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PharmML in Action: an Interoperable Language for
Modeling and Simulation

R Bizzotto1, E Comets2,3*, G Smith4, F Yvon5, NR Kristensen6 and MJ Swat5,7

PharmML1 is an XML-based exchange format2–4 created with a focus on nonlinear mixed-effect (NLME) models used in
pharmacometrics,5,6 but providing a very general framework that also allows describing mathematical and statistical models
such as single-subject or nonlinear and multivariate regression models. This tutorial provides an overview of the structure of
this language, brief suggestions on how to work with it, and use cases demonstrating its power and flexibility.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 651–665; doi:10.1002/psp4.12213; published online 15 September 2017.

THE PharmML LANGUAGE

Over the past decades, Modeling and Simulation have
become a prominent approach to analyze data from preclini-
cal and clinical trials, as well as to better understand the
properties of complex systems in biology. The types of data
collected in these trials and experiments are extremely vari-
able, in terms of both measured outcomes and designs. This
gave rise to new disciplines, in particular pharmacometrics,
which is defined as the science of quantitative pharmacol-
ogy7 and specializes in mathematical and statistical methods
to characterize, quantify, and predict the pharmacokinetics
(PK) and the effect of drugs (pharmacodynamics, PD), and
quantitative systems pharmacology (QSP), which combines
computational and experimental methods to elucidate, vali-
date, and apply new pharmacological concepts to the devel-
opment and use of small molecules and biologic drugs.8 A
common feature in these different disciplines is the need to
define mathematical models, although the meaning and
scope of what constitutes a model may vary widely across
applications and purpose of the analysis. From a methodo-
logical point of view, estimation approaches, simulation meth-
ods, and integration algorithms were developed and refined
to handle this expanding amount of data and the types of
models developed to describe them. They have been imple-
mented in a number of different tools, such as NONMEM9

and Monolix10 in pharmacometrics, or Simcyp Simulator in
QSP.11 Because of the way they have evolved, these tools do
not necessarily talk to each other, even within a single field,
and even less across disciplines. This makes it difficult to per-
form integrated analyses or even to compare different esti-
mation or simulation approaches on the same application,
and limits cross-fertilization across fields. Because the model
is at the core of every analysis, the first step to remedy this
situation is to define a standard to encode models, which
acts as a common hub for each software to connect to, and
helps to frame the models in a way that is consistent across
disciplines. A similar effort, which started more than 15 years
ago, was undertaken in the Systems Biology community and

led to the creation of the SBML standard, again an XML-
based format developed to encode computational models of
biological processes.12 The SBML standard has fostered a
major burst in research and development of new tools13 and
model repositories14–16 and is an essential component in
sustainable model building based on standard formats and
open storage of models.17

These considerations prompted the creation of the Drug
Disease Model Resources (DDMoRe) consortium in 2011,
aiming to improve the quality, efficiency, and cost-effectiveness
of Model-Informed Drug Discovery & Development18 (http://
ddmore.eu). A major undertaking of the DDMoRe project was
the development of a language allowing expressing a large
variety of models from both pharmacometrics and QSP,
and allowing their encoding in a machine understandable
format that could be shared across software through the
development of translators and connectors. This language,
PharmML, is a declarative language, which is a necessary
condition to achieve interoperability among the tools used in
pharmacometrics.

The use of XML to define schemas for exchange formats is
widely adopted across various industries and scientific areas
(https://en.wikipedia.org/wiki/Category:XML-based_standards).
It allows defining domain-specific elements in a way which is
both human and machine readable. The creation of the
PharmML schema required in-depth analysis of pharmacomet-
rics and the models it uses, especially the nonlinear mixed
effect models, and was based on textbooks that describe the
mathematical and statistical foundations of the domain.5,6

PharmML can already interact with major software in the
Modeling and Simulation arena, such as the population PK/
PD-specific software Monolix10 and NONMEM,9 the general
statistical software R,19 and the Bayesian inference soft-
ware WinBUGS20 (Figure 1). Indeed, within the DDMoRe
framework, a number of converters have already been cre-
ated to automate calls to these “target” software, demon-
strating that PharmML can be used as a cornerstone in
interoperability. This tutorial is expected to facilitate further
development of these and new converters, to foster the
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development of PharmML editors and graphical tools, and
to encourage life scientists to approach this powerful and
flexible language in order to make their daily job less prone
to language-related bottlenecks and more suitable for
cross-fertilization. The development of PharmML went
through many different steps (see http://www.pharmml.org/
for an overview), but this tutorial focuses on the scope and
features of version 0.8.1.

Scope of PharmML
PharmML supports both continuous and discrete data models
and has been validated against a wide range of real-life
pharmacometric21 and life sciences models. A strength of
PharmML is that it can be applied to any kind of deterministic
model that can be formulated using algebraic, ordinary, and
delayed differential equations, covering most models encoun-
tered in PK, PD, PK/PD, or QSP. Discrete data models pose a
challenge, as they come in a large variety: PharmML provides
a rich vocabulary to cover count, categorical, and time-to-
event data models, Markovian dependencies, and censor-
ing.6,22–24 Combinations of any number of observations in one
model is permitted. Modeling individual and population
parameters is one of the key ingredients in pharmacometrics.
The former especially requires a rich and flexible supporting
structure. PharmML allows to express fixed and random
effects, population values, and covariates in a well-structured
form, e.g., as Gaussian models, or to combine them in an
arbitrary expression. Continuous and categorical covariates,
and intrinsic or extrinsic variables that may influence the PK
or PD of a drug,5,25 are supported, together with the declara-
tion of their distribution, transformation or interpolation.

