
fpsyg-13-928048 June 8, 2022 Time: 12:16 # 1

ORIGINAL RESEARCH
published: 14 June 2022

doi: 10.3389/fpsyg.2022.928048

Edited by:
Baiyuan Ding,

National University of Defense
Technology, China

Reviewed by:
Yan Chen,

Nanjing Sport Institute, China
Jinjiang Gu,

Jiangsu Institute of Commerce, China

*Correspondence:
Ya Li

liya@hainnu.edu.cn

Specialty section:
This article was submitted to

Health Psychology,
a section of the journal
Frontiers in Psychology

Received: 25 April 2022
Accepted: 12 May 2022

Published: 14 June 2022

Citation:
Li Y, Li X, Lou Z and Chen C

(2022) Long Short-Term
Memory-Based Music Analysis

System for Music Therapy.
Front. Psychol. 13:928048.

doi: 10.3389/fpsyg.2022.928048

Long Short-Term Memory-Based
Music Analysis System for Music
Therapy
Ya Li1* , Xiulai Li2, Zheng Lou1 and Chaofan Chen2

1 College of Music, Hainan Normal University, Haikou, China, 2 Hainan Hairui Zhong Chuang Technol Co. Ltd., Haikou, China

Music can express people’s thoughts and emotions. Music therapy is to stimulate
and hypnotize the human brain by using various forms of music activities, such as
listening, singing, playing and rhythm. With the empowerment of artificial intelligence,
music therapy technology has made innovative development in the whole process of
“diagnosis, treatment and evaluation.” It is necessary to make use of the advantages of
artificial intelligence technology to innovate music therapy methods, ensure the accuracy
of treatment schemes, and provide more paths for the development of the medical
field. This paper proposes an long short-term memory (LSTM)-based generation and
classification algorithm for multi-voice music data. A Multi-Voice Music Generation
system called MVMG based on the algorithm is developed. MVMG contains two main
steps. At first, the music data are modeled to the MDPI and text sequence data
by using an autoencoder model, including music features extraction and music clip
representation. And then an LSTM-based music generation and classification model is
developed for generating and analyzing music in specific treatment scenario. MVMG is
evaluated based on the datasets collected by us: the single-melody MIDI files and the
Chinese classical music dataset. The experiment shows that the highest accuracy of
the autoencoder-based feature extractor can achieve 95.3%. And the average F1-score
of LSTM is 95.68%, which is much higher than the DNN-based classification model.

Keywords: music therapy, LSTM, autoencoder, music analysis, psychology, emotion

INTRODUCTION

Music consists of four parts: rhythm, melody, harmony, and timbre. It can express people’s thoughts
and emotions (Panda et al., 2020). It is nonverbal expression. Music therapy is to stimulate and
hypnotize the human brain by using various forms of music activities, such as listening, singing,
playing and rhythm (Köhler et al., 2020). It can stimulate the body response by sound to relax the
body and mind. From a biological point of view, the human left brain has the function of language,
and the right brain has the function of image thinking. For example, music can reduce the emotional
and behavioral disorders of the brain by stimulating the human right brain.

There are many advantages of music therapy (Moss, 2019). At first, music can reduce
psychological and physical pressure, improve bad emotions, and alleviate physical discomfort
caused by emotions. Second music therapy targets a wide range of people. It is an enjoyment
therapy without restrictions such as age, gender, and knowledge background. Third, music therapy
can relieve the pressure of office workers and is suitable for enterprises to help employees
solve psychological and behavioral problems. Fourth, music therapy can be used for mental and
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physical diseases, shorten the hospitalization cycle of patients,
and promote their rehabilitation. For example, music can
enhance people’s memory and attention, relax people’s body, and
mind, and reduce depression and anxiety; Patients can follow
the rhythm of music for a long time. Patients with headache can
use music therapy for pain management and reduce the use of
painkillers. Fifth, music therapy can stimulate the brain, activate
brain cells, greatly help brain activities, and even prevent aging,
especially for brain dysfunction, Alzheimer’s disease, Parkinson’s
disease, post-traumatic consciousness disorder, etc. After music
therapy, such patients can improve their cognitive and motor
functions. Sixth, music helps to improve people’s sleep quality,
increase nerve conduction rate, and relax people’s body and heart.

