expression Identification of drivers as genes regulating expression modules. DriverNet (Bashashati et al., 2012)

OncoImpact (Bertrand et al., 2015)

2009) was used to perform integrated analysis of molecular
subtypes in Glioblastoma (Shen et al., 2012). This software
tool allows for integrated analysis of multiple datasets from
potentially different platforms and is clearly more efficient than
manual comparison of clusters obtained from different analyses
since much information is lost when performing cluster-analysis
followed bymanual data integration. Shen et al. (2012) integrated
all array data from genome-wide DNA copy number, DNA
methylation and gene expression data from “The Cancer Genome
Atlas” (http://cancergenome.nih.gov) and successfully obtained
new information on tumor subtypes which was not possible using
any single analysis approach.

The section on integration strategies for identification of
drivers in tumor-derived data highlights how strategies differ
by the level of genetic complexity they aim to consider. As a
result, most strategies can be roughly separated into two groups,
(1) strategies that evaluate different types of variations at the
same genetic location, and (2) strategies that implement the
interaction between genetic locations. Strategies in the second
group can implement prior knowledge of the interactions or can
aim to identify novel interactions. The strategies can further be
distinguished by whether they aim to identify individual drivers
or “driver modules” as sets of genes that show driver potential.

Many integration strategies implement theory of the biological
function of driver genes, e.g., to distinguish between drivers and
passengers. TSGs are expected to have a decreased function,
while oncogenes are expected to have an increased function.
This theory is often used for the integration of expression data
as a measure of function and to facilitates the integration of
methylation data by using the theory of its effect on gene
expression.

A common challenge formany strategies is to balance usability
and the level to which they can consider complex and detailed
genetic function e.g., by including more information from the
different platforms. Often complex information obtained from
e.g., MPS platforms is reduced to a simple format. To obtain
this format a high level of filtering and analysis goes before the

integration, highlighting both a need to thoroughly consider the
quality of the data included in the integration and a limitation of
current integration strategies.

IDENTIFICATION OF CANCER RISK LOCI

Genetic risk factors for complex disorders have long been
analyzed in GWAS, and it is therefore not surprising that most
integration strategies for complex disorders are built on ideas
from GWAS or directly including “hits” from GWAS studies.
Few integration studies exist for the identification of genetic risk
factors for cancer. Therefore, we will discuss some published
integration strategies for the identification of heritable genetic
risk factors of complex diseases, which could play an important
role in cancer research.

As for integrative studies of tumor tissue, gene expression
data plays a significant role in integration studies for heritability.
A description of how networks and expression data together
with genetic data or GWAS findings can be used for the
identification of genes/mutations associated with risk are
reviewed by Bjorkegren et al. in relation to coronary artery
disease (Bjorkegren et al., 2015). In similar approaches to those
applied to tumor studies, gene expression data is used to
infer co-expression networks. For networks showing correlation
with phenotypic characteristics, possible regulatory genes are
identified using Bayesian network algorithms. Alternatively, or
complementarily, risk genotypes from GWAS are obtained and
the networks are analyzed for enrichment of risk factors.

Gene Set Association Analysis (GSAA) is an integration tool
developed by Xiong et al., for the identification of gene sets
associated with disease (Xiong et al., 2012). In this setting, gene
expression and SNV data are integrated to identify gene sets,
defined by prior knowledge, enriched for disease associated gene
expression and SNVs. GSAA calculates a disease association score
per gene for each dataset and combines the two scores per gene.
The scores are used to rank the resulting gene list, which is
used to identify disease associated gene sets. The tool has been
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evaluated on both cancer and Crohn’s disease-related gene sets
from the Molecular Signatures Database (MSigDB). The tool is
freely available with a version for gene expression array and one
for RNAseq gene expression data.

Gene expression data can be seen as the functional link
between SNVs and the disease they are associated with, as
utilized by Huang et al. in the tool iGWAS (Huang et al., 2015).
The tool incorporates knowledge from family-based association
study designs and was applied to analyze genetic risk factors
for asthma. iGWAS aims to specify the mechanism through
which a mutation “causes” disease—such as through regulation
of gene expression or alternative biological or environmental
mechanism. Filtering of GWAS hits can be supported by
information of the SNP’s roles as eQTLs as this support a
functional effect. However, with iGWAS a joint analysis of the
two datasets is proposed, where SNPs and regulated genes are
connected using knowledge of eQTLs and their targets. The tool
therefore requires some level of prior knowledge.