Overall structure of PharmML
Figure 2 gives a comprehensive view of a full PharmML
code, with its different components delineated by colored dot-
ted lines. The language is structured through markup con-
structs that provide a hierarchical definition of components
and subcomponents. Each of them is called block or element
(the former allows referencing) and is identified by a pair of
beginning and ending tags (e.g., <RandomEffects> and
</RandomEffects>, respectively, within the Parameter

Model) or by a unique self-closing tag, ending with / (e.g.,
<ct:SymbRef symbIdRef5"eta_Psi"/>, again within

the Parameter Model). The markup format provides a struc-

tured yet flexible way for content organization.
The description of the structural (i.e., deterministic) model,

as well as the parameter, variability, covariate, and observa-

tion models, is included in a comprehensive PharmML sec-
tion called “Model Definition” (Figure 2, green box). A

second language element is the “Trial Design” section (Fig-

ure 2, light blue box), which describes inputs to and outputs

from the system. Within pharmacometrics this typically
encompasses drug treatment regimens and interventions for

a subject or groups of subjects, and sampling schedules

defining when observations are collected and for which

model components; within QSP, the Trial Design can define

system perturbations and resulting outputs. On any design
element, the set of its possible values, defining a design

space, can also be declared for simulation or optimization

purposes. ATrial Design can be described explicitly or implic-

itly, i.e., without or with the aid of external files, respectively.

The third PharmML component is the “Modeling Steps” sec-
tion containing the description of estimation, simulation, or

design evaluation/optimization tasks with their characteristic

features and the target software settings required for their

execution (Figure 2, red box). These three components and
their main internal blocks are shown schematically in the

“Supplementary information – Figures” file: the overview

is provided by Figure S1, while the detailed structure of each

block is shown in Figures S2 to S4.
Model Definition, Trial Design and Modeling Steps sec-

tions form the backbone of PharmML and underpin its hier-
archical structure. The next three chapters of this article

address each of them in turn. The chapter WORKING

WITH PharmML briefly describes useful ways for creating,

validating, and converting PharmML codes.

PharmML use cases
PharmML can be used to define a variety of models, trial
designs, and tasks. We provide several detailed examples

in a supplementary file (“Supplementary information –

Figure 1 PharmML at the center of interoperability. Once a PharmML model is formulated, using the MDL-IDE or the infix2pharmml
tool or translating from SBML, the model can be moved to any PharmML compatible target software and the target output can be
translated into a standardized file using the SO format.
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Figure 2 PharmML code example: visualization of the essential elements of the code implementing a basic continuous data model
(this is apparent from the observation model, adopting the <ContinuousData> tag). Note that for the purpose of illustration, the trial
design section (blue) contains both the dataset sourcing (NONMEM/Monolix format) and the explicit design, but usually only one of
them is used. The modeling step section (red) declares as an example an estimation task but other tasks are feasible as well. The yel-
low and gray sections show lines of code providing the header and closure of the code (yellow) and the statement of the name and
description of the model, its independent variable and any user-defined functions (gray).
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Examples”) providing for each example the PharmML
code, the corresponding codes for execution in at least one
target software, and the output files obtained from the execu-
tions. The first use case describes the PK/PD of the anticoag-
ulant drug warfarin; we use it to demonstrate typical PK/PD
workflows including the estimation of parameters using data
from a clinical study, the introduction of interoccasion

variability on the PK parameters, the modeling of side effects
through time-to-event models, and the use of the estimated
parameters to design a new study through optimal design.
The second use case depicts the minimal model of glucose
kinetics and insulin action and shows how to define a single-
subject model and an explicit trial design. Finally, the third use
case demonstrates the connection between PharmML and

Figure 3 Essential building blocks of a general NLME model. Top: the observation model for continuous data can be defined via three equiv-
alent options, the “structured,” “distribution,” and “equation” types. Their application to a Gaussian observation model is shown, but other
models are allowed as long as e’s are symmetrically distributed with null mean. The shown count data model is a Poisson one, with constant
or time varying parameter; other models include negative binomial, generalized Poisson, etc. Nominal and ordered categorical data models
can be formulated with a probability mass function and cumulative/tail probabilities per category, respectively. Time-to-event data models
can be specified by survival or hazard functions. Middle, left: the structural model prediction can be formulated using ODEs, algebraic equa-
tions, or PK macros. Middle, right: there are three equivalent options to encode a parameter model, the “structured,” “distribution,” and
“equation” types: an exemplification is shown for each case. Bottom, left: continuous and categorical covariates can be described via multiple
options, able to define, where applicable, their distribution, interpolation, transformation, or declaration (for new covariates). Bottom, right:
the variability model keeps the available information about parameter- and residual-error-related variability levels and their structure.
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SBML by reimplementing the mitotic oscillator model from the

BioModels repository.14,15,43 Moreover, the “Supplementary

information – Code snippets” file shows additional useful

code snippets destined to highlight further capacities of this

new language and to illustrate the concepts presented within

this tutorial.