With the empowerment of artificial intelligence, music
therapy technology has made innovative development in the
whole process of “diagnosis, treatment and evaluation” (Ramirez
et al., 2018). Although the effect of traditional music therapy
has been generally recognized and accepted, its existing technical
means still have some defects, such as inaccurate targeting (e.g.,
lack of pathological pertinence, ignoring individual differences),
time-consuming and laborious (e.g., high labor cost, limited
site), low Professionalism (e.g., unsystematic efficacy evaluation
indicators), and privacy disclosure (Shi and Zhang, 2020). The
rapid development of natural language processing, machine
vision, speech recognition and other fields provides ideas for the
whole process innovation of “diagnosis treatment evaluation” of
music therapy (Qu and Xiong, 2012).

For clinical treatment, music prescription plays an important
role (Liu et al., 2021). In the process of music prescription
optimization, it mainly includes two aspects. First, the functional
music is reasonably classified, and the content is sorted out
through the system. It is necessary to establish a music therapy
library in the initial stage, which can complement classical
music and popular music to ensure the comprehensiveness and
scientificity of the music database. Secondly, after understanding
the basic framework of music genre, rhythm, musical instrument,
emotion and beat, we can choose the corresponding music in
the face of different mental diseases, to achieve the ultimate
purpose of treatment. For example, in the process of body
relaxation treatment, we can choose soothing music, focus on the
description of the treatment scene, control the patient’s emotion,
and achieve the ideal treatment goal. It is necessary to change
the technical means of music therapy in time. For example, we
can use the speech synthesis technology to guide treatment. We
can also use natural language to complete music lyrics in time,
enrich music scores and optimize the performance process. The
computer simulation system is used to assist patients in singing
songs, to achieve the purpose of respiratory training. From the
above introduction, we need to take advantage of the artificial
intelligence technology to innovate music therapy methods,
enhance the accuracy of treatment schemes, and improve the
development of the medical field (Lee et al., 2021).

The current research mainly focuses on the generation and
classification of melody (Verhoef and Ravignani, 2021). There is
not much research on Multi-Voice Music Generation (MVMG)
and classification by considering the collocation of melody
and chords. This paper proposes an long short-term memory

(LSTM)-based generation and classification algorithm for multi-
voice music data. A Multi-Voice Music Generation system called
MVMG based on the algorithm is developed. MVMG contains
two main steps. At first, the music data are modeled as the MDPI
and text sequence data by using an autoencoder model, including
music features extractions and music clip representation. And
then an LSTM-based music generation and classification model
is developed for generating and analyzing music in specific
treatment scenario. MVMG is evaluated based on three datasets
collected by us: the single-melody MIDI files, the single-melody
MIDI files composed by 5400 composers, and the Chinese
classical music (CCM). The experiment shows that the highest
accuracy of the autoencoder-based feature extractor can achieve
95.3%. And the highest average F1-score of LSTM is 95.68%,
which is much higher than the DNN-based classification model.
Our main contribution is as follows:

(1) Develop an LSTM-based generation and classification
algorithm for generating and analyzing music in specific
treatment scenario.

(2) Develop an auto-encoder model to extract features
of the music data.

(3) Conduct comprehensive experiments to evaluate the
proposed MVMG system based on different types
of music datasets.

The structure of the rest of the paper is as follows:
Section “Related Work” conducts literature review on the
technologies of AI-based music generation and classification.
Section “Music Data Modeling and LSTM-Based Music Data
Sequence Classification” presents the detailed information of
MVMG, including music data modeling and LSTM-based music
data sequence classification. Section “Dataset Description and
Experiment Analysis” shows the training and testing process of
MVMG. It mainly compares the MVMG with DNN-based music
generation models. Section “Conclusion” summarizes this work.

