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Abstract: Phenanthrene (Phe) exposure is associated with skin ageing, cardiotoxicity and develop-
mental defects. Here, we investigated the mode of Phe toxicity in human keratinocytes (HaCaT cells)
and the attenuation of toxicity on pre-treatment (6 h) with ethanol extract of Hibiscus sabdariffa calyxes
(HS). Cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential
(∆Ψm) alteration, changes in the transcriptional activity of selected genes involved in phase I and
II metabolism, antioxidant response and gluconeogenesis, western blot and docking studies were
performed to determine the protective effect of HS against Phe. Phe (250 µM) induced cytotoxicity
in HaCaT cells through AhR-independent, CAR/PXR/RXR-mediated activation of CYP1A1 and
the subsequent alterations in phase I and II metabolism genes. Further, CYP1A1 activation by Phe
induced ROS generation, reduced ∆Ψm and modulated antioxidant response, phase II metabolism
and gluconeogenesis-related gene expression. However, pre-treatment with HS extract restored the
pathological changes observed upon Phe exposure through CYP1A1 inhibition. Docking studies
showed the site-specific activation of PXR and CAR by Phe and inhibition of CYP1A1 and CYP3A4
by the bioactive compounds of HS similar to that of the positive controls tested. Our results conclude
that HS extract can attenuate Phe-induced toxicity in HaCaT cells through CAR/PXR/RXR mediated
inhibition of CYP1A1.

Keywords: phenanthrene; constitutive androstane receptor; pregnane X receptor; oxidative stress;
CYP1A1; keratinocytes

1. Introduction

The World Health Organization (WHO) describes air pollution as a prominent risk
factor accounting for one in nine deaths worldwide [1]. Human exposure to particulate
matter (PM) less than 2.5 µm (PM2.5) was reported to have several adverse effects [2].
Polycyclic aromatic hydrocarbons (PAHs) are pervasive toxic air pollutants and a key
organic class of compounds in PM2.5, which are formed from the partial combustion
of fossil fuel, exhaust from vehicles and industrial processes [3]. The generation and
exposure of PAHs in humans, animals and aquatic organisms is a huge concern, as they
are highly mutagenic, teratogenic and carcinogenic [4]. Most of the PAHs exert their
toxicity/carcinogenicity through the activation of the aryl hydrocarbon receptor (AhR)
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and the subsequent transactivation of downstream target genes, including cytochrome
P450s (CYPs) and other xenobiotic response elements (XRE) [5]. Some of the PAHs in
their native form may act as weak carcinogens, but the action of xenobiotic metabolizing
enzymes over them generates mutagenic metabolites that can form covalent DNA adducts
to initiate carcinogenic processes [6]. In addition, the non-carcinogenic PAHs could activate
the nuclear receptors, including the constitutive androstane receptor (CAR) and pregnane
X receptor (PXR), in association with the retinoid receptor (RXR) or tamper intracellular
signalling mechanisms to contribute toward PAH-mediated toxicity [7–10].

Of the several hundred, the Environmental Protection Agency (EPA) has characterized
16 PAHs as high-priority pollutants, including phenanthrene (Phe), which serves as a
biomarker for PAH exposure in humans [11]. The Phe is of a low molecular weight
PAH with bay- and K-regions that are needed to form highly reactive epoxides upon
metabolism [12]. Human exposure to Phe occurs via diet, inhalation and skin absorption,
of which dietary intake accounts for the main route of entry [13–15]. The concentration of
Phe (84.6 to 191 µg/kg) was observed to be high in fish [16]. The human milk and urine
of infants were also detected with Phe in the concentration of 24.1 ng/g of milk fat and
0.03 mg/L, respectively [17,18]. Although scientific evidence concerning the carcinogenicity
and mutagenicity of Phe is lacking, there exist several reports on its bioaccumulation and
toxicity in various cellular models, aquatic organisms and soil nematodes, indicating the
environmental and health impact of the pollutant [19,20]. Pioneering studies report that
Phe exposure can lead to cardiotoxicity, neurotoxicity, and developmental and reproductive
defects in experimental model systems [21–24]. Moreover, Phe bioaccumulation can also
generate reactive oxygen species (ROS) and modulates the activity of antioxidant defence
enzymes, causing oxidative stress and pathogenesis [25]. A study by Sarkar et al. (2017)
reports a direct correlation between PAH exposure and alteration in antioxidant activity
and DNA damage, indicating the need for antioxidant system modulators for protection
against toxicity [26]. In addition, chronic PAH exposure to the skin could result in skin
damage, including wrinkle formation, pigmentation, and skin cancer [27,28]. A study by
Luo et al. (2020) has reported that the total dermal penetration and absorption rate of Phe
by skin cells are high compared to pyrene and benzo(a)pyrene [29].