MODEL DEFINITION

The Model Definition is the core of PharmML. It allows to

encode all required components of NLME models, used to

describe studies in which data are collected repeatedly (usu-

ally at different timepoints) from several experimental units

(subjects). Indeed, the language contains elements to declare

the models for the variability structure, the covariates, the

parameters, the (deterministic) structure (of the predicted

data), and the observations, as shown in Figure 2 (left). The

theory of NLME is beyond the scope of the present article and

can be found for instance in Lavielle’s book6 or Bonate’s

book,5 from which we borrow mathematical notations and def-

initions here in order to explain the models covered by and

expressed in PharmML. Following Lavielle,6 we define a

model as a joint probability distribution describing the relation-

ships between variables. Assuming i denotes the subject

index and yij is the jth observation in this subject, a general

NLME model is shown in Figure 3. The first description level

is the observation model, describing the probability distribu-

tion of yij for given values of some independent variables xij

which may be controlled in the experiment (also called design

variables, such as doses and time, t, in a PK study), condi-

tional to the subject-specific set of parameters for the subject

i, wi. For continuous responses, the wi are the parameters of a

structural model, f. For discrete responses, the observation

model may require defining specific elements, for example the

categories (cat1, cat2, . . ., catK) of a categorical outcome with

their associated probabilities (p1, p2, . . ., pK), or the survival

(S) or hazard (h) function associated with an event, the out-

come of a time-to-event model. The second description level

of a general NLME model is the parameter model, describing

the distribution of the parameters wi: each individual parame-

ter is described through a typical population parameter, wpop,

some individual covariates, ci, the coefficients of the fixed

effects from those covariates, b, and a subject-specific ran-

dom effect, g. Both the continuous responses of the

observation model and the individual parameters of the

parameter model can require transformations (u(�) in the for-

mer and h(�) in the latter case): as detailed below, PharmML
allows to encode the transformed (or untransformed) data

and parameters in multiple ways, i.e., through the definition of

distributions, structured equations, or arbitrary functions (U(�)
in the observation model and H(�) in the parameter model).

Various elements of the NLME models, e.g., the probabil-
ity of observing a given residual error, or the distribution of

parameters or covariates, are described using a wide range

of probability distributions. Encoding of these elements can

be greatly facilitated with an external reference database of
distributions. For this purpose, DDMoRe developed Pro-

bOnto (http://probonto.org), a knowledge base and ontology

covering a large family of distributions.26 ProbOnto now

contains over 100 univariate and multivariate probability dis-
tributions along with their defining functions and interrela-

tionships, and has proved to be particularly helpful in the

encoding of discrete models, abundant in pharmacometrics,

such as the zero-inflated Poisson, zero-inflated negative
binomial, and generalized Poisson models, with various

parameterizations.22–24,27

The rest of this section describes the different parts of

the PharmML Model Definition. A detailed overview of its

structure is provided by Figure S2 in the “Supplementary
information – Figures” file.

Observation model
PharmML provides comprehensive support for the encod-

ing of observation models for continuous and discrete data

via the <ObservationModel> block.

Continuous case. A large number of observation models can
be written as a structured equation corresponding to the fol-

lowing template:

uðyÞ5uðfÞ1gð. . .Þ � (1)

where u defines a transformation, such as log, logit, Box-

Cox, and probit, e is a residual error with symmetrical distri-

bution with mean 0, and g(. . .) expresses the standard
deviation of the residual variability, which may depend on

the prediction f and on additional parameters. The default

identity transformation, u(y) 5 y, is equivalent to an untrans-

formed data model. This is called the structured observa-
tion model. It is encoded within the <Standard> element,

and is able to handle untransformed and both-sides-transformed data, and reads in (abbreviated) PharmML as:
<ObservationModel blkId5om1>

<Transformation type5u/>
<ContinuousData>

. . .
<RandomVariable>. . .</RandomVariable> <!– epsilon definition –>
<Standard symbId5y>

<Output>. . .</Output> <!– reference to f –>
<ErrorModel>. . .</ErrorModel> <!– definition of g –>
<ResidualError>. . .</ResidualError> <!– reference to epsilon –>

</Standard>
</ContinuousData>
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</ObservationModel>
In this and other code snippets we use attributes, such as

symbId/symbIdRef, blkId/blkIdRef, oid/oidRef, which help to
declare/define and reference model/trial design elements,
and comments. See Chapter 1 in the “Supplementary
information – Code snippets” file (referred to in the follow-
ing in the abbreviated form CS-1) for a detailed explanation
of their usage.

A special case of a structured observation model is the
Gaussian model, by far the most commonly used in NLME
models, with e � N(0,1). This means that u(y) in (1) is nor-
mally distributed with mean u(f) and standard deviation g(. . .).
The Gaussian implementation for the combined error model

y5f1ða1b fÞ � � � Nð0; 1Þ (2)

where a and b are the parameters of the error model, is
provided in CS-2.1.

Another option to specify the observation model is the
explicit distribution notation, used for example in WinBUGS,
which in its general form reads

uðyÞ � DistribNameðp1; p2; . . .Þ (3)

where DistribName is the name of a suitable distribution
and p1, p2, . . . are its parameters. (2) reads in this format

y � Nðf ; ða1b fÞ2Þ (4)

which corresponds to the PharmML code in CS-2.2, using the
element<General> and its child element<Distribution>.

A third option, using the <AssignStatement> element,
is to utilize an explicit equation-type notation for which an
arbitrary expression on the right-hand side is permitted:

uðyÞ5Uðf ; n; �1; �2; . . .Þ (5)

where U is an arbitrary function of its arguments, i.e., the
structural model, f, the parameters, n, and any number of
residual errors defined as normally distributed random vari-
ables, e1, e2, . . .. Some models can only be expressed
using this last notation: an example is provided in CS-2.3.

