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Abstract: The rapid development of nanotechnology has led to increased human exposure
to metal-based nanoparticles (MNPs) through inhalation, ingestion, and dermal contact,
raising growing concerns on their potential health effects. Due to their nanoscale size and
unique physicochemical properties, the MNPs can translocate from the initial exposure
sites to the circulatory system and accumulate in the body. This review focuses on MNP-
induced cardiovascular toxicity, highlighting its biodistribution, cytotoxic mechanisms,
and pathological impact associated with various cardiovascular diseases. MNPs disrupt
endothelial function, promote oxidative stress, and induce apoptosis and ferroptosis in
cardiovascular cells. Furthermore, MNPs increase endothelial permeability, impair blood–
brain barrier integrity, and enhance procoagulant activity, thereby contributing to vascular
and cardiac dysfunction. The particles and their released metal ions play a synergistic role
in mediating these toxic effects. Here, we focused on the effects of nano-sized particles
while incorporating recent in vitro and in vivo studies that address the cardiovascular
impacts and mechanisms of MNP-induced toxicity. This comprehensive review will help
understand and explain the potentially toxic effects of MNPs on the cardiovascular system.

Keywords: nanoparticle; metal-based nanoparticles (MNPs); cardiovascular system;
cardiovascular toxicity

1. Introduction
Recent developments in nanotechnology have led to the emergence of nanomateri-

als that are utilized in various fields, including research, industry, and medicine [1–3].
Therefore, people are easily exposed to various nanomaterials through nanomedicine and
consumer goods, including cosmetics, sunscreen, pharmaceuticals, food additives, and
paints [4]. The use of consumer goods containing nanomaterials is closely linked to human
exposure to nanoparticles. In the United States, the amounts of discharged nanoparticles
from consumer goods were at least 2.67–3.1 × 103 metric tons/year into landfills and the
environment in 2014, equivalent to about 9.42 g/person per year. Among them, 36–43%,
0.7–0.8%, 28–32%, and 24–36% were identified in landfills, air, water bodies, and soil sys-
tems, respectively [5]. Exposure to nanomaterials occurs through ingestion, inhalation, and
direct contact [6]. Due to their nanosize, they can translocate to the circulatory system from
primary target organs, including the gastrointestinal tract, lungs, and skin [7,8]. Circulating
nanoparticles either move to secondary target organs, such as the kidney, heart, and brain,
or continuously circulate in the bloodstream. Magnetite nanoparticles were detected in
brain tissue, indicating that they can be transported through the olfactory bulb or the
blood–brain barrier (BBB) and in the bloodstream of healthy humans [9]. These findings
suggest that circulating nanoparticles can affect cardiovascular components, including
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endothelial and blood cells. The impaired cardiovascular system is closely linked with the
development of cardiovascular diseases, which are significant causes of morbidity and
mortality worldwide [10,11]. Previous reviews have focused on the contribution of nano-
materials to the toxicity and pathological alterations of cells and tissues in exposed organs.
Our review suggests that nanomaterial-induced toxicity is associated with cardiovascular
damage and disease.

Metal-based nanoparticles (MNPs) are produced from metals by destructive or con-
structive methods [12]. MNPs are majorly derived from aluminum, lead, silver, gold, iron,
cobalt, zinc, titanium, silica, cadmium, and copper, which are widely used in various appli-
cations (Table 1) [13]. As the application of MNPs grows, regulatory perspectives and safety
guidelines are also evolving. In the European Union (EU), MNPs are subject to specific
provisions under the REACH and CLP regulations for cosmetics and food, which require
separate registration and safety data for nanoforms [14]. Also, the European Food Safety
Authority (EFSA) provides technical guidelines for evaluating nanoparticle exposure and
toxicity [15]. In the United States, the Environmental Protection Agency (EPA) regulates
nanomaterials under the Toxic Substances Control Act (TSCA), while the Food and Drug
Administration (FDA) and the Occupational Safety and Health Administration (OSHA)
oversee their use in food, drugs, and workplace safety [16,17].