Plant extracts are of immense interest because of their low toxic profile as well as the
combinatorial/synergistic actions of their metabolites to combat pathological conditions.
Several studies have reported that the consumption of fruits, vegetables or treatment of
extracts in cellular models can modulate the metabolism of carcinogens/drugs, inhibit the
CYP metabolizing enzymes and convert them into inactive metabolites [30–36]. Recently,
topical application of cosmetics containing herbal extracts as well as their dietary supple-
mentation has been in demand due to their therapeutic application and safety [37]. Dietary
supplementation of four standardized herbal extracts (Zeropollution®) was reported to
protect against skin ageing by inhibiting pollutant-induced oxidative stress [38]. Hibiscus
sabdariffa (Roselle) belongs to the family Malvaceae and is widely distributed throughout
tropical and subtropical regions. The leaves of the plant are consumed as vegetables, and
the calyxes are used for the preparation of beverages. Previous studies have reported on
the various therapeutic activity of the plant both in in vitro and in vivo model systems. The
topical application of the roselle extract ointment was reported to induce wound healing by
inhibiting inflammatory pathways [39]. Some of the bioactive compounds from H. sabdariffa
have been regarded as potential cosmetic applicants, which can exhibit anti-melanin and
depigmentation properties [40–42]. H. sabdariffa extract has been previously reported to
show an anti-ageing effect [43,44]. Also, a previous study from our lab has identified the
presence of phytochemicals including epigallocatechin 3-O-(3-O-methylgallate), pelargoni-
din 3-O-glucoside, allo-aromadendrene, anisocoumarin H and N-Feruloyltyramine [45].
The current study is focused on exploring the protective effect of ethanol extract of H. sab-
dariffa calyxes (HS) against Phe exposure in immortalized human keratinocytes HaCaT
cells, which are the initial target of environmental pollutant exposure.
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2. Materials and Methods
2.1. Chemicals

All the cell culture mediums used in the study were procured from HyClone, Logan,
UT, USA. The Human skin keratinocyte HaCaT cells were procured from Cell Line Services
(CLS, Eppelheim, Germany). Monoclonal mouse primary antibodies (anti-AhR, anti-
CYP1A1, anti-Bcl-2, anti-Bax) and Monoclonal rabbit primary antibodies (anti-β-actin) were
obtained from Santa Cruz Biotechnology, Dallas, TX, USA and Cell Signaling Technology,
Danvers, MA, USA respectively. Phenanthrene, Anti-rabbit/mouse IgG- HRP linked
secondary antibodies were purchased from Sigma Aldrich, Burlington, MA, USA. ECL
Western blotting substrate was obtained from GE Healthcare, USA.

2.2. Plant Collection and Extraction

Plant collection, authentication, extraction using ethanol, stock preparation and storage
were done as reported earlier [44]. The working solution was prepared in Dulbecco’s
modified Eagle medium (DMEM), sterile filtered with a 0.2 µm pore size syringe filter and
used for the experimental analysis.

2.3. Cell Viability Assay

The HaCaT cells (2 × 104 cells) were seeded in a 96-well plate in complete medium
(DMEM, 10% Fetal bovine serum, 1X Penicillin-Streptomycin) and allowed to grow overnight.
The cells were treated with various doses of Phe (50–250 µM) and HS extract (20–100 µg/mL)
for 24 h and subjected to an MTT assay to find the toxic dose of Phe and the non-toxic
dosage range of extract. To evaluate the protective effect of HS extract, HaCaT cells were
pre-treated (6 h) with HS extract (20–100 µg/mL) followed by Phe (250 µM) and incubated
for 24 h. After incubation, cells were subjected to the MTT assay, and the absorbance was
measured at 540 nm [44].

2.4. Measurement of Reactive Oxygen Species (ROS) Level and Mitochondrial Membrane
Potential (∆Ψm)

The generation of ROS and alteration in ∆Ψm upon Phe treatment was measured
quantitatively. HaCaT cells (2 × 105 cells) were grown in a 96-well black plate. Cells were
pre-treated with HS extract (50, 60 µg/mL) for 6 h and then with Phe (250 µM). After
treatment, cells were washed thrice with PBS, and 10 µM DCFH-DA (for ROS) or 5 µM
Rhodamine 123 (Rh 123) (for ∆Ψm) was added and incubated for 30 min in a CO2 incubator
at 37 ◦C. Cells were processed according to the standard protocols [44], and the fluorescence
was measured using EnSpire Multimode Plate Reader (PerkinElmer, Waltham, MA, USA)
with excitation and emission of 480 and 535 nm, respectively. The results of fluorescence
intensity were represented as a % control. For qualitative analysis of ROS, HaCaT cells
were grown in coverslips, and the treatment was done as mentioned earlier. After 24 h,
cells were washed and incubated with 10 µM DCFH-DA for 30 min. After incubation, cells
were washed and imaged under a fluorescence microscope (Ziess Axio Observer A1).

2.5. Real-Time PCR Analysis

After treatment of cells, as mentioned earlier, the cells were collected, and total RNA
was extracted using the standard Trizol procedure and quantified. The extracted RNA
(1000 ng) was reverse-transcribed using the MaximeTM RT Premix kit with oligo(dT)15
primer (Intron biotech, South Korea), and then real-time PCR (qPCR) analysis was per-
formed with the RealMOD Green W2 2x qPCR mix (Intron biotech) with gene-specific
primers (Table 1), and the data were normalized to the endogenous control (GAPDH) [44].
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Table 1. List of genes and sequences of primers used for Real-Time PCR analysis.

