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Abstract: Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen
species that need to be under control. Wiskott–Aldrich syndrome protein (WASP)-interacting protein
(WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor
progression and promotes cancer cell survival. However, its participation in the control of oxidative
stress has not been addressed yet. We show that WIP depletion increases the levels of reactive
oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox
homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor,
the E3 ligase adapter KEAP1, because the overexpression of a NRF2∆ETGE mutant that is resistant to
targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in
the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted
cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the
organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin.
Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may
have therapeutic implications.
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1. Introduction

Cancer cells undergo modifications in morphology associated with the cytoskeleton that lead
to changes in the cell shape, adhesion, and contractility. These changes favor migratory capacity,
anchorage-independent growth, and the capacity to metastasize [1,2]. Actin filaments play an essential
role in cytoskeletal formation and remodeling. Actin-rich adhesions establish close contact with the
substratum and are structural components of the extracellular matrix degradative structures, podosomes
and invadopodia [3]. At this time, the mechanisms involved in the remodeling of the Actin cytoskeleton
are still very little defined in these structures. However, it is known that the Actin-related protein
Wiskott–Aldrich syndrome protein (WASP)-interacting protein (WIP), among other proteins [4,5],
plays a fundamental role.
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Human WIP is a proline-rich, ubiquitously expressed scaffold protein with multiple, yet poorly
understood, functions in cell signaling, endocytosis, and cytoskeleton remodeling [5,6]. WIP participates
in the formation of Actin-rich structures, such as immune synapses, filopodia, lamellipodia, stress fibers,
and podosomes [5]. WIP-deficient mice exhibit a reduced formation of podosomes [7–9] and
invadopodia [5,9], evidencing its relevance in the regulation of Actin polymerization. All these
observations also support the pro-tumoral role of WIP by endowing some cancer cells with
anchorage-independent growth and higher motility [6,10]. In fact, a high WIP expression correlates
with poor prognosis in patients with pancreatic ductal adenocarcinoma [11], lung cancer [12],
colorectal cancers, breast cancer, and gliomas [13].

WIP also increases cell survival and the proliferation of cancer cells by yet poorly defined
mechanisms [6]. Its participation in redox control, crucial for the survival of cancer cells, has not
been addressed yet. The highly proliferative activity of cancer cells leads to increased ROS levels
and changes in the redox metabolism that favor protumoral functions such as genetic instability,
cell migration, and mitotic signaling [14]. Loss of cell contact inhibition, survival upon matrix
detachment, migratory ability, and tissue infiltration are all critical features of tumor metastasis,
and ROS have been implicated in these processes [15,16]. However, the sustained elevation of ROS
levels induces cell cycle arrest, senescence, and cancer cell death [17–19]. Therefore, tumor cells develop
strategies to restrain ROS production to tolerable levels by activating endogenous antioxidant systems
such transcription factor NRF2, the master regulator of redox metabolism [20,21], as well as many
other cytoprotective functions related to metabolic reprogramming that contribute to cell proliferation
in cooperation with other oncogenic pathways [22,23].

In this study, we found that, in the absence of WIP, the NRF2 levels are reduced due to its increased
ubiquitin-proteasome degradation mediated by the E3 ligase adapter KEAP1. Our study provides a
new role of WIP in maintaining the oxidant tolerance of cancer cells.

2. Materials and Methods

2.1. Cell Culture and Reagents

The validated cell lines HEK293T (ATCC, CRL-11268), U-373 MG (ATCC, HTB-17), and U-87
MG (ATCC, HTB-14) were maintained in Dulbecco’s Modified Eagle Medium supplemented with
10% fetal bovine serum in 5% CO2 at 37 ◦C conditions. Sulforaphane (SFN), MG132, leupeptin,
and ammonium chloride were purchased from Sigma-Aldrich. The gene IDs of this study include:
WIP/WIPF1 (WASP-interacting protein; gene ID: 7456), NFE2L2/NRF2 (Nuclear factor erythroid
2-related factor 2; gene ID: 4780), KEAP1 (kelch-like ECH-associated protein 1; gene ID: 9817),
HMOX1 (heme oxygenase-1; gene ID: 3162), NQO1 (NAD(P)H quinone dehydrogenase 1; gene ID:
1728), and GCLM (glutamate-cysteine ligase modifier subunit; gene ID: 2730).