MNPs have unique characteristics due to their size, which ranges from 10 nm to
100 nm. MNPs can be classified into two categories: metal and metal oxide nanoparti-
cles [18]. Investigations of miners and refinery workers exposed to MNPs and having
pulmonary disease have demonstrated a correlation between exposure to MNPs and dis-
ease incidence [19–21]. MNPs induce various toxicity via various mechanisms, including
oxidative stress, inflammation, and cell death (Table 1) [22–25]. MNPs can release metal ions
from particles, and it is essential to understand the mechanisms of MNP-induced toxicity
due to the released metal ions. In this review, we focused on investigating whether MNP-
induced toxic mechanisms involve particles themselves, ions released from the particles, or
their synergistic activity.

Table 1. Types of metal-based nanoparticles, their applications, and toxicity.

MNPs Usage Toxicity

Aluminum oxide nanoparticles
(AlO-NPs)

Cosmetics [26], Solid rocket propellants, Lubrication, and
Drug delivery [27] Neurotoxicity [28,29]

Cadmium oxide nanoparticles
(CdO-NPs) Paint pigments [30], Solar cells, and Phototransistors [31] Genotoxicity [30], Developmental toxicity [32]

Copper nanoparticles
(Cu-NPs) Wastewater treatment [33] Reproductive toxicity [34]

Copper oxide nanoparticles
(CuO-NPs)

Nanofertilizers [35], Antifungal and antibacterial agent
[36], Food packaging [37] Respiratory toxicity [38], Neurotoxicity [39]

Gold nanoparticles
(Au-NPs)

Photothermal therapy [40], Gene delivery and Targeted
drug delivery [41], Biolabels [42] Hepatotoxicity [43,44]

Iron oxide nanoparticles 1

(IO-NPs) Cancer immunotherapy [45], Drug delivery [46] Neurotoxicity [47,48]

Nickel oxide nanoparticles
(NiO-NPs)

Lithium-ion batteries [49], Fuel cells, Drug delivery, and
Antibiotics [50] Hepatotoxicity [51], Respiratory toxicity [52]

Palladium nanoparticles
(Pd-NPs)

Organic catalysis, Fuel cells, Biosensors and
Electrocatalysis [53] Immunotoxicity [54]

Rhenium nanoparticles
(Re-NPs) Tumor treatment therapy and Coatings [55] -

Silver nanoparticles
(Ag-NPs)

Anticancer therapy [56], Antiinflammatory drugs and
Antibiotics [57]

Developmental toxicity [58], Genotoxicity [59],
Hepatotoxicity [60]

Titanium dioxide nanoparticles
(TiO2-NPs)

Photodynamic therapy [61], Toothpaste [62], Food
additives [63], Sunscreen [64]

Respiratory toxicity [65], Neurotoxicity [66],
Developmental toxicity [67]

Zinc oxide nanoparticles
(ZnO-NPs)

Cosmetics, Sunscreen and Textile finishes [68], Drug
carriers [69], Food packaging [26]

Developmental toxicity [70], Respiratory toxicity [71],
Immunotoxicity [72]

1 IO-NPs represent Fe2O3 and Fe3O4 nanoparticles.
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2. Exposure and Biodistribution of MNPs
Fine MNPs in the air are inhaled into the respiratory tract [73]. Welders who perform

metal joining in the industrial manufacturing sector can easily inhale ultrafine metal parti-
cles, which can lead to several health problems. The inhalation of zinc oxide nanoparticles
(ZnO-NPs) during welding contributes to metal fume fever, an occupational disease [74,75].
Due to their unique characteristics and benefits, various types of MNPs are used in the
food industry. Among them, metal oxide nanoforms, including copper oxide nanoparticles,
triiron tetraoxide nanoparticles, magnesium oxide nanoparticles, titanium dioxide nanopar-
ticles (TiO2-NPs), and ZnO-NPs, are used in food nanopackaging due to their advantages
over general metal nanoparticles [76–78]. Therefore, humans intake MNPs through food
contaminated with nanoparticles. In the medical field, MNPs are utilized for biomedical
applications, including diagnosis, assessment, and treatment, as well as the development of
new diagnostic, therapeutic, and prognostic methods [79,80]. Gold nanoparticles (Au-NPs)
were approved for use in genetic technology by the Food and Drug Administration [81].
Superparamagnetic iron oxide nanoparticles have been introduced as safe and efficient
magnetic resonance imaging (MRI) contrast agents for therapeutic evaluation and targeted
molecule targeting [82]. Despite disagreements regarding long-term safety and risks, the
use of MNPs in cancer and hereditary diseases is growing. Accordingly, MNPs are present
everywhere and enter the body via various routes.

