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Abstract

Background

Acute kidney injury (AKI) is a common complication after surgery that is associated with

increased morbidity and mortality. The majority of existing perioperative AKI risk prediction

models are limited in their generalizability and do not fully utilize intraoperative physiological

time-series data. Thus, there is a need for intelligent, accurate, and robust systems to lever-

age new information as it becomes available to predict the risk of developing postoperative

AKI.

Methods

A retrospective single-center cohort of 2,911 adults who underwent surgery at the University

of Florida Health between 2000 and 2010 was utilized for this study. Machine learning and sta-

tistical analysis techniques were used to develop perioperative models to predict the risk of

developing AKI during the first three days after surgery, first seven days after surgery, and

overall (after surgery during the index hospitalization). The improvement in risk prediction was

examined by incorporating intraoperative physiological time-series variables. Our proposed

model enriched a preoperative model that produced a probabilistic AKI risk score by integrat-

ing intraoperative statistical features through a machine learning stacking approach inside a

random forest classifier. Model performance was evaluated using the area under the receiver

operating characteristic curve (AUC), accuracy, and Net Reclassification Improvement (NRI).

Results

The predictive performance of the proposed model is better than the preoperative data only

model. The proposed model had an AUC of 0.86 (accuracy of 0.78) for the seven-day AKI

outcome, while the preoperative model had an AUC of 0.84 (accuracy of 0.76). Furthermore,

by integrating intraoperative features, the algorithm was able to reclassify 40% of the false
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negative patients from the preoperative model. The NRI for each outcome was AKI at three

days (8%), seven days (7%), and overall (4%).

Conclusions

Postoperative AKI prediction was improved with high sensitivity and specificity through a

machine learning approach that dynamically incorporated intraoperative data.

Introduction

Acute kidney injury (AKI) is one of the most common, yet underdiagnosed, postoperative

complications with lasting consequences [1, 2]. It is associated with an increase in mortality,

short- and long-term morbidity, chronic kidney disease, and cardiovascular disease [3–7]. An

episode of postoperative AKI imposes an average hospital cost increase of $9000, even after

adjusting for all other complications [8, 9]. The implementation of existing clinical guidelines

for prevention and treatment of AKI is often hindered by the inability to accurately and timely

assess the risk for AKI while accounting for the dynamic nature of the pathophysiological

events during surgery.

With the advancement of digitalization in clinical medicine and the widespread availability

of electronic health records (EHR), a number of predictive models have been developed to esti-

mate the risk for AKI in different clinical settings, including after surgery [10, 11]. A majority

of the existing AKI risk models are limited to preoperative factors [12], applicable only to a

specific surgery type [13, 14]. Some of the available online prognostic calculators [15] are

designed for intensive care unit (ICU) patients only, and do not take any surgical features into

account. While preoperative models for AKI mainly rely on patients’ pre-existing health con-

ditions and general risks associated with the type of surgical procedure, there is a wealth of

intraoperative data reflecting the acute physiological responses to the stresses of surgery that is

being ignored. Although recent studies have demonstrated an association between AKI and

low intraoperative hemoglobin and hypotension [7, 16, 17], there is still a lack of comprehen-

sive postoperative AKI prediction models that dynamically integrate physiologic intraopera-

tive data with preoperative information.

Thus, there is a need for intelligent, accurate, and robust systems that are able to leverage

temporal information related to patients’ physiological changes during surgery. We have

recently developed and validated a machine learning algorithm, MySurgeryRisk, which predicts

preoperative risk for major postoperative complications, including AKI, using EHR data [18].

The aim of this study was to develop and validate a dynamic machine-learning algorithm that

readjusts the preoperative risk for AKI, using physiological time series and other data collected

during surgery, to provide a personalized risk panel for AKI with both preoperative and imme-

diate postoperative risk assessments.

Materials and methods

This study was approved by the University of Florida Institutional Review Board and Privacy

Office as an exempt study with a waiver of informed consent. Transparent Reporting of a mul-

tivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) recommenda-

tions were followed under the Type 2a analysis category (random split sample development

and validation) (S1 Table) [19].
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Data source

The University of Florida Integrated Data Repository was used as an honest broker to assemble

a single center longitudinal perioperative cohort for all patients admitted to the University of

Florida Health for longer than 24 hours following any type of operative procedure between

January 1, 2000 and November 30, 2010 by integrating electronic health records with other

clinical, administrative, and public databases as previously described [12]. The resulting data-

set included detailed information on patient demographics, diagnoses, procedures, outcomes,

comprehensive hospital charges, hospital characteristics, insurance status, laboratory, phar-

macy, and blood bank data as well as detailed intraoperative physiologic and monitoring data

for the cohort.