RELATED WORK

Many research works have been conducted in AI-based musical
analysis. De Mantaras and Arcos (2002) discussed three musical
analysis systems based on machine learning techniques. This
research work contributes to the SAXEX analysis. A computer-
human interaction platform is designed to produce the music
expression like that of human. Frid et al. (2020) proposed a
system based on artificial intelligence technologies to rephrase
a music. The system has a user-friendly interface. Users can
efficiently interact with the system. The video makers can benefit
from this system to create health music. Their experiment shows
that their system can help communications between people
and music analysis systems. Louie et al. (2020) developed an
intelligent system to help system users to generate music. The
system user can generate a voice sound with emotions such as
happy, unhappy, and surprised. They took many experiments
to evaluation the proposed system. The results show that
the usage experience of the system users can be efficiently
improved. In addition, a significant issue of composition
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frustration of music can be solved by the proposed system.
Tan and Li (2021) discussed deep learning-based algorithms for
music generation. They presented how to use different deep
learning models to composite music and melodies. Other styles
of music are also analyzed by deep learning models. They
summarized that deep learning technologies can make the music
composition more efficient.

Pandian (2019) developed an AI system to evaluate the
sleeping pattern based on the therapy of music to improve the
quality of sleeping. The data is collected and transferred to the
AI platform. The platform can be automatically controlled by
analyzing the collected data, which improves the quality of the
person’s sleeping. Kumar et al. (2020) proposed an architecture
to improve the efficiency of the music generation system.
They surveyed different types of algorithms for composing and
generating music. They discussed the advantages, disadvantages,
and challenges in AI-enabled music generation area. They
then proposed an AI-enabled system to compose music, which
improves the development of intelligent music generation
techniques. Lupker and Turkel (2021) analyzed the pros and
cons of the intelligent music generation algorithms based on big
musical data. Music theory can be used to reveal the efficiency of
the melody prediction algorithm. The performance can be further
enhanced. Various intelligent algorithms can be learned from the
music data to understand the music.

MUSIC DATA MODELING AND LONG
SHORT-TERM MEMORY-BASED MUSIC
DATA SEQUENCE CLASSIFICATION

Multi-Piece Music Data Modeling
Music data is a time series data with a very complex structure.
To use the algorithm to generate music data, we must first
understand the structural characteristics of music data and
the expression of music information. This paper analyzes the
characteristics of multi-part music based on the expression
methods commonly used in modern music, e.g., MIDI format
and Piano Roll format, and establishes a music data model.

MIDI (Music Digital Interface) is a technical standard that
describes the connection protocol between computer digital
interfaces and various musical instruments. Compared with
text formats, MIDI carries a larger amount of information.
Modern music is basically synthesized using MIDI. Its basic
idea is to express the note information of different pitch and
length combinations as events, and also carry information such
as the volume and start time of the note, quantify the basic
characteristics of music, and put the music in the performance.
Each instrument of MIDI is represented as a channel, which
records the way the notes of each instrument are played. There
are two basic note events in MIDI: note on and note off event.
Note on event indicates that a note with a certain pitch and
duration starts to be played by a specific instrument in a certain
channel. For example, < Note on, 0, 60, 40 > indicates that it
starts to be played after 40 units of time in channel 1 middle
C sound. Note off event means that a specific instrument in a
channel stops playing a note with a certain pitch and length, such

as < Note off, 0, 60, 30 > means that in channel 1, stop playing
middle C after 30 units of time sound.

The Piano Roll representation method is inspired by the
player piano, and its essence is a continuous paper roll that
records information by perforating it. Each punch represents a
note control message used to trigger a given note. The length
of the perforations corresponds to the duration of the note.
The positioning of the perforations corresponds to their spacing.
A column of perforations represents a key in the piano.

According to the introduction of the MIDI format and Piano
Roll format above, it is relatively easy to design a multi-part music
expression. That is, a matrix composed of 0 and 1 is used to
represent the state information of each note in the multi-part
music, where the rows represent the 88 keys in the piano and
the columns represent the time series. 1 means the key is down,
0 means the key is up. But this method has a drawback, that
is, when there is a series of 1s, it is impossible to tell whether
it is played multiple times or a long-lasting note. Therefore, the
original piano key dimension of 88 can be expanded to 176 by
combining the idea of Note on and note off events in MIDI
format. Use the 1 in the first 88 dimensions to indicate that the
key is pressed, which is the Note on event, and use the 1 in
the last 88 dimensions to indicate that the key is up, which is
the Note off event.