2.1. TiO2-NPs

In the UK, the ingestion of TiO2-NPs was estimated at 37.5 mg (median), indicating
approximately 0.04 mg/kg body weight per day for a 70 kg adult. Similar to the UK,
people over 7 years of age intake 0.06–0.17 mg of TiO2-NPs/kg body weight per day [83].
When mice were orally injected with TiO2-NPs, accumulated TiO2-NPs were identified in
the lymphoid tissue [84]. After oral ingestion of 6.25, 62.5, or 625 mg TiO2-NPs/kg body
weight for 18 weeks, the particles were observed in the basal cells of murine Peyer’s patches.
Additionally, TiO2-NPs can translocate into the circulatory system and move to various
new targets, including brain microvessels [85]. In rats, an intravenous (IV) injection was
administered to evaluate the biodistribution of TiO2-NPs. The liver, spleen, and lungs sig-
nificantly accumulated TiO2-NPs after IV administration, showing significantly increased
titanium concentrations in organs compared with non-injected rats from 30 min to 1 year. In
addition, TiO2-NPs have been detected in the circulatory system after IV administration. In
the brain microvasculature endothelial cells, the titanium burden was significantly detected
from 5 min, which was approximately six-fold higher than that in the non-injected groups.
Moreover, 24 h after TiO2-NPs injection, a significant accumulation of TiO2-NPs in the brain
was observed. Mabondzo et al. suggested that titanium concentration in the injected group
(261.40 ± 28.86 ng/g) was higher than that of the control group (68.25 ± 6.56 ng/g) 5 min
after IV administration of TiO2-NPs [85]. While TiO2-NPs showed a significant toxic effect
using rodents, there is a limit to completely extrapolating these results to humans. They
are considered different conditions because there are differences in physiology, metabolism,
genetics, biochemistry, diet, and environment between animals and humans. In addition,
since animal experiments have limitations in reflecting the actual routes and amounts of
exposure, the results of animal experiments are carefully interpreted.

2.2. Ag-NPs

Although the occupational exposure limit of Ag-NPs is 0.19 µg/m3, the concentration
of Ag-NPs reached up to 1.35 µg/m3 during manufacturing and integration [86]. Since Ag-
NPs have applications in various fields, including biomedical and commercial applications,
they can enter the body via inhalation, ingestion, and contact [87]. Long-term exposure of
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Ag-NPs to medaka fish, from the embryo stage to adulthood, resulted in the accumulation
of silver in various tissues, including the liver, gills, intestine, ovary, and brain [88]. In
mice, the concentrations of silver in the lungs, heart, brain, kidneys, spleen, and liver were
measured after one and seven days following intratracheal (IT) instillation [89]. Although
the concentrations of silver in the heart, kidney, spleen, and liver decreased, the brain and
lungs showed either the same or increased concentrations of silver on day 7 compared
with those on day 1. Lee et al. demonstrated altered gene expression in the brains of mice
administered 1.91 × 107 particles/cm3 of 20 nm Ag-NPs via nose only [90].