Participants

We identified patients 18 years of age or older that were admitted to the hospital for longer

than 24 hours following any type of inpatient operative procedure. If patients underwent mul-

tiple surgeries, only the first surgery was used in our analysis. Patients with end stage renal dis-

ease prior to admission (n = 1,935) and patients with missing serum creatinine values during

hospitalization (n = 6,636) were excluded from our analysis. From the remaining cohort there

were 2,911 patients who had complete intraoperative data for all vital signs, laboratory values,

and medications.

Outcomes

The main outcome was the development of postoperative AKI within the first seven days after

surgery. The secondary analysis modeled a) the risk for the development of AKI within the

first three days after surgery, and b) the risk of developing postoperative AKI at any point dur-

ing the hospitalization for the index surgery. AKI was defined using the consensus Kidney Dis-

ease: Improving Global Outcomes (KDIGO) criteria as at least a 50% or 0.3 mg/dl increase in

serum creatinine relative to the reference creatinine [20]. Reference creatinine was determined

based on the availability of measured creatinine prior to admission. The minimum serum cre-

atinine value was used if results were available within seven days of the index hospitalization. If

not available, the median serum creatinine value obtained within 8–365 days prior to admis-

sion was used. For patients without a prior creatinine value within the year prior to admission

and no history of chronic kidney disease, an estimated reference serum creatinine was used

[21–23]. The estimated reference serum creatinine was calculated by solving the abbreviated

“Modification of Diet in Renal Disease” equation for creatinine, assuming a glomerular filtra-

tion rate of 75 ml/minute/1.73 m2. After the first seven days of the index hospitalization, the

minimum serum creatinine from the preceding seven days was used as the reference creatinine

[12, 24]. Patients with chronic kidney disease and end stage renal disease prior to admission

were identified using the validated combination of The International Classification of Diseases,

Ninth Revision, Clinical Modification (ICD-9-CM) codes [25, 26]. Exact dates were used to

calculate the duration of mechanical ventilation and intensive care unit stay. A set of previ-

ously described criteria was used to annotate the remaining clinical outcomes [8].

Predictor features

The preoperative risk assessment used demographic, socio-economic, administrative, clinical,

pharmacy, and laboratory data available prior to surgery to derive 285 preoperative predictor

features from 69 preoperative variables (S2 Table). Preoperative comorbidities were derived

using up to 50 ICD-9-CM codes as binary variables and the Charlson Comorbidity Index [7,

Intraoperative data embedded analytics for acute kidney injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0214904 April 4, 2019 3 / 26

https://doi.org/10.1371/journal.pone.0214904


18, 27, 28]. A reference estimated glomerular filtration rate (eGFR) was calculated for all

patients using the reference serum creatinine, sex, race, and age [29]. The immediate postoper-

ative risk reassessment used the following intraoperative variables: five physiologic time series

(mean arterial blood pressure (MAP), systolic blood pressure, diastolic blood pressure, mini-

mum alveolar concentration (MAC) of inhaled anesthetics, and heart rate (HR)), 21 repeated

laboratory measures, and other discrete variables (intraoperative medications, duration of the

operation, anesthesia type, etc.) (S2 Table).

Sample size

Two thousand nine hundred eleven (2,911) patients were included in the cohort. The data was

randomly split into 70% for training and 30% for validation. The algorithm was trained on the

development cohort while results were reported from the validation cohort. By using 30% of

the cohort for validation (n = 873), the overall sample size allows for a maximum width of the

95% confidence interval for the area under the receiver operating characteristic curve (AUC)

of 0.08, when prevalence of AKI is between 30% and 40%.

Predictive analytics workflow

The proposed IDEA (Intraoperative Data Embedded Analytics) algorithm is conceptualized as

a dynamic model that readjusts the preoperative risk for AKI using physiological time series

and other data collected during surgery. The resulting adjusted postoperative risk is assessed

immediately at the end of surgery. This flow simulates the clinical task faced by physicians

involved in perioperative care where patients’ preoperative information is subsequently

enriched by the influx of new data from the operating room. The final output produces IDEA,

a personalized risk panel for AKI after surgery (Fig 1) with both preoperative and immediate

postoperative risk assessments. The IDEA algorithm consists of two main layers, preoperative

and intraoperative, (Fig 2) each containing two cores, data transformer and data analytics.