2.2. Immunoblotting

This protocol was performed as described in [24]. Briefly, the cells were homogenized in lysis
buffer (TRIS pH 7.6 50 mM, 400 mM NaCl, 1 mM EDTA, 1 mM EGTA, and 1% SDS) and the samples
were heated at 95 ◦C for 15 min, sonicated, and pre-cleared by centrifugation. The proteins were
resolved in SDS-PAGE and transferred to Immobilon-P (Millipore) membranes. The proteins of interest
were detected with the following primary antibodies: Actin (sc-1616, Santa Cruz Biotechnology, Dallas,
TX, USA), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase; CB1001, Merck Millipore, Burlington,
MA, USA), KEAP1 (8047, Cell Signaling Techonology, Danvers, MA, USA), LaminB (sc-6217, Santa Cruz
Biotechnology), LC3 (2775, Cell Signaling Technology), NRF2 (homemade and validated in [25]),
NQO1 (ab2346, Abcam, Cambridge, UK), p62 (P0067-200UL, Sigma Aldrich, St. Louis, MO, USA),
and WIP (sc-25533, Santa Cruz Biotechnology). Proper peroxidase-conjugated secondary antibodies
were used for detection by enhanced chemiluminescence (GE Healthcare, Chicago, IL, USA).
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2.3. Lentiviral Vector Production and Infection

Pseudotyped lentiviral vectors were produced in HEK293T cells transiently co-transfected with
the corresponding lentiviral vector (10 µg), the packaging plasmid pSPAX2 (6 µg; Addgene code
12260, Watertown, MA, USA), and theplasmid pMD2G, expressing the glycoprotein of the vesicular
stomatitis virus (6 µg; Addgene code 12259), using the Lipofectamine Plus reagent according to
the manufacturer’s instructions (Invitrogen). Lentiviral vector shRNA control (shco) (Addgene code
1864), shWIP (NM_ 003387 TRCN0000029825), and shKEAP1 (NM_ 012289 TRCN0000154657) were
purchased from Sigma-Aldrich (MISSION shRNA). The lentiviral vectors pWPXL-NRF2WT, NRF2∆ETGE,
and NRF26SA were homemade from previous pcDNA3 constructs using the expression vector pWPXL
(Addgene, 12257). The cells were infected in the presence of 4 µg/mL of polybrene (Sigma-Aldrich)
and selected with 1 µg/mL of puromycin (Sigma-Aldrich).

2.4. Analysis of mRNA Levels

The total RNA extraction and qRT-PCR were performed as detailed in [26]. Primer sequences
are shown in Supplementary Table S1. Data analysis was based on the ∆∆CT method, with the
normalization of the raw data by the geometric mean to the housekeeping genes GAPDH and TBP
(Applied Biosystems, Foster City, CA, USA). All the PCRs were performed in triplicate.

2.5. Immunofluorescence and Image Analysis

The cells were adhered on coverslips and fixed with 4% paraformaldehyde. Immunofluorescence
was performed as described in [27]. Briefly, the cells were washed, blocked, and permeabilized
in PBS containing 0.5% Triton X-100% and 3% bovine serum albumin and incubated for 16 h at
4 ◦C. Then, the cells were incubated for 2 h with the HA primary antibodies (1:400) (MMS-101R,
Covance, Princeton, NJ, USA) and then for 45 min with Alexa Fluor546-conjugated Phalloidin
(1:200) (A22283, Thermo Fisher Scientific, Waltham, MA, USA), DAPI (1:1000) (D1306, Thermo Fisher
Scientific), and secondary antibodies coupled to Alexa Fluor 488 (1:500) (Life Technologies-Molecular
Probes, Grand Island, NY, USA). Images were quantified using the Fiji Software (http://fiji.sc/Fiji).
The fluorescence intensity and M1 and M2 colocalization coefficients were measured by Manders
analysis using the JACoP plug-in. The co-localization coefficients, M1 and M2, are proportional to the
amount of fluorescence of the co-localizing objects in each component of the image, relative to the total
fluorescence in that component [28].