Discrete case. Noncontinuous data can be categorized into
categorical, count, or time-to-event data, and all of them can
be implemented via the <Discrete> element. Within the
<CategoricalData> subelement, nominal categorical
data models are typically specified by assigning probabilities
to each category, i.e., defining the probability mass function
of the Bernoulli or categorical distribution. For ordered cate-
gorical data, e.g., pain score records, the model formulation
involves (transformed) cumulative or tail probabilities. For
example, the proportional odds model28 may read

logitðPðyij � cat1ÞÞ5h11h2 f ðxij ;wiÞ (6)

where P is the probability operator, cat1 is a data category, and
H1 and H2 are model parameters. The corresponding propor-
tional odds model reads in PharmML as specified in CS-2.4.

Count or frequency data models, described via the
<CountData> subelement, specify an appropriate

distribution,22,24 e.g., Poisson, and a relationship between
the distribution parameters (k in the following example) and

the explanatory variables (e.g., the drug concentration):

yij � Poissonðkðxij ;wiÞÞ (7)

The matching code snippet is shown in CS-2.5.
In time-to-event analyses, the random variable represents

the time until the occurrence of an event. The model,

described by the <TimeToEventData> subelement, is

fully defined by a survival or a hazard function (see CS-2.6
for an example).

Markov dependencies are very common in NLME models

and can also be expressed in PharmML (see CS-2.7 for an

example).

Structural model
Within pharmacometric analyses, it is commonly assumed
that the same structural model f can be used to describe

different subjects in the population, while the model individ-

ual parameters express the between-subject variability. The
structural model is defined as a parametric function, and

PharmML offers multiple options to express it within the

<StructuralModel> block. Using a basic oral PK model
as an example (Figure 4), we describe here three of them:

ordinary differential equations (ODE), algebraic functions,

and PK macros.
The following system of equations provides the complete

mathematical formulation of the considered PK model:

dAd

dt
52ka Ad (8)

dAc

dt
5ka Ad 2k Ac (9)

C5
Ac

V
(10)

where t is the time variable, Ad and Ac are the drug
amounts in the depot and central compartments, respec-

tively, C is the drug concentration in the central

Figure 4 Schematic representation of a PK model for oral
administration to a one-compartment distribution model with lin-
ear elimination. Ad and Ac are the drug amounts in the depot
and central compartments, respectively; ka is the first-order
absorption rate from the depot compartment and k is the first-
order elimination rate from the central compartment. Virtually
any compartmental PK model can be represented alternatively
by a set of ODEs, algebraic equations, or PK macros.
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compartment, with volume V, ka is the first-order absorption

rate from the depot compartment, and k is the first-order

elimination rate from the central compartment. Assuming a

single dose administration, D, at initial time 0 leads to the

initial conditions Ad(t50) 5 D and Ac(t50) 5 0. The two ordi-

nary differential equations can be implemented via the

<DerivativeVariable> element, describing the right-

hand term of the ODE and its initial condition (see CS-3.1

for the code for (8)).
An ODE system can contain any number of equations,

meaning, for example, that complex physiology-based phar-

macokinetics (PBPK) models are encodable as well.
The equations system above has an algebraic solution

that can be alternatively used in PharmML directly via the

<Variable> element (see the definition of C in CS-3.2 as

an example of variable assignment).

AcðtÞ5
k

ka2k
ðe2kt 2e2ka t Þ

PharmML supports yet another way to express this PK

model, in the form of the PK macros used in MLXTRAN,29

the language of Monolix.10 This is a powerful way to formu-

late compartmental PK models from their schematic repre-

sentation, in this case:

compartment(amount=Ac, concentration=C, volume=V)
oral(ka)
elimination(k)

Two PharmML examples using the element <PKmacros>
are provided in CS-3.2.

In addition, several structural models can be combined

together in PharmML according to the modularity principle.

Finally, PharmML also offers the possibility to define mod-

els involving delayed differential equations.

Parameter model
The <ParameterModel> block is the place where typical

parameter values, fixed effects of covariates, random effects

and their correlation can be integrated into an individual param-

eter model, described via the <IndividualParameter>
element. Individual parameters are defined as the combina-

tion of fixed effects, which are shared across subjects and

represent the typical values of the parameters in a group of

individuals with the same covariates values, and random

effects, which characterize the single subject. The latter are

introduced via the <RandomVariable> element.
Three equivalent models can be used to express a

parameter model and are described below. CS-4.1 to CS-

4.4 provide the code snippets for their equations and for an

example of mixture model.

Structured model (S-type). The characteristic of this repre-

sentation is that all its elements are unambiguously defined

through specialized PharmML elements. A typical S-type

model consists of a transformation, a typical value, the fixed

effects of the covariates, and the random effects.6 The fol-

lowing equation, for example, describes a simple lognormally

distributed volume parameter, with individual value Vi, typical
value Vpop and random effect gV:

log ðViÞ5log ðVpopÞ1gV (11)

A straightforward extension describes the so-called linear
covariate model. Covariates inform the pharmacometric
model about patient demographics, laboratory measure-
ments, and many other intrinsic/extrinsic factors used to
explain part of the variability in the pharmacokinetics or
pharmacodynamics of a drug.5 Using here the body weight,
W, with median equal to 70 kg, and denoting the associ-
ated fixed effect with bV, (11) can be extended to:

log ðViÞ5log ðVpopÞ1bV log ðW=70Þ1gV (12)

Parameter models with a nonlinear covariate model in
which multiple fixed/random effects and covariates are
incorporated are also allowed in PharmML (CS-4.5).

Distribution-based model (D-type). In this case, the parame-
ter distribution is explicitly specified, without referring to the
random effect. The D-type model corresponding to (12) reads:

log ðViÞ � N log ðVpopÞ1bV log ðW=70Þ;xV
� �

(13)

where xV is the standard deviation of the chosen normal
distribution.