Fig 1. Clinical workflow of the Intraoperative Data Embedded Analytics (IDEA) algorithm for postoperative acute kidney injury prediction. Phase I, all available

health care data from the electronic health record and other public datasets is fed into the preoperative model. The preoperative model calculates a risk score for

postoperative acute kidney injury (AKI) and shares the risk score with the clinical team before the surgery. Phase II, the preoperative data is combined with

intraoperative data and fed into the IDEA algorithm which calculates a risk score for postoperative acute kidney injury and shares the risk score with the clinical team

after surgery.

https://doi.org/10.1371/journal.pone.0214904.g001

Intraoperative data embedded analytics for acute kidney injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0214904 April 4, 2019 4 / 26

https://doi.org/10.1371/journal.pone.0214904.g001
https://doi.org/10.1371/journal.pone.0214904


In the data transformer core, the algorithm transforms data from its native format into new

complex variables that are optimized for use in predictive models (S2 Table). Data preprocess-

ing was done using a set of automated rules to remove errors and outliers. Time series variables

in the intraoperative layer were truncated to match the corresponding surgery start and stop

times for each patient. Extreme values in the physiological time series data, defined as values

outside the allowable range using expert opinion and medical knowledge [30], were replaced

by the average of their five nearest neighbors. Outlier detection and removal was performed

on laboratory results by replacing the top and bottom 1% of data using random uniform values

generated from the 95%-99.5% and 0.5%-5% percentiles, respectively. Missing nominal vari-

ables were replaced with a distinct ‘‘missing” category, whereas missing continuous variables

were replaced by the median value for a given variable [18, 31]. Categorical and nominal vari-

ables, with more than two levels, were further optimized by calculating conditional probabili-

ties for a particular variable value (such as each surgeon’s ID number or each zip code in the

dataset) to be associated with the occurrence of the complication using a separate dataset. The

probabilities were calculated as the log of the ratio of the prevalence of a particular variable

value among cases with one or more complications to cases without complications [28]. Surgi-

cal procedure codes were optimized using a forest of trees approach to reduce the 4-digit pri-

mary procedure ICD-9-CM codes that correspond to the anatomical location of surgery. Each

node represents a group of procedures, with roots representing the most general groups of

Fig 2. Conceptual diagram of the Intraoperative Data Embedded Analytics (IDEA) AKI prediction model. This diagram shows the aggregation of the data

transformer, data engineering, and data analytics modules in the preoperative and intraoperative layers. The two layers can be integrated by either (1) stacking the

preoperative prediction scores with the cleaned and feature engineered intraoperative data (blue arrow) or (2) obtaining the full perioperative dataset by merging all the

clean features from both layers (orange arrow).

https://doi.org/10.1371/journal.pone.0214904.g002
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procedures and leaf nodes representing the specific procedures [28]. This grouping method

reduces the number of discrete procedure codes from 318 to 174 and improves the analysis of

low frequency procedures (S1 Methods). Statistical features were derived from the physiologi-

cal time series data, which included minimum, maximum, mean, short- and long-term vari-

ability [32], time spent between different value ranges (determined by the number of standard

deviations away from the mean value), and the percentage of time spent in each of the previ-

ously mentioned value ranges. Short- and long-term variability were computed using the base

and residual signals [32]. The base signal represents the smoothed out version of the time

series computed using a convolution filter, while the residual signal represents the difference

between the original signal and base signal. The long-term variability is the standard deviation

of the base signal and the short-term variability is the standard deviation of the residual signal.

For repeated laboratory measurements, the percentage of abnormal values (the percentage of

values outside the normal ranges from the Logical Observation Identifiers Names and Codes

(LOINC) data table [https://loinc.org/downloads/]), value counts (number of laboratory

results obtained during the surgery), and variances were derived (S1 Methods).

In the data analytics core, the IDEA algorithm was trained to calculate patient-level preop-

erative and immediate postoperative risk probabilities for AKI. In the first stage, the algorithm

was trained to calculate preoperative risk probability for AKI using preoperative data only.

Subsequently, the intraoperative data available at the end of surgery was used as an additional

input for the algorithm to recalculate the postoperative risk probability for AKI. The preopera-

tive risk probability was calculated using a generalized additive model (GAM) with logistic

link function [18, 28, 31]. All models were adjusted for non-linearity of covariates using non-

linear risk functions estimated with thin plate regression splines [18, 28, 33]. The best GAM

model was picked using a five-fold cross validation technique on 70% of the randomly selected

training data cohort and the preoperative prediction scores were generated as the output.