2.3. Au-NPs

The blood and urine from the healthy male who inhaled 116 ± 12 µg/m3 of Au-NPs
for 2 h contained a detectable concentration of gold [91]. Moreover, 24 h after inhalation,
most subjects presented with gold in their bloodstream. In addition, approximately 1 ng/g
(blood) and 100 ng/L (urine) of gold were detected for up to three months. Depending on
their size, small Au-NPs were accumulated in the blood, urine, and liver when injected
into mice through pulmonary instillation. Administration routes via injection, including IT
instillation, gavage, and IV, are crucial for Au-NP accumulation in secondary target organs,
such as the liver, spleen, kidney, brain, and others, as well as in the blood [92,93]. In cases
of IT instillation and IV injection, none of the secondary target organs showed an increased
Au-NP uptake at 24 h compared to 1 h after application. In contrast, gavage injection of
Au-NPs resulted in longer detection in secondary target organs, excluding the liver, at
24 h compared to 1 h [92]. Since Au-NPs can enter the body through inhalation, ingestion,
and direct injection into the bloodstream via nanomedicine applications, these data reflect
the primary exposure routes of Au-NPs in humans. Nevertheless, since biological and
interspecies differences exist between rodents and humans, animal experimental results
have limitations in fully extrapolating to human toxicity.

2.4. ZnO-NPs

Inhalation of ZnO-NPs causes airway inflammation and metal fume fever [94]. Mice
incubated in the chamber to inhale 1.93 × 106/cm3 of ZnO-NPs for 3 days showed sig-
nificantly increased Zn content [95]. Zn concentrations deposited in the group exposed
to ZnO-NPs were measured at approximately 20.6 µg/g, which was 1.5-fold higher than
that of the control group. Similar to these results, the Zn concentration was immediately
increased in bronchoalveolar lavage fluid isolated from mice incubated in a whole-body
chamber to inhale 3.6 ± 0.5 mg/m3 of ZnO-NPs [96]. The exposed and sham groups
showed approximately 73 µg/L and 16 µg/L Zn, respectively. A significant (1.2-fold)
increase in Zn concentration in the lungs of exposed mice compared with sham mice was
observed. In addition to the respiratory tract, a higher Zn concentration was observed in
the heart of mice exposed to ZnO-NP inhalation (approximately 160 µg/g vs. 115 µg/g).
While single-gavage of ZnO-NPs did not significantly alter the Zn concentration in rats,
multiple-gavage of ZnO-NPs for 90 days resulted in an increased Zn concentration in the
bones compared with that in control rats [97].

2.5. Iron Oxide Nanoparticles (IO-NPs)

Iron oxide-based nanoparticles are mainly divided into maghemite (Fe2O3) and mag-
netite (Fe3O4) nanoparticles. In this review, IO-NPs represent both the Fe2O3 and Fe3O4

nanoparticles. IO-NPs are widely used in the medical field, including magnetic drug
delivery, replacement therapy, and hyperthermia targeting specific organs [98]. Shan et al.
showed that IV-injected IO-NPs mainly accumulated in the mouse liver (23.7% of injected
dose (ID)/g) and spleen (12.6% ID/g) at an early point (0–6 h) based on the nanoparticle
biodistribution coefficient [99]. This is consistent with biodistribution, hepatotoxicity, and
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pulmonary toxicity in rats after IO-NP inhalation [100]. IO-NPs were detected in the lungs,
heart, kidneys, muscles, and brain, showing slower absorption and lower uptake in mice.
Additionally, particle size plays a role in the accumulation and clearance of IO-NPs in the
bloodstream [101]. The clearance of particles smaller than 100 nm from the bloodstream was
more rapid than that of particles larger than 100 nm. However, IO-NPs from 100 to 200 nm
in size circulated longer in the bloodstream and were retained in vascular fenestrations.