A similar strategy has been published by Huang et al. for
analyzing the total effect of SNP and gene expression on disease
risk (Huang et al., 2014). This strategy can be used to analyze
population based case control datasets, however is not developed
to split the effect according to mechanism.

Hunang et al., have further proposed a model for integrated
analysis of mQTL, eQTL, and GWAS to evaluate the combined
effect of DNA methylation, gene expression and SNPs on
disease risk (Huang, 2014). Both the effect of SNPs and DNA
methylation on expression and the effect of SNPs on methylation
is “integrated out” to further identify the effect directly assignable
to the SNPs. The model is evaluated on risk for childhood
asthma where 25 genes are identified compared to 5 for SNP-only
analysis.

As with tumor-derived data, gene expression data is the
dominating measure for functionality in risk integration studies.
Of in-sequence variations, SNP array data for the analysis of
SNV-sets appear to be commonly applied, leaving a gap for
MPS based mutation analysis and CNV analysis. One reviewed
strategy includes DNA methylation data in the integration,
however other tools such as GSAA could be further developed
to include this variation type. With the inclusion of gene
expression and DNA methylation data in association studies it
is important to consider that the variations are tissue specific and
one must therefore be careful in interpreting their relationship
to disease risk when data is not available for the affected
tissue.

IMPORTANCE OF DATA SOURCE AND
FORMAT IN DATA INTEGRATION

As mentioned above, the field of data integration in genome-
wide cancer research has seen a shift from being dominated by
array data (Yang et al., 2011; Neumann et al., 2012; Rakosy et al.,
2013) to more often including data from MPS platforms. This
development reflects both the history of platform development
and financial considerations. As MPS platforms are becoming
increasingly available and competitive in price to the array

platform, MPS is more often the source of data including
measurements of CNV and DNA methylation variation.

The bioinformatics process of obtaining information on
CNVs and DNAmethylation levels is different for each platform,
however we will not touch further on this subject. As the format
of data obtained from the two platforms most often is compatible
when information on DNA methylation and gene expression is
reached, most integration tools analyzing these variation types
has no platform requirement. That is, the user must format the
data to meet the requirement of the selected tool.

Raw gene expression and DNA methylation data can be
analyzed to obtain information regarding the magnitude of an
increase or decrease in gene expression or DNA methylation
between cases and controls. The resulting list of variables is
intuitively easier to shortlist, e.g., by selecting the highest absolute
values, as compared to non-continuous variables such as SNPs
and indels. It is therefore not the source but the type of variation
that presents a challenge for the integration tools in these
instances.

Information of direction andmagnitude can be integrated and
patterns identified e.g., for the stratification of tumor subtypes
(Yang et al., 2011; Figueroa et al., 2013; Rhee et al., 2013). This
integration can be applied to the full lists of identified variation
limiting the requirement for pre-integration filtering. Therefore a
number of methods and software programs have been developed
for integrated analysis of variation types with information on
direction and magnitude of differences. SIGMA2 (Chari et al.,
2008) and InCroMAP (Wrzodek et al., 2013) are two of the
newer tools. Both tools integrate data from different platforms
by coordinates.

SIGMA2 is a tool for integrated analysis of cancer genomes
(DNA copy number and allelic imbalance), epigenomes (DNA
methylation and histone modification), and transcriptomes
(mRNA and miRNA expression). Data from multiple platforms
can be imported and analyzed, and the integrated data can
be visualized simultaneously. SIGMA2 allows for identification
of genetic locations affected by different types of variations,
identification of genes whose expression is regulated by variations
at the DNA level, and a number of additional integration-
dependent analyses (Chari et al., 2008). The tool requires separate
initial analysis of the different types of data. However, it allows
for integrated analysis of the full datasets, thereby facilitating
effective integration of large amounts of data without the risk of
pre-integration loss of low effect variations.