Intraoperative Data Embedded Analytics (IDEA), employing a random forest classifier, was

used to enrich the preoperative risk model with intraoperative data. Two approaches were

compared, one where risk probability output from the GAM model was combined with the

intraoperative data and used as input for the random forest (stacked model), and the other

where all preoperative data was embedded with the intraoperative data as input for the random

forest (full model). All intraoperative statistical features, along with the preoperative prediction

scores, underwent a univariate analysis and only statistically significant (based on the F-test

statistic) features were considered for the random forest model [34]. The feature selection and

other hyper parameters in scikit-learn [35] random forest classifier (i.e., number of trees, maxi-

mum features for the best split, minimum number of samples required to be at a leaf node)

were tuned simultaneously using a grid search technique with five-fold cross validation on the

same 70% training data cohort (S1 Fig).

Model validation

All of the models were validated using the 30% validation cohort of 873 patients (S1 Fig). The

results were reported using 1000 nonparametric bootstrap replicates generated from the R

boot package [36]. Using the prediction results obtained from the 1000 bootstrap cohorts, non-

parametric confidence intervals for each of the performance metrics were calculated.

Model performance

Each model’s discrimination was assessed using the area under receiver operating characteris-

tic curve (AUC) and model accuracy by determining the fraction of correct classifications for

each model. Stratification into high- and low-risk groups was done by calculating the optimal

Intraoperative data embedded analytics for acute kidney injury
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cut-off point based on the maximum Youden Index [37] computed during the training process

for each outcome. Using the optimal thresholds for risk probabilities, a classification table was

built from which sensitivity, specificity, and positive and negative predictive values were calcu-

lated for each model. Absolute risk was calculated as the percentage of cases for which acute

kidney injury (AKI) occurred in low- and high-risk groups, respectively. Relative risk was cal-

culated as the ratio of the absolute risk of AKI between high- and low-risk groups. The absolute

risk was calculated for high- and low-risk groups for all three models and were compared

using the R package “DTComPair” adjusting for multiple comparisons using the Bonferroni

method. The Net Reclassification Improvement (NRI) index [38] was used to quantify how

well the postoperative model reclassifies AKI patients compared to the preoperative model.

Model calibration was tested using the Hosmer-Lemeshow statistic. Bootstrap sampling and

nonparametric methods were used to obtain 95% confidence intervals for all performance

measures. All analyses were performed using Python 2.7 [39], SciPy 1.0.0 [40], R 3.4 [41], and

SAS 9.4 (Cary, NC) software.

Results

Participant baseline characteristics and outcomes

Among 2,911 patients who underwent inpatient surgery requiring a hospital admission of at

least 24 hours in a quaternary-care academic center, 1,339 (46%) developed postoperative AKI

prior to discharge. Of the patients that developed postoperative AKI, 1,163 (87%) had AKI

onset within seven days of surgery. Only 176 (13%) of the AKI patients had late AKI onset

(more than seven days after surgery), while 75% of the AKI patients had AKI onset within the

first 72 hours after surgery (S3 Table).

The cohort included data from 129 surgeons with an average of 149 procedures per surgeon

(Table 1). The acuity of the patient population was high, as 46% of surgeries were categorized

as either non-elective or were associated with emergent or urgent hospital admission. Among

the cohort, 62% of patients required ICU admission > 48 hours. The cohort had a median

ICU length of stay of four days (25th-75th percentiles two-nine days) and a median hospital

length of stay of eleven days (25th-75th percentiles seven-twenty days). The overall mortality

was 4.8% at thirty days and 16% at one year after index admission. A wide range of comorbidi-

ties was documented on admission with cancer and diabetes mellitus being most prevalent.

One fourth of the patients were from rural areas and 12% of the patients resided in neighbor-

hoods with a household income below the poverty level [42]. The prevalence of examined

complications ranged from 3% for wound complication to 62% for intensive care unit

admission > 48 hours (Table 1 and S3 Table). Acute kidney injury, admission to ICU for> 48

hours, and mechanical ventilation for > 48 hours were the most common complications

among all surgeries. The distribution of outcomes and preoperative clinical characteristics did

not differ between training and validation cohorts.

Intraoperative physiological time series and risk of acute kidney injury

Patients with AKI had more profound and persistent intraoperative hemodynamic changes. A

comparison of statistical variables extracted from intraoperative physiological time series data

showed that patients with AKI had significantly higher maximum values, greater short- and

long-term variability, lower minimum values, and lower average base signals for systolic, dia-

stolic, and mean arterial pressure (MAP) (Table 2). Similar trends were observed for heart

rate, except for average base signal, which was higher in patients with AKI. The only significant

variables for minimum alveolar concentration were maximum value and long-term variability,

which were higher in AKI patients. There were similar patterns for the secondary outcomes

Intraoperative data embedded analytics for acute kidney injury
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Table 1. Preoperative clinical characteristics and outcomes of the cohort stratified by the occurrence of acute kidney injury within seven days after surgery.