Sl. No. Gene Name Forward Primer Reverse Primer

1 AhR GTCGTCTAAGGTGTCTGCTGGA CGCAAACAAAGCCAACTGAGGTG
2 CYP1A1 GATTGAGCACTGTCAGGAGAAGC ATGAGGCTCCAGGAGATAGCAG
3 CYP1B1 GCCACTATCACTGACATCTTCGG CACGACCTGATCCAATTCTGCC
4 CYP2B ACAGTGTGGAGAAGCACCGTGA GGTTGAGGTTCTGGTGGCTGAA
5 CAR GCAGAAGTGCTTAGATGCTGGC GCTCCTTACTCAGTTGCACAGG
6 PXR GCTGTCCTACTGCTTGGAAGAC CTGCATCAGCACATACTCCTCC
7 RXR TTCTCCACCCAGGTGAACTC GAGCTGATGACCGAGAAAGG
8 CYP3A4 CAAGACCCCTTTGTGGAAAA CGAGGCGACTTTCTTTCATC
9 UGT1A1 GCAAAGCGCATGGAGACTAAGG GGTCCTTGTGAAGGCTGGAGAG
10 SULT1 GCAACGCAAAGGATGTGGCA TCCGTAGGACACTTCTCCGA
11 GSTP1 TGGACATGGTGAATGACGGCGT GGTCTCAAAAGGCTTCAGTTGCC
12 GSTM1 TGATGTCCTTGACCTCCACCGT GCTGGACTTCATGTAGGCAGAG
13 EPHX1 GTTTTCCACCTGGACCAATACGG TGGTGCCTGTTGTCCAGTAGAG
14 PEPCK GTGGGGGATGATATTGCTTG TGGTCTCAGCCACATTGGTA
15 G6PASE GGGAAAGATAAAGCCGACCTAC CAGCAAGGTAGATTCGTGACAG
16 NRF-2 CACATCCAGTCAGAAACCAGTGG GGAATGTCTGCGCCAAAAGCTG
17 NQO-1 CCTGCCATTCTGAAAGGCTGGT GTGGTGATGGAAAGCACTGCCT
18 PGC-1α CCAAAGGATGCGCTCTCGTTCA CGGTGTCTGTAGTGGCTTGACT
19 FOXO-1 CTACGAGTGGATGGTCAAGAGC CCAGTTCCTTCATTCTGCACACG
20 GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA

2.6. Western Blot Analysis

The cells, after treatment, were collected and lysed with NP-40 lysis buffer. Separation
of proteins (50 µg) was done on 12% SDS gels and subsequently transferred to polyvinyli-
dene difluoride (PVDF) membranes. Overnight blocking of the membrane was done in 5%
skim milk, which was followed by 6 h incubation with respective primary antibodies (AhR
(1:1000), CYP1A1 (1:1000), Bcl-2 (1:1000), Bax (1:1000), β-actin (1:5000)). Subsequently, the
membranes were incubated for one h with anti-mouse/rabbit IgG-HRP linked secondary
antibody (1:10,000). The bands were developed with ECL Western blot detection reagent,
imaged and further quantified with ImageJ software [44].

2.7. Molecular Docking Analysis

The structures of the target proteins, orphan nuclear receptor NR1I3/CAR (PDB ID:
1XVP), PXR (PDB ID: 6DUP), CYP1A1 (PDB ID: 4I8V), CYP3A4 (PDB ID: 5VCE) were re-
trieved from PDB database. The water molecules, other ligands and cofactors were removed
from the protein structures, followed by energy minimization using Swiss-PDBViewer
software [46]. Molecular docking was performed with the compounds identified previ-
ously from HS through LC-MS/MS analysis [45]. The ligand structures were downloaded
from the PubChem database [47]. To gain insight into the possible mode of action of the
ligands and the possible interactions with protein, docking studies were performed using
DockThor, which uses a grid-based docking method to compute different modes of ligand
binding on the protein. We have performed site-specific docking with the standard mode
feature of the tool [48,49]. Docking calculations were conducted for each protein with the
centre (average of the X, Y, and Z coordinates) and grid size (20 × 20 × 20) to define the
grid box. The position of the grid box’s centre in each protein is represented in Table 2.
The discretization was kept at 0.25 Å. Later the results were compared with the respective
positive controls for each protein.
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Table 2. Grid box parameters for the protein targets.

Grid Box Center Grid Box Size CYP1A1 1 CYP3A4 2 CAR 3 PXR 4

X 20 −29.0937 22.5109 25.6018 12.2592
Y 20 83.4721 33.3657 54.1912 31.7877
Z 20 2.7617 138.7003 29.5870 24.5412

1 Cytochrome P450 1A1; 2 Cytochrome P450 3A4; 3 Constitutive androstane receptor; 4 Pregnane X receptor.

2.8. Statistical Analysis

All the experiments were done in triplicates and expressed as Mean ± SD. One-way
ANOVA (SPSS 17, SPSS Inc., Chicago, IL, USA) followed by Tukey’s post hoc test was
performed to compare control vs treated and p < 0.05 was considered significant.