2.6. Flow Cytometry Determination of Reactive Oxygen Species

Intracellular reactive oxygen species (ROS) were detected in a FACScan flow cytometer
(Becton-Dickinson) with hydroethidine (HE) (Thermo Fisher Scientific), which, upon oxidation,
emits orange fluorescence (Excitation/Emission: 518/606 nm). The cells were incubated for 1 h
at 37 ◦C with 2 µM of HE and then detached from the plate, washed once with cold PBS,
and analyzed immediately.

2.7. Statistical Analyses

Data are presented as mean ± S.D. (standard deviation) or S.E.M. (standard error of the mean),
as indicated in each case. Statistical assessments of the differences between groups were analyzed
using the GraphPad Prism 5 software by an unpaired Student’s t-test or one-way ANOVA, as indicated
in the legends to the figures.

3. Results

3.1. WIP Knocked-Down Cells Exhibit Increased ROS and Decreased NRF2 Levels

First, we determined if WIP can generate changes in the basal redox state of tumor cells. We silenced
WIP in the glioblastoma cell lines U-87 MG and U-373 MG with a lentiviral vector expressing shWIP

http://fiji.sc/Fiji
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(Supplemental Figure S1). After three days of interference, the intracellular ROS status was analyzed
using the superoxide-sensitive fluorescent probe hydroethidine (HE). In both cell lines, the WIP
knock-down led to an increase in the ROS levels (Figure 1A,B). Considering that transcription factor
NRF2 is a master regulator of genes involved in redox metabolism, we analyzed possible changes in
the levels of this protein. We observed that WIP-depleted glioblastoma cells presented low NRF2 levels
compared to the transduced cells with the control vector (Figure 1C and Supplemental Figure S1).
Moreover, the decrease in NRF2 correlated with reduced transcriptional activity, reflected as the
lower mRNA levels of three target genes, HMOX1, NQO1, and GCLM, encoding heme oxygenase-1,
NADPH quinone oxidoreductase, and modulator γ-glutamyl cysteine ligase, respectively (Figure 1D).
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mechanism. However, in the WIP-silenced cells, MG132 still accumulated NRF2. These observations 
indicate that WIP-depletion leads to the exacerbated degradation of NRF2 by the proteasome, as 
MG132 can rescue this effect. 

Figure 1. WIP knocked-down cells exhibit increased evels of reactive oxygen species (ROS) and
decreased NRF2. U-87 MG and U-373 MG glioblastoma cells were transduced with lentiviral vectors
containing shcontrol (shco) or human shWIP. (A) Changes in intracellular ROS were determined by
HE staining (a.u., arbitrary units of fluorescence emission) (n = 3). (B) Flow cytometry analysis of
shNRF2-induced intracellular ROS production in HE stained cells (a.u., arbitrary units of fluorescence
emission). A representative sample of 10,000 cells is shown for each condition. Data are presented as
mean ± S.D. ** p ≤ 0.01 according to a Student’s t-test. (C) Representative immunoblots of WIP, NRF2,
GAPDH, and LaminB as loading controls (n = 3). (D) Messenger RNA (mRNA) levels of HMOX1,
NQO1, GCLM were determined by qRT-PCR and normalized by the geometric mean of GAPDH and
TBP. Data are presented as mean ± S.D. (n = 3) * p ≤ 0.05, ** p ≤ 0.01 according to a Student’s t-test.

3.2. The Regulation of NRF2 by WIP is KEAP1-Dependent

We submitted control and WIP-silenced U-87 MG and U-373 MG cells to the proteasome inhibitor
MG132 (Figure 2A,B). In the control cells, both WIP and NRF2 accumulated progressively in the
presence of the proteasome inhibitor, indicating that both proteins are turned over by this mechanism.
However, in the WIP-silenced cells, MG132 still accumulated NRF2. These observations indicate that
WIP-depletion leads to the exacerbated degradation of NRF2 by the proteasome, as MG132 can rescue
this effect.