3. Cellular Effects of MNPs in the Cardiovascular System
3.1. Cell Death
3.1.1. Apoptosis

Cellular death is broadly categorized into programmed cell death, which includes
apoptosis, and non-programmed cell death [102]. Apoptosis is the process of programmed
cell death to eliminate unwanted cells. Apoptosis requires energy and plays a crucial role
in the pathogenesis of cardiovascular diseases [103,104]. Palladium nanoparticles induced
apoptosis in human cardiac microvascular endothelial cells (HCMECs) in endothelial cell
models [105]. However, TiO2-NP exposure caused severe apoptosis in HCMECs when
treated to the same extent as palladium nanoparticles. In addition, human umbilical vein
endothelial cells (HUVECs) underwent apoptosis induced by TiO2-NPs as determined
by apoptotic markers, including Bax, Bcl-2, and the caspase family [106]. The apoptotic
pathways are composed of the extrinsic pathway, initiated by signals originating from
outside the cell, and the intrinsic pathway, which occurs within the injured cell [107]. Mito-
chondria are essential initiators of the intrinsic apoptosis pathway, activating intracellular
caspase proteases that control cell death [108]. Human brain microvascular endothelial
cells (HBMECs) and HUVECs were identified to exhibit mitochondrial damage induced by
aluminum nanoparticles and TiO2-NPs, respectively [109,110]. Both studies suggested that
nanoparticles have toxic effects on mitochondria, as evidenced by decreased mitochondrial
membrane potential, altered mitochondrial morphology, and reduced intracellular ATP
levels. Consistent with mitochondrial dysfunction, aluminum nanoparticles and TiO2-NPs
significantly decreased cell viability as determined using the MTT assay for the detection
of mitochondrial activity.

3.1.2. Ferroptosis

Ferroptosis is a type of programmed cell death dependent on iron ion levels and
increased intracellular lipid peroxidation [111]. Ferroptosis affects various cells of the
cardiovascular system, including cardiac and vascular cells, and it has garnered atten-
tion as a novel risk factor and therapeutic target for cardiovascular diseases [112]. In
HUVECs, IN-OPs and ZnO-NPs induced ferroptosis through upregulating phospholipid
peroxides [113,114]. Along with cellular ferroptosis, ZnO-NPs promoted ferritinophagy
and vascular inflammation mediated by ferroptosis in mouse models [114].

3.2. Oxidative Stress

Oxidative stress is caused by the imbalance between free radicals and antioxi-
dants [115]. Several intracellular oxidative stress markers exist, including reactive oxy-
gen species (ROS), serum superoxide dismutase, catalase, malondialdehyde, and glu-
tathione [116,117]. Oxidative stress plays an essential role in the development and pro-
gression of cardiovascular diseases such as myocardial infarction, ischemia/reperfusion,
and heart failure [118–121]. Brain endothelial (bEnd.3) cells, a component of the BBB,
promoted oxidative stress induced by Ag-NPs as determined by measuring intracellular
ROS levels [122]. In addition to bEnd.3 cells, small-sized Ag-NPs (5 nm) led to increased
levels of heat shock protein 70 kDa (HSP-70) and heme oxygenase-1 protein, which is
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related to intracellular ROS levels in EA.hy926 cells (human umbilical vein cells) compared
with 100 nm-sized particles [123]. Intensive intracellular oxidative stress contributes to cell
death via necrotic, apoptotic, or autophagic pathways. The promotion of apoptosis was
mediated by the increased intracellular oxidative stress in HUVECs exposed to IO-NPs,
Ag-NPs, or TiO2-NPs [124–126].

3.3. Hyperpermeability

The endothelium acts as a physical barrier that separates and protects the surrounding
tissues from the bloodstream [127]. The endothelial barrier function is facilitated by the
selective vascular permeability, which is due to tight and adherent junction proteins [128].
Dysfunctional endothelium is the first step in vascular disease, leading to the injury of
other cardiovascular cells [129]. Increased endothelial permeability is associated with the
development and aggravation of cardiovascular diseases such as atherosclerosis, hyper-
tension, stroke, and heart diseases. Brain endothelial cells are significant components
of the BBB, acting as physical barriers and contributing to a highly selective, semiper-
meable membrane [130]. BBB plays a critical role in maintaining brain homeostasis and
neurovascular health. The reduction in tight junction proteins and increased permeability
result in a disrupted BBB, which contributes to neurovascular and cardiovascular dam-
age. As brain endothelial cells prevent injury and toxicity to the central nervous system,
BBB disruption leads to cardiovascular diseases and neurological dysfunction, including
neurodegenerative diseases [131]. Aluminum nanoparticles and Ag-NPs reduced the ex-
pression of tight junction proteins, including ZO-1, occludin, and claudin-5, in HBMECs
and bEnd.3, respectively [109,122]. Consistent with the decrease in tight junction protein
expression, endothelial permeability increased in an in vitro BBB model exposed to Ag-NPs
and TiO2-NPs [132,133].