3. Results
3.1. HS Extract Pre-Treatment Protects HaCaT Cells from Phe Induced Cell Death

Treatment of Phe to HaCaT cells induced cell death in a dose-dependent manner at
24 h. At lower doses (below 100 µM), Phe did not induce cell death, whereas a signif-
icant reduction in cell viability was observed from 200 µM concentration. The dose of
250 µM, which exhibited 50% cell death, was fixed as the toxic concentration and used
for further studies (Figure 1A). Likewise, a varying range of concentrations of HS extract
(20–100 µg/mL) was checked for toxicity in HaCaT cells. HS extract did not exhibit toxicity
in the tested range for 24 h (Figure 1B), indicating a non-toxic profile of the extract. Further,
the non-toxic range of concentrations of extract were analyzed for their protective effect
against Phe-induced cell death. Pre-treatment with HS extract for 6 h showed a significant
(p < 0.05) increase in cell viability until 60 µg/mL, after which a decrease in the trend
was found for 80 and 100 µg/mL. However, the HS alone treatment (100 µg/mL) group
retained the cell viability similar to the control (Figure 1C).
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Figure 1. (A) Phe induced cytotoxicity in HaCaT cells in a dose-dependent manner (B) Effect of HS
extract on HaCaT cells (C) Pre-treatment (6 h) of HS extract protected HaCaT cells from Phe (250 µM)
induced toxicity in a concentration-dependent manner (n = 3; Significance at p < 0.05; # indicates
Control vs Phe; * indicates Phe vs. HS pre-treatment; HS—Hibiscus sabdariffa; Phe—Phenanthrene).
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The morphological changes in HaCaT cells upon Phe exposure and restoration of cell
viability on pre-treatment with HS were shown in Figure 2. The control group showed
cobblestone morphology (Figure 2A), which is typical for HaCaT cells, whereas Phe expo-
sure altered the morphology and showed rounded and distorted structures (Figure 2B).
However, pre-treatment with HS extract restored the cell morphology indicating the pro-
tective effect (Figure 2C–E). From the observed results, the doses of 50 and 60 µg/mL
(pre-treatment) were fixed for further experiments.
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3.2. Phe Induced Toxicity through the AhR-Independent Activation of CYP1A1

As most of the PAHs exert their toxicity through the AhR-dependent activation of
CYPs, the expression of AhR and CYPs were studied upon Phe-induced toxicity in HaCaT
cells. Firstly, the transcriptional activation of AhR and various CYPs, including CYP1A1,
CYP1B1, and CYP2B, was determined. Significant (p < 0.05) increases in the expression
of CYP1A1 (16.5-fold), CYP1B1 (2.6-fold), and CYP2B (4.0-fold) were observed upon Phe
treatment when compared to the control, whereas no significant change in the expression
of AhR was observed (Figure 3A). The results indicate that Phe exerts toxicity through AhR-
independent activation of CYP1A1. However, the pre-treatment (6 h) with 50, 60 µg/mL
HS extract showed a significant (p < 0.05) reduction in the expression of CYPs (Figure 3A).
Further, the changes in the protein expression of AhR and CYP1A1 were studied. The
results corroborate with the gene expression studies, where a significant upregulation
(p < 0.05) of CYP1A1 was observed with no significant change in AhR expression upon
Phe-induced toxicity, and HS treatment could significantly restore the changes similar
to the control (Figure 3B,C). The results indicate that Phe exerts toxicity through AhR-
independent activation of CYP1A1 and HS pre-treatment exhibits a protective effect through
the inhibition of CYP1A1.

Additionally, the inhibitory potential of the compounds of HS extract identified
through LC-MS/MS analysis [45] against CYP1A1 was performed through docking analy-
sis with the reference compound α-Naphthoflavone (antagonist). The interaction of the
top three hits along with α-Naphthoflavone against CYP1A1 was represented in Figure 4.
The reference compound α-Naphthoflavone exhibited a docking score of −10.314 kcal/mol
and showed interaction with the residues SER89, PHE90, PHE191, PHE225, LEU272,
GLY276, ALA277, and LEU456 (Figure 4A). The compounds of HS extract, including Epi-
gallocatechin 3-O-(3-O-methylgallate) (−10.717 kcal/mol), Pelargonidin 3-O-glucoside
(−10.581 kcal/mol), and N-Feruloyltyramine (−10.37 kcal/mol) showed higher docking
score and interacted in the same binding pocket as that of the reference compound α-
Naphthoflavone (Figure 4B–D).
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3.3. Phe Induced CYP1A1 Activity Was Mediated through the Activation of CAR/PXR/RXR
Nuclear Receptors

To identify the mechanism through which CYP1A1 is activated upon Phe toxicity, the
gene expression of the xenobiotic sensing receptors CAR, PXR, and RXR were analyzed. A
significant (p < 0.05) upregulation in the expression of the nuclear receptors CAR (4.5-fold),
PXR (7.4-fold), and RXR (4.7-fold) were observed upon Phe treatment (Figure 5). How-
ever, a significant reversal in trend was observed upon treatment with HS (60 µg/mL).
The results indicate that the Phe-induced CYP1A1 activity was mediated through the
CAR/PXR/RXR pathway.

Nutrients 2022, 14, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 5. HS extract inhibited Phe-induced activation of the nuclear receptors CAR, PXR and RXR 
to attenuate CYP1A1 expression (n = 3; Significance at p < 0.05; # indicates Control vs. Phe; * indi-
cates Phe vs. HS pre-treatment). 