This method cannot only effectively distinguish between
long notes and multiple playing, but also facilitate the mutual
conversion of MIDI music data and Piano Roll matrix. However,
through practice, it is found that although this multi-part music
modeling method can use the piano key state vector at the same
time to represent the playing state of melody and chord, it cannot
represent the matching information of melody and chord in
the time dimension. That is, the relationship between notes is
expressed independently.

The Representation of Music Features
Using the original Piano Roll format for the expression of
multi-voice music data cannot represent the higher-dimensional
combination characteristics of melody and chords. Therefore, we
use the method of compressing note states at the same time step
to extract the relationship between each note state as an implicit
feature of music. We use it as a data model for multi-voice music.

An autoencoder is a neural network with one hidden layer.
Its special structure is that the number of neurons in the input
layer and the output layer of the network are the same. And
the number of nodes in the hidden layer is smaller than that
in the input and output layers. When training an autoencoder,
traditional neural network training methods can be used. The
only difference is that the input data for training the autoencoder
is the target data to be output. Therefore, the autoencoder learns
a representation function of the data. Because the hidden layer
has fewer nodes than the input layer, the encoder part must
compress the information lossy, while the decoder part needs
to reconstruct the original information as much as possible
according to the compressed feature information. This forces
the autoencoder to discover important distinguishing points in
the data, so autoencoders are usually used to extract higher-
dimensional features in the data.
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With the advent of deep learning, stacked autoencoders have
become more widely used. The stacked autoencoder is composed
of multiple autoencoders nested, and the number of neurons
in the hidden layer decreases sequentially. In this structure, the
encoder continuously compresses the data to extract higher-
level features. Therefore, this structure similar to the deep neural
network is one of the commonly used feature extraction methods.

We extract 40 pieces of music data in MIDI format to train
the stacked autoencoder. Through the conversion relationship
between the Piano Roll format and MIDI data, the Piano Roll
matrix of 40 pieces of music is extracted. In the experiment,
it is found that due to the similar style of the extracted music
data, the pitches of the music are all between 20 and 98. Only
the middle 59 keys are used out of the 88 keys of the piano. To
reduce the computational complexity, we reduce the original 160-
dimensional Piano Roll matrix to 150-dimensional and builds a
stacked autoencoder based on the music data in this format, as
shown in Figure 1.

The neuron nodes of the input layer and output layer of the
stacked autoencoder are both the piano key dimension 150 of
the Piano Roll. For the hidden layer, it is necessary to design
several nodes smaller than the number of nodes in the input and
output layers and adjust them one by one through subsequent
training practice.

According to the previous analysis, the stacked autoencoder
to be built in this paper is to perform feature extraction on each
150-dimensional 0 and 1 vector of the Piano Roll matrix. After
going through the decoder, it should produce the same output
as the input vector. Therefore, we adopt the cost function of the
training network as the mean square error cost function (Eq. 1).

c =
1

2n

n∑
j = 1

(
γj − yj

)2 (1)

where γ is the output result of the network; y is the target value,
i.e., the input vector; n is the number of samples for each training.

Music Clips Representation
The information in the music clips is converted into natural
language sequences in chronological order. This information
includes: “n_[pitch]”: The pitch is an integer between 0 and 256
(including 0 and 256). i.e., pitch = 1, · · · , 256. “q[temporal

FIGURE 1 | Structure of the autoencoder.

value]_[dotted value]”: The temporal value is two whole notes,
whole notes (whole), half notes (half), quarter notes (quarter),
eighth notes (eighth), sixteenth notes (14th), and thirty-second
notes (28nd). The number of dots is 0, . . ., 3. “v[vel]”:
The velocity is a multiple of 3 between 3 and 256. i.e.,
velocity = 3, 6, · · · , 256. “t[sp]”: time of speed. The speed is a
multiple of 3 between 18 and 150. i.e., sp = 18, 2, · · · , 150. “.”:
End of time step. Each time step is the same length as a sixteenth
note. “\n”: The end of the music segment.