Equation-based model (E-type). This is the most flexible
declaration, with the general form wi 5 H(b, ci, gi), where H
is a transformation and b is the set of coefficients for the
fixed covariate effects. Any expression and any number of
fixed/random effects and covariates is allowed using this
model. The lognormally distributed parameter described by
(12) and (13) reads in this case:

Vi 5Vpop ðW=70ÞbV egV ; gV � Nð0;xV Þ (14)

Parameter mixture models are supported as well, through
the MixtureDistribution in ProbOnto.

Each representation of the parameter model can handle
any number of nested variability levels, as introduced in Vari-
ability Model, below. For example, a study in which every
subject is followed on two or more occasions (Figure 5)
needs to be described with two levels of variability, the refer-
ence subject level denoted by index i and the occasion level
denoted by index k. In this case, for a simple model on vol-
ume V, without covariates, the three equivalent representa-
tions mentioned above read:

log ðVik Þ5log ðVpopÞ1gð0Þi 1gð1Þik (15)

log ðVik Þ � N log ðVpopÞ;x1c
� �

(16)

Vi5Vpop ðW=70ÞbV egð1Þi egð1Þik

with gð0Þi � Nð0;xÞ and gð1Þik � Nð0; cÞ:
(17)

The PharmML implementations for models (15) and (16)
are provided in CS-4.6, while model (17) is a straightfor-
ward modification of (14).
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Correlation of random effects within each level of variabil-

ity can be expressed in PharmML pairwise, referring to the

corresponding couple of random effects, or using correla-

tion or covariance matrices (see CS-4.7 for an example).
Typical parameters can also be assigned a distribution, in

the context of hierarchical modeling or Bayesian inference,

or any arbitrary algebraic expression. Finally, basic parame-

ters can be instantiated as well, through a simple parame-

ter declaration or an algebraic expression assignment. This

is useful in QSP, where the distinction between individual or

population parameters is usually not required or possible.

Covariate model
The covariates used to define the individual parameters are

described in the <CovariateModel> block, which pro-

vides the modelers with multiple options to declare and

perform various operations on categorical and continuous

covariates. The definitions in this model can be overwritten

by declarations in the <TrialDesign> block. The avail-

able options are provided below.

Distribution. As an example, the following snippet imple-

ments a conditional log-normal distribution of body weight,

W, for male, SEX 5 M, and female, SEX 5 F, with gender-

specific parameters for the mean, l(F,M), and the standard

deviation, r(F,M):

W � LNðlF ;rF Þ if SEX5F (18)

W � LNðlM ; rMÞ if SEX5M (19)

This is the PharmML code (see CS-5.1 for the full imple-

mentation), using the <Distribution> element:

Figure 5 Parameter-related variability arising from the analysis of the study design. Two sources of unexplained parameter variability
are represented: the interindividual (IIV) and interoccasion (IOV) ones. Variability affects here the volume of distribution, V, which is
assumed to be log-normally distributed. Starting from a given typical value, log(Vpop), the IIV level arises first and is denoted with the
superscript (0) (the top panel visualizes only two subjects), followed by the IOV level, with superscript (1) (the top panel visualizes two
occasions for subject 1 and three occasions for subject 2). Some models from the “Supplementary information – Examples” file (bot-
tom panel) exemplify the implementations of both IIV and IOV.
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<CovariateModel blkId5“cm1”>
<Covariate symbId5“W”>

<Continuous>
<Distribution>

<math:Piecewise>
<!–– piecewise formula
skipped for brevity ––>

</math:Piecewise>
</Distribution>

</Continuous>
</Covariate>

</CovariateModel>

Assignment. In the Cockcroft–Gault model of creatinine
clearance,30 the latter, CrCL, is defined based on four other
covariates, i.e., body weight, W, sex, SEX, age, Age, and
serum creatinine concentration, Scr:

CrCL5
ð1402AgeÞW 0:85

72 Scr
if SEX5F (20)

CrCL5
ð1402AgeÞW

72 Scr
if SEX5M (21)

For categorical covariates, e.g., Sex, a simple declaration
of the categories is fully sufficient for an estimation or a
design evaluation/optimization task, while the probabilities
associated to each category also need to be included for a
simulation task. CS-5.2 and CS-5.3 provide the codes for
the definitions of both creatinine clearance and sex.

Interpolation. When continuous covariates are provided
through datasets or lookup tables, they appear as time-
discrete values. Within the <Interpolation> element,
the modeler can decide to use her/his own interpolation
algorithm for the intermediate values or choose one from
the following list: constant, nearest, linear, spline, pchip,
cubic, lastValue. PharmML allows also to declare indepen-
dent interpolation variables with respect to which the covari-
ate of interest is to be interpolated: e.g., body weight may
be interpolated with respect to age or trial duration (see
CS-5.4 for an example).

Transformation. Covariates, once defined, may be transformed
through a mathematical expression, yielding a new symbol
identifier (symbID) via the <TransformedCovariate>
element to distinguish it from the base covariate. This is
especially useful in connection with the structured parameter
model (S-type, see Parameter Model). Instead of creating a
new covariate, a desired transformed form is defined and
then used within the linear covariate model of an individual
parameter (see (12) for an example). A typical example is the
body weight transformation, implemented in CS-5.5.

Random realization. For simulation purposes, assignment of
randomly sampled values according to any distribution featured
in ProbOnto is also available (see CS-5.6 for an example).