NRF2 is a short half-life protein with exquisite post-translational regulation by at least two
different E3 ligase adapters, KEAP1 and GSK3/β-TrCP, that target NRF2 for ubiquitin/proteasome
degradation [20,29]. We used the NRF2 mutants, NRF2∆ETGE and NRF26SA, which respectively escape
to KEAP1 or β-TrCP-mediated degradation (see Figure 2C for details). Glioblastoma cells U-87 MG and
U-373 MG were transduced with lentiviral vectors expressing wild-type NRF2, NRF2∆ETGE, NRF26SA,
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or empty vector as a control, and then with control interference (shco) or with shWIP lentiviral vectors.
After 3 days of WIP interference, we reproduced the drop in the levels of ectopically expressed
wild-type NRF2, and the NRF26SA levels were similarly decreased. By contrast, the NRF2∆ETGE levels
were insensitive to the WIP knockdown (Figure 2D,G). These results suggest that the drop in NRF2
caused by WIP silencing is due to the induction of the KEAP1 degradation pathway. To further
confirm this observation, the control and WIP-knocked-down cells were treated with the selective
KEAP1 inhibitor sulforaphane (SFN) (Figure 2E,H). Both SFN-treated cell lines accumulated NRF2
despite the WIP depletion. The accumulation was lower than in the control cells, but it must be
noted that the initial amount of NRF2 in the WIP-silenced cells was also lower. Additionally, we used
lentiviral KEAP1 knock-down in combination with WIP knockdown (Figure 2F,I). KEAP1 deficiency
increased the NRF2 levels, as expected, and also rescued the NRF2 downregulation elicited by the WIP
knockdown. Altogether, these genetic and chemical approaches indicate that WIP protects NRF2 from
KEAP1-mediated degradation.
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Figure 2. The regulation of NRF2 by WIP is KEAP1-dependent. (A,B) Time-dependent accumulation of
NRF2 in control and WIP-silenced U-87 MG (A) and U-373 cells (B) and cells treated with 10µM of MG132.
(C) Scheme of the two domains of NRF2, Neh2 and Nhe6, which are targeted for proteasome degradation.
A KEAP1 homodimer binds the N-terminal region of NRF2 (Neh2 domain) through interaction with a
low affinity (DLG) and high affinity (ETGE) amino acid motifs. Thus, the mutated version of NRF2
that lacks the ETGE motif (NRF2∆ETGE) is insensitive to KEAP1-mediated degradation [20]. On the
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other hand, several phosphorylation events, in which Glycogen synthase kinase 3 (GSK-3) is an
essential kinase, generate a degradation domain (phosphodegron) that is recognized by the E3 ligase
adapter β-TrCP. Thus, the mutated version of NRF2 in which six serines involved in the generation
of the phosphorylation have been changed to alanines (NRF26SA) generates a NRF2 insensitive to
β-TrCP-mediated degradation [29]. (D,G) Immunoblots of WIP, NRF2, and GAPDH as a loading
control of U-87 MG (D) and U-373 MG (G) cells that were transduced with lentiviral vectors expressing
NRF2WT, NRF2∆ETGE, NRF26SA or with empty vector as control and then with a lentivirus expressing
shco or shWIP. (E,H) immunoblots of WIP, NRF2, and GAPDH as a loading control of U-87 MG (E)
and U-373 MG (H) glioblastoma cells that were transduced with lentiviral vectors containing shco or
shWIP and then treated with 15 µM of SFN. (F,I) Immunoblots of WIP, KEAP1, NRF2, and GAPDH
as a loading control of U-87 MG (F) and U-373 MG (I) glioblastoma cells that were transduced with
lentiviral vectors containing shco or shKEAP1 or shWIP, as indicated.