3.4. Procoagulant Activity

Red blood cells (RBCs) are representative blood cells that transport oxygen from
the lungs to body tissues [134]. Injured RBCs with altered functions have implications
for cardiovascular damage and diseases, such as venous thrombosis, cardiac injury, and
ischemia/reperfusion in diabetes [135–137]. Increased procoagulant activity of RBCs,
characterized by the externalization of phosphatidylserine (PS) on the RBC membrane,
is a key factor in triggering various pathological circulatory conditions, including throm-
bus formation, venous thrombosis, and erythrophagocytosis by immune and endothelial
cells [136,138]. The significance of PS-exposed blood cells in cardiovascular diseases has
also been demonstrated in clinical patients [139,140]. Exposure of human RBCs to Ag-NPs,
ZnO-NPs, and TiO2-NPs increased the procoagulant and thrombotic activities associated
with venous thrombosis [141–143]. ZnO-NP-exposed RBCs exhibited endothelial hyperper-
meability and cytotoxicity attributed to excessive erythrophagocytosis by brain endothelial
cells [141].

4. Pathological Conditions Induced by MNPs in the Cardiovascular System
4.1. Inflammation

Systemic and local inflammation plays an essential role in the development and pro-
gression of cardiovascular diseases [144]. IO-NP treatment promotes inflammation in
human whole blood by increasing inflammatory cytokines, such as tumor necrosis factor
(TNF)-α, interleukin (IL)-6, IL-1β, and IL-8 [145]. Along with whole blood, endothelial cells
incubated with whole blood in combination with IO-NPs showed significantly increased
levels of TNF-α, IL-6, IL-1β, and IL-8, indicating cardiovascular inflammation. Non-human
primates and healthy persons exhibited systemic inflammation and metal fume fever after
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exposure to ZnO-NPs via IT injection or inhalation routes, respectively [146,147]. Inflam-
mation plays a critical role in the pathophysiology of atherosclerosis and its transition into
chronic inflammation [148]. Human aortic endothelial cells (HAECs) showed significantly
increased nitric oxides and inflammatory factors, including intercellular adhesion molecule
1, IL-8, and monocyte chemoattractant protein-1 after treatment of IO-NPs, yttrium ox-
ide nanoparticles, ZnO-NPs, and cerium oxide nanoparticles [149–151]. IO-NP-treated
HAECs suggested that endothelial inflammation and dysfunction were promoted through
increased cytokine expression, adhesion molecule expression, monocyte recruitment, and
nitric oxide production, indicating risks for atherosclerosis [149].

4.2. Cardiotoxicity

Cardiovascular diseases encompass a range of cardiac and blood vessel disorders. The
heart is the main secondary target organ of nanoparticles translocated from the circulatory
system [8]. The oral uptake of MNPs, including IO-NPs, Ag-NPs, ZnO-NPs, and aluminum
nanoparticles, has been shown to cause cardiotoxicity in animal models [26,152]. Long-
term exposure to IO-NPs, Ag-NPs, or their mixture induced oxidative stress and increased
the levels of pro-inflammatory cytokines such as TNF-α and IL-6 in cardiac tissues [152].
Additionally, myocardial degeneration occurred in isolated hearts from rats that led to
changes in the myocardial fibers. IO-NPs promoted ROS levels in the cardiac tissues
and had more fatal effects on mouse survival after a single IV injection than that of Au-
NPs [153]. The heart weight is crucial in several age-related pathological conditions and
cardiovascular diseases. After long-term exposure to ZnO-NPs, aluminum nanoparticles,
or their combination, the heart weight decreased, and levels of TNF-α and IL-6 increased
in cardiac tissues isolated from rats [26].