In addition, in silico docking studies were performed with Phe and the agonist 
CITCO (which can activate both the receptors) against the nuclear receptors CAR and 
PXR. The docking was performed for Phe on the same binding site as CITCO. The docking 
results show that Phe could bind and interact to the same binding site as that of CITCO 
with both nuclear receptors (Figure 6A–D). In the case of CITCO against CAR, the com-
pound could interact with MET66, CYS100, HIS101, and TYR204, similar to that of Phe, 
along with other residues including VAL97, PHE115, VAL130 and LEU140 through Pi-
Sigma, Pi-Pi T-shaped, Pi-Pi stacked and alkyl bonds with a higher binding score of -
11.669 kcal/mol than Phe (−9.025 kcal/mol) (Figure 6A,B). Likewise, against PXR, CITCO 
interacted with VAL56, MET88, PHE133, and TRP144, similar to Phe, along with other 
residues SER92, MET158, LEU159, HIS162, HIS242 and PHE255 through conventional hy-
drogen, Pi-Sulfur, Pi-Pi T-shaped, Pi-Pi stacked and alkyl bonds with higher docking score 
of −10.755 kcal/mol compared to Phe (−9.3 kcal/mol) (Figure 6C,D). Although the docking 
score of Phe is less when compared to the reference compound CITCO, it should be noted 
that the site of interaction is the same, and the difference in the binding scores is relatively 
small; hence Phe can still bind and activate the respective targets. 

Figure 5. HS extract inhibited Phe-induced activation of the nuclear receptors CAR, PXR and RXR to
attenuate CYP1A1 expression (n = 3; Significance at p < 0.05; # indicates Control vs. Phe; * indicates
Phe vs. HS pre-treatment).

In addition, in silico docking studies were performed with Phe and the agonist CITCO
(which can activate both the receptors) against the nuclear receptors CAR and PXR. The
docking was performed for Phe on the same binding site as CITCO. The docking results
show that Phe could bind and interact to the same binding site as that of CITCO with both
nuclear receptors (Figure 6A–D). In the case of CITCO against CAR, the compound could
interact with MET66, CYS100, HIS101, and TYR204, similar to that of Phe, along with other
residues including VAL97, PHE115, VAL130 and LEU140 through Pi-Sigma, Pi-Pi T-shaped,
Pi-Pi stacked and alkyl bonds with a higher binding score of −11.669 kcal/mol than Phe
(−9.025 kcal/mol) (Figure 6A,B). Likewise, against PXR, CITCO interacted with VAL56,
MET88, PHE133, and TRP144, similar to Phe, along with other residues SER92, MET158,
LEU159, HIS162, HIS242 and PHE255 through conventional hydrogen, Pi-Sulfur, Pi-Pi
T-shaped, Pi-Pi stacked and alkyl bonds with higher docking score of −10.755 kcal/mol
compared to Phe (−9.3 kcal/mol) (Figure 6C,D). Although the docking score of Phe is
less when compared to the reference compound CITCO, it should be noted that the site of
interaction is the same, and the difference in the binding scores is relatively small; hence
Phe can still bind and activate the respective targets.

Further, the inhibitory effect of the compounds identified from HS extract against
CAR and PXR was evaluated by molecular docking analysis with CINPA1 (CAR) and keto-
conazole (PXR) as positive controls. Docking was performed at the same site where Phe
was found to bind and activate the receptors. The interaction of positive control CINPA1
and top hit pelargonidin 3-O-glucoside against CAR was represented in Figure 7A,B, and
the interaction of positive control ketoconazole and the top hit Epigallocatechin 3-O-(3-O-
methyl gallate against PXR was represented in Figure 7C,D. Against CAR, the positive
control CINPA1 (−10.091 kcal/mol) and the compounds of HS including pelargonidin 3-O-
glucoside (−11.395 kcal/mol), allo aromadendrene (−11.212 kcal/mol), and Epigallocate-
chin 3-O-(3-O-methyl gallate (−10.913 kcal/mol) showed similar interactions as Phe with
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the amino acids PHE59, MET66, CYS100, HIS101, LEU104, and TYR224. Likewise, against
PXR, the positive control ketoconazole showed a higher docking score of−12.081 kcal/mol,
followed by Epigallocatechin 3-O-(3-O-methyl gallate (−10.655 kcal/mol), pelargonidin
3-O-glucoside (−10.29 kcal/mol), and anisocoumarin H (−9.797 kcal/mol). The com-
pounds showed interactions with amino acids, including VAL56, MET88, PHE133, TRP144
and MET158, which are similar to that of Phe against PXR. The results indicate that the
compounds of HS can block the binding of Phe on the active site of both the receptors and
inhibit their activation to mediate the protective effect.
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3.4. HS Extract Restored the Expression of CAR/PXR Target Genes Encoding Phase-I and II Drug
Metabolizing Enzymes to Protect against Phe Toxicity

The modulation of some of the target genes of CAR/PXR, which encodes Phase-I
and II drug metabolizing enzymes by Phe, was analyzed. The expression of CYP3A4
(6.9-fold ± 0.89), a prototypical Phase-I target of CAR/PXR, was found to be significantly
(p < 0.05) increased, further indicating the activation of the CAR/PXR pathway by Phe.
Likewise, an increased expression of Phase-II target genes by Phe was also observed. For
instance, EPHX1 (2.51 ± 0.23-fold), UGT1A1 (1.39 ± 0.22-fold), SULT1 (4.1 ± 0.07-fold),
GSTM1 (2.22 ± 0.4-fold) and GSTP1 (2.52 ± 0.18-fold) showed a significant (p < 0.05)
increase in expression upon Phe treatment when compared to the control. A significant
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reversal in the effect caused by Phe was observed with HS (60 µg/mL) pre-treatment except
for UGT1A1. The pre-treatment of HaCaT cells with HS further induced the expression of
UGT1A1 significantly (p < 0.05 vs. Phe) in the presence of Phe, whereas HS alone treatment
(1.08-fold) showed no significant change when compared to control (Figure 8).
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Figure 7. Site-specific inhibition of CAR and PXR by compounds (top hit) of HS extract in comparison
with the respective antagonists (A) CINPA1 (inhibitor) against CAR (B) pelargonidin 3-O-glucoside
against CAR (C) Ketoconazole (inhibitor) against PXR (D) Epigallocatechin 3-O-(3-O-methyl gallate
against PXR (CAR—Constitutive androstane receptor; PXR—Pregnane X receptor; CINPA1—Ethyl
[5-[(diethylamino)acetyl]-10,11-dihydro-5H-dibenz[b,f]azepin-3-yl]carbamate).