3.3. The Control of the Cellular Redox State by WIP Is NRF2-Dependent

To determine if the changes in redox status resulting from WIP depletion are dependent on
the observed reduction in NRF2, we analyzed the effect of NRF2∆ETGE in WIP-knocked-down
cells. In agreement with Figure 1, WIP silencing increased the intracellular ROS levels,
as determined by HE oxidation, but NRF2∆ETGE rescued the normal ROS levels (Figure 3A,B,D,E).
Consistently, under these experimental conditions, we confirmed WIP interference and NRF2∆ETGE

overexpression by immunoblot (Figure 3C,F). Therefore, WIP requires NRF2 for maintaining the basal
redox status.
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Figure 3. The regulation of redox state by WIP is NRF2-dependent. (A–C) U-87 MG and (D–F) U-373
MG glioblastoma cells were transduced with empty lentiviral as control or a lentivirus expressing
NRF2∆ETGE, and then with a lentivirus expressing shco or shWIP. (A,D) Changes in intracellular ROS
were determined by flow cytometry of HE staining (a.u., arbitrary units of fluorescence emission).
A representative sample of 10,000 cells is shown for each condition. (B,E) Quantification of intracellular
ROS production in HE-stained (a.u., arbitrary units of fluorescence emission) (n = 3). Data are presented
as mean ± S.D. ** p ≤ 0.01 according to one-way ANOVA. (C,F) Representative immunoblots of WIP,
NRF2, and GAPDH as a loading control.

3.4. WIP Does Not Regulate KEAP1 Degradation

One possible explanation for the protective effect of WIP over the KEAP1-mediated degradation
of NRF2 might be that WIP modifies the stability of KEAP1. KEAP1 degradation involves selective
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autophagy through interaction with the cargo protein p62 [30]. Considering that WIP participates in
multiple aspects of endosomal trafficking, we explored if WIP might be controlling KEAP1 degradation
through autophagy. WIP-depleted cells were treated with a standard cocktail of ammonium chloride
and leupeptin (N/L), which inhibits lysosomal proteases [24,31]. In U-87 MG and U-373 MG glioblastoma
cells, the inhibition of autophagy was confirmed by the increased accumulation of lipidated LC3-II
and p62 proteins (Figure 4A,B). In agreement with other reports, KEAP1 was also accumulated [30]
(Figure 4A,B). Regarding NRF2, its levels decreased when KEAP1 was protected from autophagy by
the N/L cocktail, and the WIP-depleted cells still led to the further degradation of NRF2. Even more,
as shown in Figure 4A,B, the KEAP1 levels were similar in the control and WIP-knocked-down cells,
even in the absence of the autophagy inhibitors, therefore excluding other potential pathways for
KEAP1 degradation. Hence, the effect of WIP on KEAP1 inhibition is at least in part independent of
its degradation.
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Figure 4. WIP does not regulate KEAP1 degradation. Immunoblots of WIP, p62, LC3, NRF2, KEAP1,
and GAPDH as a loading control of U-87 MG (A) and U-373 MG (B) glioblastoma cells that were
transduced with lentiviral vectors containing shco or shWIP and then treated with a standard cocktail
of ammonium chloride and leupeptin (N/L), to 20 µM and 100 µM, respectively, during 24 h.

3.5. WIP-Depleted Cells Exhibit Increased Co-Localization between KEAP1 and F-Actin

The remodeling of the Actin cytoskeleton is a well-established function attributed to WIP.
Therefore, we analyzed if WIP-silencing might alter the dynamics of Actin microfilaments in the U-87
MG and U-373 MG glioblastoma lines. Following three days of WIP knockdown, there was not a change
in the amount of Actin detected by immunoblot (Supplementary Figure S2a,d), but when the cells were
stained with Phalloidin, a toxin that selectively binds to filamentous Actin (F-Actin), WIP depletion led
to a ~1.5-fold increase in polymerized Actin over the control (Supplementary Figure S2b,c,e,f).

KEAP1 was initially defined as a cytoskeleton-associated protein [32,33]. Therefore, we analyzed
if WIP maintains NRF2 stability by altering the KEAP1 interaction with the Actin cytoskeleton. Due to
the low KEAP1 levels and lack of suitable antibodies for the immunofluorescence of endogenous
KEAP1, the co-localization between KEAP1 and the polymerized Actin was studied in cells ectopically
expressing HA-tagged KEAP1. In the U-87 MG and U-373 MG glioblastoma lines, a pool of KEAP1 was
localized in at the perinuclear cytoplasm, and another was close to the plasma membrane clustered in
the podosomes, invadosomes, or other Actin-rich structures. In WIP-depleted cells, we found increased
co-localization between KEAP1-HA and F-Actin at the Actin-rich structures of the plasma membrane
(Figure 5A,B) that was further quantified using Manders’ overlap coefficients (Figure 5C,D).