Information on SNPs and indels (mutations) from MPS
platforms is increasingly available, calling for the development
of integration models suitable for these variations. However,
dissimilar data formats and data types (continuous vs. discrete),
together with dissimilar biological interpretation, render any
integration of different types of variations non-trivial. A study by
Mo et al. further developed the iCluser tool to iCluster+ to allow
inclusion of discrete variables from sequencing data (Mo et al.,
2013).

As seen in the above integration strategies, most studies
implementing mutation data pre-analyze and filter the data to
gene level to identify if a gene contains a mutation in a given
sample or not. A high level of preprocessing is necessary when
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working with MPS data to reach this format together with more
or less arbitrary cutoffs, which are applied to remove low quality
calls and variations predicted to have low effect. This can have a
big effect on the results of the integration as discussed below.

STRENGTH AND WEAKNESSES OF
STRATEGIES FOR DATA INTEGRATION

List Intersection Tests as a Model for Data
Integration
List intersection tests or versions hereof have been used for
a number of integration projects analyzing data from tumor
samples (Sadikovic et al., 2008, 2009; Ali Hassan et al., 2014).
In short, the test analyses each dataset separately to obtain a
list of genes containing the given variation. The intersection
between the lists is then identified, containing genes affected by
more than one type of variation. This approach limits the issues
arising from cross-platform integration, because pre-processing,
variation calling, and filtering is performed separately for each
dataset. The lists of genes resulting from dataset-specific analysis
are the subjects for further integration.

Directly intersecting lists of genes from genome-wide datasets
will, in most instances, identify a high number of genes disrupted
by more than one type of variation, however, the extent to which
the genes are disrupted will vary greatly. For example, in the
case of DNA methylation data, both differential methylation of
a single CpG and clustering of highly differently methylated sites
can disrupt the function of a gene (Weber et al., 2007; Bock, 2012;
Jones, 2012). Integration projects that compare gene lists between
studies using list-intersection models often address this issue
by shortlisting genes according to a hypothesis of interest (e.g.,
predicted damaging effect of variations, extent of association
and/or similarity to known phenotype-related genes). Following
shortlisting, the new lists are compared and genes appearing in
multiple lists are identified for further investigation.

Prior biological knowledge and interpretation of the
functional relevance of a given gene are factors that can greatly
influence the results with this approach. Prioritization tools are
available that allow for automatic shortlisting of candidate genes
by combining different types of information, such as sequence
conservation, gene expression and linkage data. Such tools are
becoming increasingly flexible and inclusive with respect to the
extent of customization and the sources and types of information
included in the prioritization. A number of prioritization tools
also allow inclusion of different types of custom data such as
gene expression, linkage and CNV data, thereby offering a level
of late-stage integration in the process of selecting candidate
genes.

Shortlisting of genes using a-priori defined information
arguably limits the potency for novel findings. On the other hand,
some level of shortlisting is necessary to limit the number of
false positive findings. The level of shortlisting that is necessary
depends on the goal of the study, but in general performing
shortlisting of genes prior to data integration may reduce some
of the advantages of having multiple types of data from the same
set of samples.

Structuring Cross-Platform Data Based on
Coordinates or Higher-Level Patterns
Development of statistical methods for integrated analysis is
challenged by the dissimilar biological implication of each type
of variation, the different data formats, and the difference
in number and genetic location of interrogated sites. Many
integration methods have overcome these issues by performing
platform-specific pre-processing and variation calling, followed
by grouping of variations across platforms into variation sets
according to their genetic location.

An important factor for this strategy is to decide how to group
variations in the most optimal way. Often a group is defined on
the basis of known genes. Through this approach, all variations
located within the same gene are grouped, possibly including a
predefined number of base pairs up and downstream from the
target gene. An alternative strategy is to implement a sliding
window with or without a degree of overlap. The definition of
the set is important for the interpretation of the results, as the
specific location of a variation, even within a gene, is important
for its biological effect. For example, the effect a change in DNA
methylation has on the expression of a gene is highly dependent
on the genetic location of the methylation within the gene region.
While hyper-methylation of a gene promoter is known to down-
regulate the expression of the related gene, a change of DNA
methylation within the gene body is believed to have alternative
functions (Kulis et al., 2013).