Variability model
The variability structure is defined in PharmML by the
<VariabilityModel> block. Variability can be defined
for both the model parameters and the observations. Fig-
ure 5 shows an example with two levels of variability for a

parameter: interindividual variability, representing differ-

ences between subjects, and interoccasion variability, rep-
resenting parameter fluctuations within the same subject at

different periods (called occasions) during a study. This can
be implemented in PharmML as follows:

<VariabilityModel blkId5“vm1”
type5“parameterVariability”>

<LevelreferenceLevel5“true” symbId5“indiv”/>
<Level symbId5“iov1”>

<ParentLevel>
<ct:SymbRef symbIdRef5“indiv”/>

</ParentLevel>
</Level>

</VariabilityModel>

where the first variability level, called “ indiv,” is consid-
ered as the reference and used as the parent level for the

second level of variability, called “ iov1.” A straightforward
extension is, for example, the inclusion of different study

centers at one level of variability above the subject level.
Finally, more than one variability level can be defined on

the observations, thus allowing to model the so-called inter-

replicate variability, i.e., the random differences between dif-
ferent replicates of the same measurement. A hierarchy

between the level of the observations and the level of the
replicates is defined similarly to what is done for individual

parameters at different occasions.

Final notes
As discussed above, the majority of parameter and obser-

vation models is encodable in three equivalent forms, as
structured, distribution-based, and equation-based models.

However, whenever possible models should be encoded as
structured models in PharmML, which ensure the highest

degree of interoperability, as they can be automatically
transformed into the other two types. The reverse direction

does not work without human supervision or would require
a powerful symbolic software for translation. Therefore the

E-type, despite being the most flexible, is not interoperable.
Moreover, some estimation algorithms, e.g., SAEM, require

structured models to work efficiently.
This section concludes the description of the Model Defi-

nition components. Many different pharmacometric and

QSP models can be composed by combining these ele-
ments, see Figure 6 (top).

TRIAL DESIGN

The combination of a model and its parameter values defines
a system that can be used to obtain model predictions and

simulated values in response to given inputs. The Trial
Design, described in Figure 6 (middle) and Figure S3 in the

“Supplementary information – Figures” file, specifies
these inputs, as well as when and where to sample outputs.

The PharmML code for this section is given in CS-6.

Explicit design
For an ODE system, inputs can be the initial values for
each model component (e.g., the initial amounts in the
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Figure 6 Model-Design-Task: the creation process of a whole PharmML model out of its different components. Top: data type deter-
mines the observation and structural model choice. Middle: trial design can be sourced from a dataset or encoded explicitly. Dependent
on the clinical study characteristics, the modeler can encode a single subject design, a standard population design, or an optimal
design. Bottom: once the model and design are specified, the task and the related settings remain to be declared (see Figure 8 for a
detailed representation of this block). The DS (dataset) mark identifies elements where data records can be stored inline or, alterna-
tively, where references to external dataset files can be defined.
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compartments) as well as subsequent changes introduced

from outside the system (typically in pharmacokinetics, an

additional dose can be viewed as an instant change in the

value of one variable). The first component of the Trial Design

is therefore the intervention(s) or treatment(s) received by

the subject, which may include drug administrations but also

a number of other actions (washout, variable reset, nonmedi-

cal treatments, drug-free periods, etc.). This information is

enclosed in the <Administration> block, that can contain

any number of <Action>, <Bolus>, or <Infusion>
components (see CS-6.1).

The second component of the Trial Design,

<Observations>, defines the observations, in particular

the times at which they are collected, through the

<ObservationTime> element, as well as the responses

or variables that are measured, specifying their type, for

instance <Continuous>. Together, these two components

define an individual (or elementary) design, which is applied

to one experimental unit.
When trials are performed in a population of subjects, we

define the population design as the set of individual designs

for each subject included in the study. Generally, subjects

who have the same design are grouped together, by defin-

ing treatment arms (in an <Arm> block) in which all sub-

jects receive the same inputs and have the same outputs.

The arms define what we call an explicit design, and corre-

spond to the essential elements of what is typically speci-

fied in the protocol for a clinical trial. Two additional

elements can be introduced in the PharmML element

<Arms> to create more complex and realistic designs:

Figure 7 Code snippet exemplifying data-model mapping. Left: declaration of the independent variable and abbreviated model defini-
tion (only the main blocks are shown with indication of their content). Right: complete dataset declaration with column mapping (the
dataset is shown as a table for better readability). One <ColumnMapping> element is used for each couple model variable (red) –
correspondent data column (yellow). In certain cases, such as with categorical covariates, the <CategoryMapping> element is
required to map the categorical symbols to the respective numerical symbols used in the dataset.
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1) occasions, a within-subject level of variability, may be

defined with the <Occasions> element, and associated

with a time frame (defined through a vector of start times)

to identify different occasions for each subject in the corre-

sponding arm; 2) covariate distributions may be defined

with the <Covariates> element, and possibly supersede

previous analog definitions (see CS-6.2).

Design spaces
There is a direct connection between the design and the

information gathered during a clinical trial, which has a

major impact on the precision of the parameter estimates

derived in the subsequent analysis of the collected data.