Altogether, all these data indicate that WIP deficiency alters Actin dynamics, possibly increasing
the interaction of KEAP1 with microfilaments, increasing the cytoplasmic retention and degradation of
NRF2, and altering the cellular basal redox state.
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Figure 5. WIP knocked-down cells exhibit increased co-localization between KEAP1 and F-Actin.
U-87 MG (A,C) and U-373 MG (B,D) glioblastoma cells were transduced with lentivirus expressing
KEAP1-HA and then with a lentivirus expressing shco or human shWIP. (A,B) Immunostaining of
KEAP1 with HA antibody and counterstaining with Phalloidin and DAPI to show F-Actin and nuclei,
respectively. (C,D) Quantification of colocalization between F-Actin and KEAP1-HA expressed as
Manders’ overlap coefficients. Fluorescence was quantified in 1 µm-thick stacks using the JACoP plugin
of ImageJ software. Data are presented as mean ± S.E.M. (n = 20) * p ≤ 0.05, ** p ≤ 0.01 according to
one-way ANOVA.
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4. Discussion

The role of WIP in the organization of the Actin microfilaments endows this protein with
a unique function in cytoskeletal remodeling and vesicle trafficking, which are required for cell
survival, proliferation, and tumorigenesis [6,10]. In this study, we show for the first time that WIP also
participates in the control of redox status by protecting NRF2 from ubiquitin-proteasome degradation.
The importance of NRF2 in cancer progression has been widely described as it increases tolerance to the
high ROS production that characterizes tumor cell growth [14,34–36]. Consistent with our observations
in cell culture, glioma patients also exhibit high expression levels of both WIP and NRF2, resulting in
poor prognosis [6,37,38].

The best-characterized pathways that control NRF2 stability are KEAP1 andβ-TrCP [39]. These two
mechanisms appear to obey to different cellular circumstances. Thus, KEAP1 connects NRF2 degradation
with redox signaling and β-TrCP with growth factor signaling. The use of specific NRF2 mutants
that are resistant to KEAP1 or β-TrCP-mediated degradation as well as the chemical and genetic
silencing of KEAP1 allowed us to conclude that WIP restrains the capacity of KEAP1 to target NRF2
for degradation. Therefore, our results favor a role of WIP in the control of oxidative stress.

Considering that WIP participates in vesicular trafficking, we analyzed if the regulation of
NRF2 stability by WIP might involve KEAP1 degradation by autophagy. KEAP1 interacts with
the autophagy cargo protein p62/SQSTM1, which sequesters the complex in inclusion bodies and
promotes its degradation [40,41]. The participation of WIP in autophagy has not been addressed yet,
but the Wiskott–Aldrich syndrome protein (WASP), a binding partner of WIP in innate immune cells,
appears to participate in autophagy [42]. Thus, WASP deficiency results in impaired autophagic p62/LC3
recruitment and defective formation of canonical autophagosomes [42]. However, although the
inhibition of autophagy led to a concomitant increase in KEAP1, this effect was independent of
WIP, because WIP depletion did not alter KEAP1 levels at the baseline or following autophagosome
inhibition. The most characterized WIP partner in non-immune cell types, including glioblastomas, is
neural-WASP ((N)-WASP) [43,44]. WIP reorganizes of the Actin cytoskeleton in glioblastoma cells in a
(N)-WASP-dependent and independent manner [5,45,46], and therefore future studies are required
to determine if (N)-WASP, alone or together with WIP, might modulate the autophagy flux in these
cell types.