By grouping variations according to coordinates it is
anticipated that variations located at the same region exhibit
similar effects on the phenotype or influence the same functional
element. This fails to consider the complex interplay between
functional elements and distant regulatory elements, such as
trans QTLs, enhancers, inhibitors and TFBS.

Functional Evaluation Supported by
Higher-Level Information
As an alternative to structuring data based on coordinates,
a number of studies structure datasets based on higher-level
patterns. Such patterns can be identified by implementing
knowledge of functions, pathways and networks (e.g., from
protein-protein interaction databases) or by directly identifying
structures in the datasets. Identification of higher-level patterns
in datasets is being explored for a range of applications, including
data reduction, disease classification, and identification of disease
markers and drug targets (Kutalik et al., 2008). Basing data
integration on higher-level patterns allows researchers to include
knowledge of complex structures in the human genome, and a
high number of approaches are being evaluated for this type of
integration (Kutalik et al., 2008; Mitra et al., 2013). Most studies
integrate one type of data, often expression data (Sohler et al.,
2004; Sivachenko et al., 2007; Qiu et al., 2010), with existing
knowledge of higher-level patterns, but newer studies aim to
overlay multiple datasets with patterns from online databases
(Cancer Genome Atlas Research Network, 2013; Wen et al.,
2013).

A number of tools that integrate data by generating variation
sets are designed to take advantage of the known interaction
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between functional elements by implementing knowledge of
such relations from online databases. This can facilitate the
identification of a number of biologically relevant interactions.
For example, it would be possible to identify the co-presence of
a hypermethylated microRNA and an upregulated target gene.
Furthermore, knowledge of shared functionalities of genetic
locations can be used to evaluate patterns for identified disease
relevant variations identified through integration studies, such
as identified driver genes. For either approach, the source of
pathway and network information and the strategy for analysis
must be considered carefully.

Enrichment based methods such as gene set enrichment
analysis (GSEA) and singular enrichment analysis (SEA) are
popular for incorporating knowledge of pathways and networks
or other predefined gene sets in analysis of heterogenic data or
identified best hits. A number of online tools perform enrichment
analysis for an applied list of genes by incorporating gene sets
from online databases such as GO (http://www.geneontology.
org) and KEGG (Kanehisa and Goto, 2000). A discussion of
enrichment tools is found in Huang da et al. (2009).

PARADIGM (Vaske et al., 2010) is a method for pathway
analysis of heterogenic data, which goes a step further by
incorporating information on the type of interaction between
elements of a pathway. It enables the analysis of low frequency
variations in cross-platform datasets thereby supporting the
analysis in situations where the disease in each person, or
subgroup of people, is caused by different types of variations (for
additional methods for integrative network analysis, see Cerami
et al., 2010; Wu et al., 2010; Ciriello et al., 2012).

Creating a tool that incorporates biological knowledge in the
analysis process is highly dependent on the availability of reliable,
maintained, and well-structured databases. Much effort is being
put into organizing knowledge of functional interactions into
online databases. Yet, as knowledge of the genetic location and
function of non-coding functional elements is far behind our
understanding of coding genes, development of inclusive and
well-structured databases will most likely remain the bottleneck
for some time.

Using knowledge of pathways and networks to support
integration of distant variations is affected by a similar range
of challenges that are also affecting alternative integration
approaches. These issues include the need for annotation, the
limitation of our knowledge of functional elements, dependency
on prior biological knowledge and the difficulty of handling
discrete variables.

Data Reduction
Genome-wide datasets contain much information and it is
a challenge to interpret the biological implication for any
fraction of the observed variation. These datasets are often
“noisy” as they contain a high number of low effect variations,
common inter-individual variations, and a number of less reliable
variations. When integrating the analysis of multiple data sets
the complexity increases drastically. Therefore, methods for the
integrated analysis of genome-wide data sets are required to
reduce the complexity of the data. This reduction of complexity
is particularly important for studies of disease risk, which have

tended to search for the disease associated variation and therefore
requires extensive shortlisting.

One approach is to effectively rank all identified variations
according to a level of relevance. Variation in DNA methylation
and gene expression levels can be ranked using the continuous
values of direction and magnitude of methylation or expression,
respectively. A number of approaches for ranking of these
datasets and for the integrated analysis of ranked lists have been
published (Boulesteix and Slawski, 2009; Kolde et al., 2012). In
contrast, discrete values obtained when analyzing SNP and indels
by sequencing platforms pose an issue, as the lack of a single
continuous variable implies that there is no single platform-
derived indication of effect size or disease relevance.