Further, the inhibitory effect of CYP3A4 by the phytochemicals in HS extract was iden-
tified through docking analysis and the results were compared with Ritonavir (antagonist).
Ritonavir exhibited the highest docking score (−9.935 kcal/mol), which is followed by
Pelargonidin 3-O-glucoside (−8.997 kcal/mol), Epigallocatechin 3-O-(3-O-methylgallate)
(−8.704 kcal/mol) and Anisocoumarin H (−8.36 kcal/mol). The interaction of ritonavir
and the top 3 hits were represented in Figure 9A–D. The compounds of HS interacted in the
same binding site of ritonavir and shared similar interactions (hydrogen, Alkyl, Pi-Sigma,
and Pi-Alkyl bond) with the amino acid residues ARG187, ALA331, ARG333, LEU334,
along with additional conventional hydrogen bonds indicating strong binding.
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3.5. HS Extract Inhibited CYP1A1-Induced ROS Generation upon Phe Toxicity and Restored
Mitochondrial Membrane Potential (∆Ψm) in HaCaT Cells

As the activation of CYP1A1 has been reported to induce ROS generation and alter
∆Ψm, their changes upon Phe-induced toxicity and pre-treatment with HS were mea-
sured. Phe exposure significantly increased ROS formation (135%) compared to the control.
However, HS pre-treatment significantly (p < 0.05) attenuated ROS generation in a dose-
dependent manner when compared to the Phe-exposed group (Figure 10F), indicating
the inhibition of oxidative stress and antioxidant potential of HS. The results were also
supported by microscopic fluorescence analysis where the increase in green fluorescence
was observed in Phe treated group (Figure 10B) compared to the control (Figure 10A),
indicating ROS generation. Moreover, HS pre-treatment inhibited the generation of ROS
and attenuated the toxicity exerted by Phe (Figure 10C–E). Also, ROS generation induced
alterations in mitochondrial architecture, which could be observed from the significant
loss of ∆Ψm (40.5%) during Phe exposure compared to the control. However, HS extract
pre-treatment restored the ∆Ψm in a dose-dependent manner indicating the protective
effect (Figure 10G).
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Figure 10. Pre-treatment of HS extract attenuated ROS formation and loss of mitochondrial mem-
brane potential against Phe toxicity. Fluorescence microscopic images representing attenuation of
ROS formation by HS (A) Control (B) Phe (250 µM) (C) Phe + HS50 (D) Phe + HS60 (E) HS60 (F) Spec-
trofluorimetric quantification of ROS generation as assessed by DCFDA assay (G) Spectrofluorimetric
quantification of mitochondrial membrane potential as assessed by Rhodamine 123 assay (n = 3;
Significance at p < 0.05; # indicates Control vs. Phe; * indicates Phe vs. HS pre-treatment; scale
bar—100 µm).

3.6. HS Extract Protected HaCat Cells from Phe-Induced Apoptosis

As ROS generation and alteration of ∆Ψm can induce apoptotic cell death, the protein
expression of apoptotic and anti-apoptotic proteins Bax and Bcl-2 were evaluated. Phe
exposure significantly upregulated the expression of Bax (1.52-fold) and downregulated
the expression of Bcl-2 (0.75-fold) compared to that of the control, with Bcl-2 to Bax ratio
of 0.49 indicating apoptosis. However, both the concentrations of HS extract restored the
changes and exhibited increased Bcl-2 to Bax ratio of 1.31 and 1.57 for 50 and 60 µg/mL,
respectively, indicating the inhibition of apoptosis (Figure 11A,B).
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Figure 11. (A) Phe-induced apoptosis in HaCaT cells by upregulating Bax expression and down-
regulating Bcl-2 expression whereas, HS pre-treatment attenuated apoptosis and protected the cells
[Lane-1: Control; 2: Phe (250 µM); 3: Phe + HS50; 4: Phe + HS60; 5: HS60] (B) Quantification for
western blot analysis (n = 3; Significance at p < 0.05; # indicates Control vs. Phe; * indicates Phe vs.
HS pre-treatment).

3.7. HS Extract Regulated the Expression of Stress Response and Gluconeogenesis Related Genes
upon Phe Toxicity

A significant (p < 0.05) upregulation of stress response genes NRF-2 (2.76 ± 0.22-fold),
NQO-1 (1.85 ± 0.17), PGC-1α (4.41 ± 0.21), and FOXO-1 (5.55 ± 0.38-fold) was observed
upon Phe-induced toxicity in HaCaT cells (Figure 12). Likewise, the gluconeogenesis-
related genes PEPCK (3.31 ± 0.31-fold) and G6PASE (4.75 ± 0.22-fold), which are the down-
stream target of CYP3A4, were also significantly upregulated in response to Phe exposure.
Nevertheless, the pre-treatment with HS (60 µg/mL) significantly inhibited the expression
of all the genes tested, indicating the attenuation of oxidative stress and gluconeogenesis.
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4. Discussion