Long Short-Term Memory-Based Music
Classification Model Based on Implicit
Music Features
RNN is an extension of the fully connected neural network.
Based on the fully connected neural network, the nodes of the
hidden layer are connected. That is, the input of each hidden
layer node is no longer only the output of the previous layer
node, but also the hidden state of the node at the last time.
Because of its special structure, RNN is different from fully
connected neural network in backward propagation training. In
the process of training RNN, a special learning method, back
propagation through time algorithm is used. The input and
output of RNN can be understood as a sequence. Therefore, in
the backward propagation training, the nodes can be expanded
according to the time series to obtain a structure similar to the
fully connected neural network. On the expanded structure, the
truncated sequence is used for backward propagation training.
In addition to the hidden state value, LSTM also stores the cell
state C value inside the node, which is used to represent the
long-term dependence and update of information and adds 3 gate
structures to control the update size of the node state. The specific
calculation formula is as follows:

yt = σ
(
Wf

[
xt, gt−1

])
(2)

it = σ
(
Wi
[
xt, gt−1

])
(3)

p̃t = tanh
(
Wc

[
xt, gt−1

])
(4)

pt = yt · pt−1 + it · p̃t (5)

ot = tanh
(
Wo

[
xt, gt−1

])
(6)

gt = ot · tanh (Ct) (7)

The results of the three gates are all obtained from the input xt
and the hidden state gt−1 at the previous moment. The first gate is
the forget gate y, which decides how much information to discard
from the past value of p at the current moment. The second gate
is the input gate i, which determines how much information to
store in the p value at the current moment. New information to
be added is indicated by the symbol p̃t . According to the control
coefficients of the forget gate and the input gate, and the new
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information to be added to the cell, update the current cell state
to get pt . The third gate is the output gate o, which updates the
current hidden state gt according to the cell state pt at the current
moment and the output gating information ot . Equations 2–7 are
the complete forward propagation process of LSTM, where Wy,
Wi, Wo, and Wg are the weights that need to be trained.

DATASET DESCRIPTION AND
EXPERIMENT ANALYSIS

Dataset Information
The training data set consists of three parts of the development
data set: (1) the single-melody MIDI files in the Conference
on Sound and Music Technology (CSMT) competition (Zhang
et al., 2022), (2) the single-melody MIDI files composed by
5400 composers, and (3) the CCM. The CSMT competition
development data set only contains music generated by artificial
intelligence algorithms, including 6000 single-melody MIDI
files, the tempo is between 68 and 118 bpm, each melody is
8 bars in length, and does not contain the complete phrase
structure. The melody is generated by the algorithm after
training several different music generation models from two
databases with completely different musical styles. Due to the
lack of the composer’s composition data set, the team obtained
5400 single-melody MIDI files through the open-source website
search, manual scoring, audio file conversion, and multi-melody
stripping of the main melody. The structure of these files is more
consistent with the official development data set. The evaluation
data set is the official 2000 MIDI files, all settings are the same as
the training set.

The dataset of CCM consists of 71 CCM songs, which are
transcribed from the piano scores. The piano scores we collected
are from the recently published CCM music collections in the

TABLE 1 | Accuracy of the stacked autoencoder.

Sample Accuracy (%)

Music1 91.8

Music2 95.3

Music3 92.9

TABLE 2 | Results for 10-fold cross validation.

Rounds Accuracy (%)

1 97.4007

2 97.4226

3 97.3787

4 97.4592

5 97.0813

6 97.6789

7 97.4592

8 97.4971

9 97.0474

10 97.7659

form of notation. The content in CMM is the numbered melody
in the piano score and the harmonic marks in it. In the musical
notation, the pitch is written in the way of the first key roll
call. That is, the first order note of the current mode is C or 1,
and the absolute pitch of the middle pitch of the piano score
must be jointly determined by the tuning pitch. A CCM piece
usually contains multiple paragraphs. In the CCM data set, each
paragraph is a separate file. The dataset contains a total of 380
segments and 8900 subsections of data.

We annotated the music scores in the CCM dataset with meta-
information, including the name of the score, the tuning, the
source of the score, the source of the music, the performer, and
the scorer or notator. Although the CMM pieces vary in length,
most of the CCM scores we collected are shorter than 150 bars.
At the same time, the scores we collect often contain section
marks and are divided into sections. Most of these paragraphs
are relatively short, less than 30 bars in length. There are a few
paragraphs in the histogram that are very long, because there
are no paragraph markers in these scores and the entire piece is
treated as one paragraph. In CCM, 10% of the notes are chords,
and 90% of the chords contain two pitches. It is worth noting that
the overall chord ratio in the CCM music may be slightly higher
than this dataset because we avoid some difficult-to-enter scores
containing more chords.