As an alternative, the ranking of in-sequence variations
is often based on (i) a hypothesis of interest for the co-
located gene, as seen with the list intersection model (in the
form of shortlisting), or (ii) an estimate of effect size for the
individual variation. A number of tools are available which can
be implemented in the analysis of sequencing data to estimate
the effect size of identified variations. Examples of such tools are
Polyphen2 (Adzhubei et al., 2010) and SIFT (Kumar et al., 2009),
which predict the effect of point mutations and indels identified
by MPS on protein function.

Both ranking approaches employ a level of prior knowledge
of the type of gene or variation that can cause disease. The
implementation of prior knowledge can limit the strength to
obtain novel findings, as discussed above. There is therefore a
need for the development of more sophisticated strategies for
ranking of genome-wide sequencing-based datasets. The MPS
platform assigns a range of statistics to each called variation,
which provides information on the reliability of the called
variation. Furthermore, most analysis pipelines include software
that adds information on population frequency and predicted
damaging effects, as well as functional annotations to each called
variation. This information allows consideration of the degree to
which the variation is likely to be disease relevant. All of this
information, or a subset of it, could form the basis for ranking
of in-sequence variations from MPS platforms, however, this
approach is associated with a number of biological and statistical
challenges. The challenges include deciding what information
to include in the ranking, to convert the information into a
compatible scale for automatic ranking and in this process
to decide to which extend each piece of information should
influence the ranking.

An alternative approach to reduce the size or complexity of
the datasets is through the identification of higher-level patterns
as described above. This can be performed for each dataset
independently or by an integrated approach (Kutalik et al.,
2008). The integrated approach allows patterns present across
the datasets to influence the data reduction thereby avoiding
obliterating cross-dataset patterns prior to integration.

Integrated Analysis of Non-coding
Variations
Data obtained from whole-genome platforms include inter-
genic variations and variations located in non-coding genes.
Integration approaches that focus on elements annotated during
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single-platform analysis are often restricted to working with well-
documented elements (e.g., coding genes). However, knowledge
of non-coding elements, their function, location and relevance,
is growing rapidly, now making it important to include all
identified variations when analyzing genome-wide datasets.

Information related to non-coding elements is available for
download from several cost-free online sources such as the
UCSC Genome Browser (http://genome.ucsc.edu). The UCSC
table browser is an effective tool for downloading information on
TF binding sites, Vista enhancers, conserved regions, ENCODE
regulatory information, CpG islands, and lincRNA. In addition,
data can be downloaded from a number of element-specific
databases, and ENCODE data can be downloaded directly from
the ENCODE database ftp access (ftp://ftp.sanger.ac.uk/pub/
gencode/). This information, together with the freely available
BEDtools (Quinlan and Hall, 2010) and SAMtools packages
(Li et al., 2009), can be used to annotate lists of dissimilar
variations based on genetic location, thereby obtaining a more
comprehensive annotation of variation lists.

The ability to evaluate the function of identified non-coding
elements is currently inferior to the ability to evaluate lists
of coding elements, due to the different extent of knowledge
available for the two types of elements. However, methods and
tools such as motifbreakR are increasingly available, which can
be used to predict effects of variants located in non-coding
sequences such as enhancers or promoters (Chen et al., 2014;
Coetzee et al., 2015). Such functional predictions can support
the inclusion of non-coding variations in integration studies.
The inclusion will most likely have greatest importance on
integration studies that consider the functional interactions
between variations at different genetic locations.

Notably, annotating variations with information about non-
coding elements will not solve the issue of including inter-genic
variations when the analysis models base the integration on
co-location with functional elements. However, as information
is obtained on the functional properties of a greater portion
of the genome, fewer variations will be excluded from
analysis.