Every day, humans are exposed to environmental pollutants, including PAHs, that may
act as carcinogens, teratogens or genotoxicants. Pioneering studies have shown that PAH
exposure occurs through inhalation, absorption, and diet [12–15]. Skin is a major target, as it
is highly exposed to environmental pollutants, which cause wrinkling, hyperpigmentation
and skin cancer [27,28]. Phe is one of the 16 PAHs which have been described by the EPA as
high-priority pollutants [11]. The current study is intended to evaluate the effect of Phe and
the mechanism through which it exerts toxicity in HaCaT cells, as well as the ameliorating
effect of HS extract against Phe-induced toxicity.
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A cross-platform metabolomics study has reported alterations in the amino acid
pool and antioxidant mechanism upon Phe exposure in HaCaT cells, indicating the toxic
nature of the compound and the need for quenching the effect through suitable antioxi-
dants [50]. Concomitantly, Phe (250 µM) exerted a 50% reduction in cell viability at 24 h
through the AhR-independent CYP1A1 activation mechanism. Previous studies have
reported Phe as a weak ligand to AhR, and the mediated toxicity is expected to be Ahr-
independent [51,52]. While the activation of CYPs plays a major role in detoxifying PAHs
entering the body, it is also involved in the generation of toxic metabolites of inert PAHs
through oxidation [53]. A recent study by Rusni et al. (2022) reports that Phe was not
toxic to Javanese medaka with CYP1A1 knockout, with the wild-type being more sensitive,
indicating that the biotransformed metabolites of Phe by CYP1A1 are highly toxic [10].
Hence, inhibitors of CYP1A1 can exhibit a protective effect against Phe-induced toxicity.
Our results show that Phe-induced CYP1A1 expression (both gene and protein) was sig-
nificantly inhibited by HS. The results were supported by docking analysis, where the
compounds present in HS extract, including Epigallocatechin 3-O-(3-O-methylgallate),
Pelargonidin 3-O-glucoside, and N-Feruloyltyramine bind on the active site and showed
potent inhibitory effect (higher binding scores) against CYP1A1, when compared with the
antagonist α-Naphthoflavone [54]. In addition to CYP1A1, Phe-induced gene expression of
other CYPs, including CYP1B1 and CYP2B, were downregulated upon pre-treatment with
HS extract, indicating its protective effect.

As the experimental results point toward the AhR-independent activation of CYP1A1,
the expression of other xenobiotic sensors CAR, PXR, and RXR, which belong to nuclear
receptor superfamilies and are capable of inducing CYPs, was analyzed to elucidate the
mechanism through which the activation occurs. Following the binding of a suitable ligand,
the nuclear receptors, CAR and PXR, form a heterodimer with RXR and bind to their specific
response elements resulting in the transcriptional activation of target genes, including
those involved in drug and energy metabolism [55]. Apart from the specific activation
of CYP3A4, CAR/PXR could also induce CYP1A1 expression [56]. The gene expression
results indicate that upon Phe-induced toxicity, the expression of CAR, PXR, and RXR is
significantly upregulated along with the induction of CYP1A1 and CYP3A4. Our results are
in accordance with the previous study, which reports that Phe can effectively activate CAR
to induce hepatotoxicity in mice [57]. The results obtained in vitro were supported with
docking analysis, where Phe was found to bind on the active site of both CAR and PXR
with similar interaction sites as that of the agonist CITCO [58,59], indicating the activation
of the pathways upon Phe exposure. However, HS extract exhibited a protective effect
by significantly downregulating the expression of CAR, PXR, and RXR, as well as their
target CYP3A4. Moreover, the compounds of HS exhibited strong inhibitory potential
against CAR (pelargonidin 3-O-glucoside, allo aromadendrene, and Epigallocatechin 3-
O-(3-O-methyl gallate) and PXR (Epigallocatechin 3-O-(3-O-methyl gallate, pelargonidin
3-O-glucoside, and anisocoumarin H) similar to the reported inhibitors CINPA1 (CAR) [60]
and ketoconazole (PXR) [61]. The interacting site and the amino residues in both the
receptors by the compounds were similar to that of Phe. This suggests that the compounds
of HS can positively compete with Phe to bind to the receptors and exert their inhibitory
effect. Further, the compounds of HS (Pelargonidin 3-O-glucoside, Epigallocatechin 3-O-(3-
O-methylgallate) and Anisocoumarin H) showed strong inhibitory potential in docking
analysis against CYP3A4 similar to the antagonist Ritonavir [62]. Previous studies have
reported the inhibition of CYP3A4 by pelargonidin, green tea catechins and coumarins,
indicating the need for exploring the bioactive compounds for their protective activity
against Phe exposure [63–65].