Performance Evaluation of the
Autoencoder-Based Feature Extraction
Model
The autoencoder model is trained using the music clips in the
training dataset as samples. To diversify the training samples, a
series of transformations are performed on these music pieces,
including time transformation (speed up, slow down), pitch
transformation (each note is raised or lowered by a major
third). These sequences are stitched together and randomly
divided into training and test sets in an 8:2 ratio. The training
set is then equally divided into four subsets for subsequent
processing. Each training subset includes approximately 17,600
music samples, and the test set includes approximately 5400
samples. The autoencoder model is trained sequentially using
the training subset. Both gt and pt are initialized to 0 before
each training. After 5 rounds of training, the Adam method is
used for optimization, and the average cross-entropy loss on the
test set is 0.72.

TABLE 3 | Confusion matrix of the highest accuracy test set.

PPPPPPActual
Forecast

DNN Composer

MVMG 700 0

DNN 2 623

TABLE 4 | Classification report of the highest accuracy test set.

Precision Recall F1 score

MVMG 0.9237 0.9981 0.9568

DNN 0.8882 0.9237 0.9045
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To test the feature extraction effect of the self-encoder in music
data other than the training data set, another three MIDI music
with the same style are used to test the network. Encode and
decode the note state data of music and compare the output value
of the network with the real value. The accuracy is shown in
Table 1.

It can be seen from Table 1 that the stack autoencoder has
a high accuracy of decoding after encoding in this style of
music data, which means that the encoder has extracted better
implicit music features. By using the encoder part of the stacked
autoencoder to perform implicit feature extraction on the Piano
Roll matrix of the music data, the multi-voice music data model
is well-trained.

Performance Evaluation of Long
Short-Term Memory-Based
Classification Model
The LSTM model trained in the previous step can be used as a
special encoder. To balance and diversify the number of samples,
samples of AI-created and composer compositions in the MIDI
database are time-shifted (speed up, slow down) and pitch-shifted
(all notes up, down a major third). Input these music samples
into the LSTM model, take the final cell state (4096-dimensional
vector) of the LSTM layer in the model as the encoding result,
and use logistic regression for classification. The performance of
the model was evaluated using 10-fold cross validation and the
results are shown in Table 2.

The confusion matrix and classification report that works best
on the test set are shown in Tables 3, 4.

As can be seen from the above table, the f1 of MVMG
is 95.68%. It shows that LSTM is an effective classifier, which can
include the approximate information of a music sample through
a 4096-dimensional vector. LSTM has excellent performance on
artificial intelligence and composer composition classification
tasks. The LSTM model is trained by supervised learning, which
does not require many labeled samples during training. It is thus
convenient for use when the cost of label acquisition is high. It
can effectively extract the features of symbolic music and has a
high accuracy in classifying the music creation period. Since the
original purpose of the LSTM model is to improve the accuracy
of the characters at the next moment in the prediction sequence,
it can also be used to complete music generation task.

CONCLUSION

This study focuses on the generation and classification of melody.
There is not much research on MVMG and classification by

considering the collocation of melody and chords. We proposed
an LSTM-based generation and classification algorithm for multi-
voice music data. A Multi-Voice Music Generation system
called MVMG based on the algorithm is developed. MVMG
contains two main steps. At first, the music data are modeled
as the MDPI and text sequence data by using an autoencoder
model, including music features extractions and music clip
representation. And then an LSTM-based music generation and
classification model is developed for generating and analyzing
music in specific treatment scenario. MVMG is evaluated based
on three datasets collected by us: the single-melody MIDI files,
the single-melody MIDI files composed by 5400 composers,
and the CCM. The experiment shows that the highest accuracy
of the autoencoder-based feature extractor can achieve 95.3%.
And the highest average F1-score of LSTM is 95.68%, which
is much higher than the DNN-based classification model. In
the future, we are going to develop a more advanced feature
extraction model by combining convolutional layers with auto-
encoders. More accurate feature extraction can improve the
classification accuracy.
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