4.3. Vascular Toxicity

The circulatory system consists of vessels that carry blood and lymphatic fluid. The
vascular system is continuously in contact with the absorbed NPs during the translocation
of NPs from primary to secondary target organs. Additionally, MNPs, such as ZnO-NPs and
TiO2-NPs, are attached to and located within circulating RBCs [154]. In rats, IV injections
of nickel nanoparticles into the dorsal penile vein resulted in an altered lipid profile, as
indicated by increased cholesterol and apolipoprotein E levels, which are associated with
atherosclerosis [155]. Blood cells in the bloodstream contribute to vasculopathy, such
as venous thrombosis. IV injection of Ag-NPs, TiO2-NPs, or ZnO-NPs led to thrombus
formation in the veins in an in vivo rat venous model [141–143]. When rats were exposed
to TiO2-NPs for 30 days via the oral route, the counts of white blood cells and granulocytes
in the blood increased [156]. Moreover, TiO2-NP exposure in rats initiated an inflammatory
response, as shown by the increased concentrations of TNF-α and IL-6 in the serum.

5. Comparative Toxicity Between Metal Ions and MNPs
Because MNPs are derived from metals, they have unique characteristics due to the

release of nano-sized metal ions. In experimental models, MNPs are dissolved in aqueous
media, releasing metal ions into the surrounding media [157]. To identify the potential
risks of MNPs, it is necessary to understand whether the toxic effects are caused by the
particles themselves, the released metal ions, or their combination. Different perspectives
on MNP-induced toxicity exist; some studies suggest that released ions are the primary
or sole cause of toxic effects [158,159], whereas other studies suggest that particles, rather
than released ions from MNPs, are the major contributors to toxic effects [160] (Table 2).
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Table 2. Representative examples of different biological effects between metal ions and particles
per se.

Category Metal-Ions Particles

Distribution Rapid distribution into various tissues
via circulation

Accumulate in tissues and cells
over extended periods

Toxicity onset Rapid onset
(e.g., CuCl2 toxicity within 24 h)

Delayed toxicity
(e.g., Cu-NPs effects after 48 h)

Toxic mechanisms Mainly due to free metal ions Primarily caused by the particles per se
(e.g., glial cells)

Pathological effects Strong acute toxicity
(e.g., AgOAc)

Some show no pathological symptoms
(e.g., Ag-NPs)

Metal salts, such as ZnCl2, are distributed into various tissues through circulation
rather than ZnO-NPs [161]. In addition, while oral uptake of CuCl2 induced toxicity within
24 h, it was observed that the toxic effects induced by copper nanoparticles were delayed
until 48 h [162]. Rats orally injected with Ag-NPs showed no pathological symptoms.
However, silver acetate (AgOAc) injection led to toxic effects, including weight loss, linitis
plastica, tissue pigmentation, and death in animal models [163]. ZnCl2, which has a lower
zinc concentration than ZnO-NPs, caused severe toxicity and led to pathological conditions,
such as anemia and tissue injuries in the liver, kidneys, lungs, and intestine [161].

Although metal ions released from MNPs primarily contribute to acute toxicity in
animal models, particles accumulate in tissues and cells for more extended periods than
metal salts [122,162]. ZnO-NPs and TiO2-NPs were identified as the primary sources that
induced hemolysis of RBCs and oxidative stress rather than their released ions [164]. In
addition, the cytotoxicity of ZnO-NPs resulted from the particles rather than the released
zinc ions in glial cells [165]. Lower concentrations of ZnO-NPs induced changes in cellular
morphology and showed increased cell death compared with ZnSO4. The increased
concentrations of intracellular zinc ions and silver ions derived from accumulated particles
were identified in ZnO-NPs-treated HUVECs and Ag-NPs-treated bEnd.3 cells compared
with treatments with ZnCl2 and Ag ions alone, respectively [122,166]. In a study on the
procoagulant activity of ZnO-NPs on RBCs, TPEN, a zinc chelator, promoted PS exposure to
a certain extent by binding to zinc ions released from ZnO-NPs [141]. However, this study
had a limitation in that the concentration of Zn ions released from ZnCl2 treatment differed
from that released from ZnO-NPs due to the pH of the surrounding media. These reports
suggest that the accumulation of particles in cells and tissues, as well as the concentration
of released ions, are closely related, and MNP-induced toxicity can be attributed to either
factor or their synergistic activation (Figure 1).
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Figure 1. Comparison of MNP pathways contributing to toxicity. MNPs lead to toxic effects through
metal ions, particles per se, or their combination. MNPs release their metal ions in aqueous media
or the cytoplasm. Entered particles are accumulated in the organelle, as indicated by the released
ions. These released ions and intracellular accumulated particles participate in the toxicity induced
by MNPs.