Pioneering studies have reported on the altered expression and activity of Phase II
metabolizing genes and enzymes upon Phe exposure. Epoxide hydrolase 1 (EPHX1) is an
important biotransformation enzyme during Phe metabolism. After the initial metabolism
by CYPs, EPHX1 acts on the formed metabolites of Phe to convert them into dihydro-
diols [66]. Although the metabolism by EPHX1 seems to be more of a detoxification
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step, the further formed metabolites, including 1-hydroxy phenanthrene and 9-hydroxy
phenanthrene, were reported to be toxic in Danio rerio [67]. Corroborating with these
reports, Phe exposure induced toxicity through the upregulation of EPHX1, which is
attenuated upon HS extract. The genes GSTM1 and GSTP1 encode for the isozymes glu-
tathione S-transferase Mu 1 and Pi 1, respectively. The GSTs catalyze the conjugation of
glutathione with the formed electrophilic metabolites, and the reduced expression of GSTs
has been reported to limit the detoxification efficiency [68]. Studies on human subjects
report that in GSTM1 negative individuals, Phe may enter into bioactivation pathways
with higher PAH-DNA adduct formation [69,70]. Sulfotransferase (SULT1A1) and uridine
5′-diphospho-glucuronosyltransferase (UGT1A1) show substrate specificity to phenolic
and lipophilic compounds, respectively, thereby enhancing the water solubility for clear-
ance [71], and the expression of both SULT1A1 and UGT1A1 are upregulated during Phe
exposure [57,72]. In accordance with the previous reports, in the current study, the expres-
sion of GSTM1, GSTP1, SULT1A1 and UGT1A1 were significantly upregulated upon Phe
exposure, indicating the activation of the host cell’s survival mechanism against toxicity.
Meanwhile, HS treatment, except for UGT1A1, showed a dose-dependent reduction in the
expression of GSTM1, GSTP1, and SULT1A1, which may be because of the unavailability of
electrophilic/phenolic metabolites due to the inhibition of CYP1A1 by the extract.

Additionally, PAH-induced CYP1A1 has been reported to generate ROS, demonstrat-
ing a link between xenobiotic mechanisms and oxidative stress [73,74]. With no exception,
Phe has been previously demonstrated to induce ROS generation in A549 cells and Eisenia
foetida and alter ∆Ψm in Gobiocypris rarus [75–77]. In line with the previous reports, Phe
exposure to HaCaT cells caused oxidative stress-mediated toxicity and reduced ∆Ψm.
In addition, oxidative stress upon Phe toxicity induced apoptosis in HaCaT cells, which
could be observed from the decrease in Bcl-2 to Bax ratio concomitant to the previous
study, where Phe has been reported to induce apoptosis in neuronal cells [36]. However,
HS pre-treatment protected the cells from apoptosis by increasing the expression of Bcl-2.
Moreover, there was a significant upregulation in the expression of antioxidant response
genes NRF-2, NQO-1, FOXO-1, and PGC-1α upon exposure to Phe, along with genes in-
volved in gluconeogenesis (PEPCK, G6PASE). Previous studies have demonstrated that Phe
exposure induces the antioxidant response genes to cope with the building toxicity in the
host system [76]. However, HS pre-treatment significantly downregulated the expression
of stress response genes (NRF-2, NQO-1, FOXO-1, and PGC-1α), which could be due to
the inhibition of CYP1A1 and associated toxicity. Moreover, treatment with HS alone
(60 µg/mL) significantly upregulated the antioxidant genes, which could be due to the
reported antioxidant potential of the extract [44]. The transcriptional regulation of PEPCK
and G6PASE is under the control of CAR/PXR/RXR. The activation of the CAR/PXR path-
way has been demonstrated to inhibit gluconeogenesis through the suppression of PEPCK
and G6PASE [78]. In addition, the transcriptional regulation of PEPCK and G6PASE is also
highly dependent on FOXO-1, the suppression of which subsequently downregulates both
genes, thereby affecting gluconeogenesis [79]. Further, PGC-1α acts as a transcriptional co-
activator for FOXO-1 and induces gluconeogenesis-related genes [80]. Due to the activation
of the CAR/PXR pathway, although it is expected for the downregulation of PEPCK and
G6PASE, our study indicated upregulation upon Phe exposure, which is in contradiction
with the previous report. This may be regarded as an adaptive strategy by the cells due to
the increased need for energy demand, so that glucose can be conserved for ATP genera-
tion or channelled towards the phosphogluconate pathway for the generation of NADPH
to combat Phe-induced oxidative stress [81,82]. However, HS pre-treatment (60 µg/mL)
significantly downregulated the expression of PEPCK and G6PASE (though expected to be
upregulated due to CAR/PXR inhibition), which could be due to the downregulation of the
co-activators FOXO-1 and PGC-1α upon the attenuation of oxidative stress by the extract
to bring cellular homeostasis [83,84]. In addition, calyxes of HS were reported to inhibit
gluconeogenesis in older women through the downregulation of the cortisol pathway [85].
Cortisol can stimulate the expression of PEPCK and G6PASE to induce gluconeogenesis [86].
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The downregulation of PEPCK and G6PASE in the current study could be extrapolated to
the attenuation of cortisol by HS extract.

5. Conclusions

The results of our study demonstrate that Phe induces toxicity through CAR/PXR/RXR-
mediated CYP1A1 and CYP3A4 activation. Pre-treatment with HS extract effectively
inhibited the mechanism and restored the subsequent changes in the transcriptional activity
of genes involved in stress response, gluconeogenesis and phase I and II metabolism and
attenuated apoptosis in HaCaT cells. The bioactive compounds (epigallocatechin 3-O-(3-
O-methylgallate), pelargonidin 3-O-glucoside, anisocoumarin H and N-Feruloyltyramine
of HS are of potential interest as they could inhibit CYP1A1 and CYP3A4 evidenced by
docking analysis. Further studies of the extract and phytochemicals in higher experimental
models would provide valuable information on the therapeutic application of H. sabdariffa
against PAHs.
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