The section on strength and weaknesses of strategies for data
integration highlights the most dominating strategies including
list intersection approaches and integration based on genetic co-
ordinates or higher level patterns. The grouping of variations
based on genetic location to facilitate e.g., a list intersection
or enrichment based approach has been used to overcome the
issues of dissimilarity between datasets from different platforms.
However, the approach show limited abilities to consider the
detailed functional differences related to the type of variation or
precise genetic location, such as the location within the individual
genes. There are further challenges in including non-coding and
inter-genic variations in many existing integration strategies. For
integration tools that include mutation data, there is a need for
more sophisticated strategies for ranking and filtering to reduce
false positives and identify the most disease associated variations
or loci. Common for many integration strategies is also the use
of a-priori information, for which both the limitations of current
knowledge and the possible limitation for novel findings must be
considered.

IMPACT OF INTEGRATION ON SAMPLE
SIZE

The possible increase in sensitivity for low frequency variations
and highly heterogenic sites gained by integrated analysis may
impact the sample size required for discovery of “causal” genetic
events. Increased sensitivity toward low frequency variations
means that one can extend the approach to situations involving
rare samples, such as specimens from individuals with a rare
cancer. A demand for large sample sizes would, in such situations,
entail a broadening of selection criteria. This would in turn
increase the risk that different disorders would be represented
and thereby result in an increasingly heterogeneous group of
underlying variations.

CONCLUDING REMARKS

Multiple types of variations, both genetic and epigenetic, are
implicated in the development of complex disorders. It is
therefore anticipated that integrated analyses could support the
understanding of the risk factors and pathways of pathogenesis
for these disorders. A number of studies have successfully
performed integrated analysis of data from cancer samples, and
have thereby obtained a more comprehensive understanding of
the complex architecture of cancer genomes. However, many
challenges remain and need to be solved before we can fully
exploit integration of cross-platform data.

The process of analyzing MPS data to achieve information
on disease-relevant SNPs and indels, include filtering based on
measures of functional effect and scores of data quality. Reviewed
integration strategies include MPS data after pre-processing,
possiblymissing some advantages of data integration. In order for
data integration to increase sensitivity for genetic locations that
are affected at low frequency in a single dataset or by low effect
variations, the variations must not be lost prior to integration.
The extensive level of filtering performed for whole-exome or
whole-genome MPS data prior to integration entail the risk of
misinterpretation and exclusion of relevant variations before data
integration is performed.

Including measures of functional effect for identified
variations obtained from software used to analyze MPS data
could support development of integration strategies that have
more complex definitions of function. Data on gene expression
levels is dominating integration studies as ameasure of functional
effect. However, not all functionally important variations will
affect gene expression, opening up for better integration of the
tools developed for MPS data. These aspects suggest a need
for more sophisticated and interconnected approaches to data
filtering and integration, possibly in part by implementation
cross-platform information in these steps.

While integration of extensively preprocessed datasets entail
the risk of losing important variations prior to integration, it also
presents the risk of including false positives in the integration.
When integration is based on tables with binary numbers as seen
for many of the described tools, little information is left regarding
the quality of the variation. This leaves little room for evaluating
the results of the integration. Again, better integration of the first
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steps of data analysis could be used to address this issue, but for
now it is important to stress the need to critically evaluate the
pre-integration process.

Current integration strategies tend to group variations
according to genetic location. The grouping is often based on co-
location or proximity to known genes, thereby excluding inter-
genic variations from analysis. This limits the utility of current
integration models for whole-genome datasets. Furthermore,
strategies which group variations according to genetic location
often fail to consider the connection between transacting or
distant located regulatory elements and their targets. However,
these methods allow for approximate identification of genes
disrupted by different classes of variability such as highly
heterogenic genes.

Large-scale data-sharing projects such as TCGA (http://
cancergenome.nih.gov/) and ENCODE (Consortium et al., 2012)
include multiple types of data on a range of phenotypes. The
sharing of data and the growing interest in generating cross-
platform datasets has enabled large-scale integrated analyses.
Researchers working on these projects, together with groups
who focus on the biostatistical and computational aspects, are
leading the way in the creation of new integration strategies and
tools. Existing integration tools illustrate a requirement for closer
collaborations between the specialties so that knowledge of the
MPS platforms can be implemented in the integration tools.

Despite the shortcomings of the current approaches,
the results obtained so far indicate that integrated
analysis of cross-platform datasets has the potential to
provide new insights into the causes and pathogenesis of
cancer.
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