6. Future Directions
These studies support that MNPs contribute to the development of cardiovascular

diseases (Figure 2). Evidence indicates that the cardiovascular toxicity of MNPs is essential
to establish an experimental model to explain this potential toxicity. Future studies should
delineate the distinct toxic mechanisms of nanoparticles per se, released metal ions, and
their combinations through carefully designed comparative studies. To provide different
perspectives on cumulative risks, it is necessary to investigate the long-term biodistribution
and persistence of MNPs in cardiovascular tissues.

To align nanotoxicology research more closely with regulatory sciences and enhance
its utility for both academic and policy purposes, we suggest the following points. The in-
corporation of advanced methods for nanotoxicity assessment, including high-throughput
screening (HTS), omics technologies (e.g., transcriptomics, proteomics, and metabolomics),
and 3D organ-on-a-chip models, would offer valuable insights into the mechanistic under-
standing of nanoparticle-induced toxicity and facilitate predictive modeling. Additionally,
the influence of surface modifications (e.g., PEGylation, ligand conjugation, or charge
alteration) on the biological interactions and toxicity profiles of metal-based nanoparticles
should be discussed. Surface chemistry plays a pivotal role in nanoparticle uptake, biodis-
tribution, and immune response, thereby having direct implications for both safety and
therapeutic potential.
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Figure 2. Cardiovascular diseases caused by MNPs. Circulating MNPs induce cellular death,
oxidative stress, endothelial dysfunction, hyperpermeability, as well as procoagulant activity in
the cardiovascular system. Cytotoxicity and altered cellular functions are closely associated with
inflammation, cardiotoxicity, and vascular toxicity. These pathological conditions result from MNPs
contributing to the development of cardiovascular diseases.

Standard in vivo models and exposure conditions are required to simulate real-world
human exposure more accurately, particularly in chronic low-dose exposure scenarios. To
simulate the proper experimental models, we need to establish risk assessments of MNPs
to acquire clear exposure quantifications. In addition, most current studies have several
limitations in applying the actual exposure routes of MNPs. Therefore, it is essential to
consider both the exposure routes and the exposure amount to implement the actual expo-
sure scenario accurately. In addition, including real-world environmental and occupational
exposure scenarios, such as inhalation risks in industrial settings or chronic low-dose expo-
sure through consumer products, would provide a more grounded understanding of public
health implications. There are currently regulatory measures and attempts being made
specifically to consider nanoparticles worldwide. Despite these efforts, challenges persist in
consistently defining nanoparticles, assessing real-world exposure, and establishing legally
binding limits. As such, regulatory bodies worldwide continue to refine risk assessment
methodologies, develop nano-specific safety guidelines, and promote safe-by-design princi-
ples to ensure the responsible development and use of metal-based nanomaterials. Through
these further studies, we aim to highlight the “safe-by-design” strategies for nanoparticles
that integrate safety considerations early in the material design phase, thereby minimizing
adverse outcomes such as cardiovascular risks, which have been increasingly associated
with nanoparticle exposure.
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Abbreviations

AgOAc Silver Acetate
Ag-NP Silver Nanoparticle
Au-NP Gold Nanoparticle
BBB Blood–brain Barrier
HAEC Human Aortic Endothelial Cell
HBMEC Human Brain Microvascular Endothelial Cell
HCMEC Human Cardiac Microvascular Endothelial Cell
HUVEC Human Umbilical Vein Endothelial Cell
HSP Heat Shock Protein
IL Interleukin
IO-NP Iron Oxide Nanoparticle
IT Intratracheal
IV Intravenous
MNP Metal-based Nanoparticle
MRI Magnetic Resonance Imaging
PS Phosphatidylserine
RBC Red Blood Cell
TiO2-NP Titanium Dioxide Nanoparticle
TNF Tumor Necrosis Factor
ZnO-NP Zinc Oxide Nanoparticle
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