Design optimization aims to find the best design over possi-

ble values of certain variables, such as doses, sampling

times, and number of subjects. These possible values con-

stitute what we call a design space, in which unit spaces

for a variable are defined as either a discrete set or a range

of allowed values, and possibly combined to create more

complex design spaces. Design spaces are defined within

the block <DesignSpace> (see CS-6.3).
Design spaces may be defined for different elements of

the Trial Design, e.g., for the <ArmSize> (the number of

subjects in an arm), for user-defined variables, or for ele-

ments used within the Trial Design, like the

<SampleTimes> (the times to observe a response) ele-

ment of the <Observation> object.
Optimization takes place under a set of constraints

including the total cost (usually equal to the number of

samples, but more complex cost functions can also be

used) and is executed in different software.31 These fea-

tures are specified within the Modeling Steps block of the

PharmML code (see Modeling Steps).

Dataset declaration and data/model mapping
When a trial is actually performed, we can expect devia-
tions from the dosing and sampling schedules specified in
the protocol. For instance, a patient may forget to take a
dose or make a mistake on the dose amount, or the sam-
ple collection may be delayed or omitted. In such cases,
individual protocols are extracted from a dataset providing
subject-specific observation times, interventions, occasions,
and covariate values: the set of individual protocols consti-
tutes the empirical population design.

PharmML has the ability to declare references to external
dataset files as well as to encode dataset records explicitly,
i.e., inline (see the “DS” marks in Figure 6, middle, and CS-
7.2 for an example). Moreover, it is possible to store all obser-
vation, dosing, and covariate data in a unique dataset (see
Figure 6, middle right). With respect to this latter option,
PharmML supports the most popular NONMEM-type dataset
format or the slightly different Monolix-type format, and virtu-
ally any tabular format in which data are organized by col-
umns. The declaration of such a dataset is located in the
<TrialDesign> section, in the <ExternalDataSet>
block. This block must contain a reference to the external file
in which the data are stored (element <ExternalFile> in
the <DataSet> block), as well as information on how to
interpret each column (elements <Column> in the
<Definition> component of the same block). Attributes
can be used to indicate the type of data contained in a given
column (continuous, categorical, etc.) and to associate key-
words indicating, for instance, that the data item is to be used
as a dependent variable or a covariate. Each data item is
then matched to its corresponding variable in the model
through the <ColumnMapping> elements. An example is
given in CS-7.1.

Figure 8 Modeling Steps ingredients.
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A number of other options allow for more flexibility in

working with datasets, such as the definition of data head-

ers and missing data, the transformation of columns (e.g.,

for basic dose scaling), and the conditional mapping of col-

umns. Further explanations and illustrative examples are

provided in CS-7.3 to CS-7.8.

MODELING STEPS

The <ModellingSteps> block describes the tasks typi-

cally used in pharmacometrics and QSP, such as estima-

tion, simulation, and design evaluation or optimization

(Figure 8). It starts with the (optional) specification of the

target tool and is followed by the definition of one of three

predefined elements, <EstimationStep>,

<SimulationStep>, or <OptimalDesignStep>, each

holding a number of specialized elements. Here we concen-

trate on the high-level description of the estimation task

only, for which a representative complete code is available

in CS-8.
When performing an estimation task, it is necessary to

declare the data used to estimate the parameters of the model.

This can be done in two ways. The first is to refer, via the

<ExternalDataSetReference> element, to the NON-

MEM/Monolix data file defined in the Trial Design within the

<ExternalDataSet> element (CS-7.1). The second way is

to refer, via the <ObservationsReference> element, to

the data stored inline within the <Observations> element

defined in the Trial Design (CS-7.2). Moreover, the estimation

process requires the initial estimates for the model parameters:

they are declared within the <ParametersToEstimate>
element, which has child elements for specifying the lower/

upper bounds of the estimates, <LowerBound> and

<UpperBound>, respectively.
One of the few mandatory elements common to all tasks

is <Operation>. Here, within the <Algorithm> and

<Property> child elements, the user can declare general

task properties, algorithms, and their settings. It is worth

mentioning at this point that target tools may require com-

plex settings that are conveniently stored in external files

(e.g., the graphical settings in Monolix10). Such an option is

supported and each task type may contain one or more

<SoftwareSettings> elements containing a reference

to an external file.
Finally, each task results in numerical and/or graphical

outputs, and their specification can be made within the

<OutputFile> element, e.g., in the form of a Standard-

ized Output (SO) file (see next chapter for details).

WORKING WITH PharmML
Interacting with PharmML
This tutorial has presented so far the PharmML structure

and how various model elements can be implemented

within it. Moreover, the online “Supplementary informa-

tion – Examples” file contains a number of complete

real-life use cases with detailed descriptions. PharmML,

however, is merely an encoding format and any actual exe-

cution requires a software infrastructure to use it, i.e., to

read, write, validate, and convert the XML of a PharmML
model into a form understandable by a target software, and
then to run the defined task.

The first three jobs are taken over by LibPharmML, a
JAVA Application Programming Interface (API) also devel-
oped by DDMoRe. The API is available via SourceForge
within the libPharmML project (https://sourceforge.net/
projects/libpharmml.ddmore.p). A stand-alone validator,
executable via command line, is also provided. Documenta-
tion for the validator is available in the libPharmML wiki
(https://sourceforge.net/p/ddmore/libpharmml/wiki/Home/).

The software element that transforms PharmML to target
specific code is the converter. Unlike SBML, PharmML
describes both the models and the tasks performed on
them. This allows a converter to read a PharmML file and
to create from it executable source code for both the math-
ematical elements and the tasks required in the target
script. The entire information necessary to transform
PharmML into a target code is encapsulated within the con-
verter; an all-encompassing software library is not required
to execute PharmML models, as model transformation is
handled by the converter and calculation elements are del-
egated to the target software.