Before the realization that KEAP1 is an E3 ligase adaptor to the CUL3/RBX complex [47,48],
it was considered that KEAP1 binds to the Actin cytoskeleton and traps NRF2 in the cytoplasm,
thereby preventing its nuclear translocation and transcriptional activity [32]. Drugs that disassemble
or stabilize the Actin cytoskeleton led to increased or decreased NRF2 levels, respectively [32], and it
was suggested that, by analogy with other proteins that contain a Kelch repeat, KEAP1 might bind
F-Actin [32]. Although later on it was found that the Kelch repeats are actually a WD40 propeller
involved in NRF2 ubiquitination, these studies provided evidence for the binding of KEAP1 to Actin.
The association of KEAP1 with Actin-rich adhesion complexes was further analyzed in different
tissues and cell types [33]. KEAP1 is present in focal adhesions of kidney proximal tubule cells and
in adherens junctions at the base of the bile canaliculi, in association with Actin. KEAP1 appears to
play also a role in podosome formation [49]. Our results are in agreement with an interaction between
KEAP1 and F-Actin, and show that this association might be responsible for increased ubiquitination
of NRF2 in the absence of WIP. However, we must consider that WIP is a cellular multi-tasker
that participates in multiple protein-protein interactions, as it has been recently reviewed [50],
and therefore, we cannot exclude the possibility that, besides Actin, other proteins interacting with
WIP might play a relevant role in KEAP1 repression. These proteins, most of them interacting with
the proline-rich central portion of WIP through its SH3 domain, might include Cortactin, Profilin1/2,
and NCK1/2, among others [50], and have functions beyond cytoskeletal dynamics that might regulate
the KEAP1/NRF2 axis. For instance, Nck1-knockdown in adipocyte cell lines leads to their impaired
differentiation in response to platelet-derived growth factor α, accompanied by the increased activation
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of the transcription factor NRF2 [51]. Whether this pathway of NRF2 regulation is connected to
WIP/KEAP1 axis remains to be elucidated.

More recently, a new connection between the NRF2 system and the Actin cytoskeleton has been
reported to control of NRF2 activity by the Arp2/3 complex [49], although the role of WIP was not
analyzed. The Arp2/3 complex catalyzes the polymerization of monomeric Actin into branched Actin
microfilaments [52]. It was found that depletion of the Arp2/3 complex by knockout of Arpc4 leads in
keratinocytes to a reduction in Actin microfilaments, including stress fibers, and NRF2 hyperactivation.
Our results are in agreement with this study as we found that WIP-depletion leads to the opposite
effect—i.e., more stress fibers correlated with a lower NRF2 activity. However, in keratinocytes these
authors did not detect the expected increase in the NRF2 protein levels despite the fact that they
found the increased phosphorylation of the Ser40 of NRF2. This result is contradictory, as Ser40 is
located at the Neh2 domain of NRF2 that binds to KEAP1 and has been reported as a mechanism to
escape KEAP1-targeted degradation [49]. Further studies will be required to determine if indeed the
hyperactivation of NRF2 is or not related to impaired KEAP1 activity in keratinocytes.

There is abundant evidence of the effect of ROS in Actin remodeling. For instance, several critical
cysteine and methionine amino acids are susceptible to oxidation in Actin, resulting in alterations in
Actin polymerization [53]. Thus, NOX-derived ROS promote the formation Actin-rich protrusions of
the plasma membrane [54] and mitochondrial ROS support KRAS-induced anchorage-independent
growth of murine lung cancer cells [55]. Therefore, we propose that WIP might act as a regulator of the
overall redox state, through NRF2 regulation, and provide a feedback mechanism for the protection of
Actin microfilaments from uncontrolled oxidation.

5. Conclusions

WIP participates in tumor progression and promotes cancer cell survival. Here, we report a new
role of this multi-taker protein in the control of the redox adaptation of cancer cells by preventing
the KEAP-dependent degradation of NRF2. Most likely this effect is due to the reorganization of
the Actin cytoskeleton. Therefore, we propose that WIP might act as a regulator of the overall redox
state, through NRF2 regulation, and provide a feedback mechanism for the protection of Actin
microfilaments from uncontrolled oxidation. Our study provides a new role of WIP in maintaining the
oxidant tolerance of cancer cells, which may have therapeutic implications.
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