DDMoRe has developed a standardized converter library
for PharmML called CCoPI-Mono (CM). CM is a Java
library that runs in conjunction with libPharmML to convert
a PharmML model into target-specific code. CM has code
generators for NONMEM, MATLAB/Octave, R, Python, C/
C11, and FORTRAN. As both SBML and PharmML are
interoperable, CM can convert standard SBML models into
PharmML. CM has a component to convert an SBML path-
way model into an ODE form, which can readily be
expressed in PharmML. Once in PharmML form, an SBML-
derived model can be executed in platforms that do not tra-
ditionally work with SBML, such as Monolix or NONMEM.
The reverse direction, translation of PharmML to SBML, is
also possible but is limited to the structural model only, as
SBML does not support the encoding of any statistical
model component.

Finally, if a modeler needs/wants to write a PharmML
model from scratch, two DDMoRe tools may support this
task. One of them is the infix2pharmml tool, available as a
free web service and able to translate expressions from the
usual mathematical infix notation into the corresponding
PharmML markup (http://infix2pharmml.sourceforge.net/).
The other tool is the MDL-IDE, a framework for creating
and editing models in the human writeable and readable
language MDL32: within the same framework, it is possible
to translate the MDL code into the corresponding PharmML
code. The MDL-IDE benefits from the use of the SO,
another XML-based exchange format developed within
DDMoRe to store the results of any pharmacometric analy-
ses in a standardized way, so that they can be later
recalled, reused, and transferred from one analysis step to
another.

Use cases
The “Supplementary information – Examples” file pro-
vides a complete implementation of selected models illus-
trating the essential functionalities and capabilities of
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PharmML. All models are described in detail with an expla-
nation of the modeling background and the specific involved
PharmML features. The chosen models are the following:
• Warfarin PK/PD model33–37, in four different versions:

1 – Basic PK & turnover PD,
2 – Inter-occasion variability on PK parameters,
3 – Time-To-Event model for PD data,
4 – Optimal design application;

• Minimal model of glucose kinetics (reparameterized)38–40;
• Mitotic oscillator.41

DISCUSSION

The present tutorial is an introduction to PharmML, a new
markup language designed to encode models and analyses
in pharmacometric and system pharmacology applications.
As an XML-based language, it is structured around a series
of specialized hierarchical sections, each addressing a dif-
ferent component of the model, starting with the Model Def-
inition (with covariate, observation, parameter, structural,
and variability submodels). The section Trial Design allows
specifying the design either through a data reference or as
an explicitly coded study structure. A final section, Modeling
Steps, contains a description of the activities that can be
associated with the model object and of the software set-
tings and variables associated with them: typical tasks
involved in pharmacometric and QSP applications are esti-
mation, prediction/simulation, and optimal design, and all of
them can be combined within PharmML to define workflows.

The PharmML language is extremely flexible both in
terms of the range of models that can be encoded, and in
terms of the analyses that can be set up through the task
component. The “Supplementary information – Exam-
ples” file provides a few complete, PharmML-coded models
illustrating this versatility. However, during its development,
PharmML was validated across a much larger variety of
examples, which helped ensure that it could be used to
describe a large number of models and clinical situations.
The use of SBML together with the task language SED-
ML42 was considered during the conception of PharmML,
but discarded because of the intended broader scope of
models and the focus on workflows. However, as shown in
the examples, models coded in SBML can be easily con-
verted and used.

PharmML deals with probability distributions through the
ProbOnto module, which allows both to describe the variety
of statistical models found in the definition of NLME models
and to define the covariate distributions characterizing the
study populations. Another strength of ProbOnto is the uni-
fied representation of probability distributions, which is con-
sistent with the unified representation of NLME models in
terms of probability distributions6 and makes it very easy to
declare noncontinuous responses. As a result, the lan-
guage can describe the features of an entire clinical trial.
Models may be annotated, i.e., connected either to ontolo-
gies under development in the DDMoRe community, including
ProbOnto,26 or to ontologies such as ChEBI.43 Annotations
can then be used in the search engines, extending PharmML
to the semantic web. The manual available on the DDMoRe

Model Repository (http://repository.ddmore.eu) provides

details on the annotation process. PharmML is distributed
under the Apache License, Version 2.0 license (this can be

found in each schema file of the exchange format) and is

available both on its website (http://www.pharmml.org/) and
on the GitHub repository (https://github.com/pharmml/

pharmml-spec).
There are still scenarios that might be difficult to encode

in PharmML. One example could be adaptive clinical trials,
for instance, when the doses are adapted based on PK or

PD outcomes, or when inclusions are stopped after inter-
mediate analyses. However, the flexibility and modularity of

the language would make it easy to extend PharmML to

such applications in the near future. Tasks could also be
extended, for instance, with noncompartmental analyses

and related target software settings.
PharmML, as part of the DDMoRe interoperability plat-

form, or as a stand-alone exchange format, has the poten-
tial to improve the way pharmacometricians and life

scientists work today in multiple ways. A model encoded

once can be automatically translated into a representation
used in any supported target tool. Therefore, PharmML can

facilitate smooth and lossless transmission of models
between tools, enable complex workflows based on stan-

dardized model definition, and improve reproducibility of

research by simplifying report generation and bug tracking.
If adopted across the pharmacometric field, it could also

improve the interaction with regulatory agencies. As seen in

the SBML community,12 standards stimulate the develop-
ment of new tools and methods and facilitate the use of

existing models, as has happened with many computational
models of biological processes in the BioModels data-

base.14,15,44 Thanks to its flexibility, modularity. and broad

scope, PharmML may serve the same purpose in the
Modeling and Simulation community.
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