Acute Kidney Injury onset within seven days after

surgery

No Yes

Overall cohort (N = 2,911) (N = 1,748, 60%) (N = 1,163, 40%)

Demographic features

Age, median (25th-75th) 60 (49, 69) 58 (47, 67) 63 (52, 72)a

Male gender, n (%) 1760 (60) 1007 (58) 753 (65) a

Race, n (%)

White 2374 (82) 1440 (82) 934 (80)

African American 265 (9) 150 (9) 115 (10)

Hispanic 117 (4) 64 (4) 53 (5)

Missing 87 (3) 50 (3) 37 (3)

Other 68 (2) 44 (3) 24 (2)

Primary insurance, n (%)a

Private 1208 (42) 797 (46) 411 (35)

Medicare 1204 (41) 635 (36) 569 (49)

Medicaid 340 (12) 198 (11) 142 (12)

Uninsured 159 (5) 118 (7) 41 (4)

Socio-economic features

Neighborhood characteristics

Rural area, n (%) 767 (27) 467 (27) 300 (26)

Total population, median (25th-75th) 19162 (10639, 30611) 18931 (10510, 30611) 19287 (11056, 30533)

Median income, median (25th-75th) 34372 (29980, 41410) 34328 (29854, 41410) 34459 (30084, 41410)

Total proportion of African-Americans (%), median (25th-75th) 9.6 (3.9, 17.6) 9.5 (3.9, 16.5) 9.6 (3.7, 19.5)

Total proportion of Hispanic (%), median (25th-75th) 4.3 (2.5, 6.8) 4.3 (2.6, 6.7) 4.1 (2.5, 7.1)

Distance from residency to hospital (km), median (25th-75th) 68 (29, 143) 61 (28, 132) 73 (31, 153)a

Population proportion below poverty (%), median (25th-75th) 12.0 (8.2, 17.4) 12.1 (8.3, 17.2) 11.8 (8.0, 17.4)

Comorbidity features

Charlson’s comorbidity index (CCI), median (25th-75th) 2 (1, 3) 1 (0, 3) 2 (1, 3)a

Chronic kidney disease, n (%) 346 (12) 73 (4) 273 (23)a

Cancer, n (%) 418 (15) 303 (17) 115 (10)a

Diabetes, n (%) 539 (19) 297 (17) 242 (21)a

Chronic pulmonary disease, n (%) 656 (23) 331 (19) 325 (28)a

Peripheral vascular disease, n (%) 692 (24) 334 (20) 358 (31)a

Cerebrovascular disease, n (%) 248 (9) 154 (9) 94 (8)

Congestive heart failure, n (%) 510 (18) 180 (10) 330 (28)a

Myocardial infarction, n (%) 308 (11) 140 (8) 168 (15)a

Liver disease, n (%) 393 (14) 170 (10) 223 (20)a

Operative features

Admission

Weekend admission, n (%) 472 (16) 255 (15) 217 (19)a

Admission source, n (%)a

Outpatient setting 1753 (61) 1105 (64) 648 (56)

Emergency room 583 (20) 362 (21) 221 (19)

Transfer 560 (19) 268 (15) 292 (25)

Admission month (top 3 categories), n (%)

September 279 (10) 168 (10) 111 (10)

October 273 (9) 174 (10) 99 (9)

(Continued)
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Table 1. (Continued)

Acute Kidney Injury onset within seven days after

surgery

No Yes

Overall cohort (N = 2,911) (N = 1,748, 60%) (N = 1,163, 40%)

June 254 (9) 162 (9) 92 (8)

Number of operating surgeons, n 129 112 82

Number of procedures per operating Surgeon, n (%)a

First rank 422 (15) 181 (10) 241 (21)

Second rank 267 (9) 197 (11) 70 (6)

Third rank 258 (9) 129 (7) 129 (11)

Admitting service, n (%)a

Surgery 2545 (87) 1588 (91) 957 (82)

Medicine 366 (13) 160 (9) 206 (18)

Emergent surgery, n (%) 1352 (46) 748 (43) 604 (52)a

Time between admission and operation (days) 0 (0, 2) 0 (0, 1) 1 (0, 4)a

Surgery type, n (%)a

Cardiothoracic Surgery 1415 (49) 676 (39) 739 (64)

Non-Cardiac General Surgery 952 (33) 614 (35) 338 (29)

Neurologic Surgery 301 (10) 271 (16) 30 (3)

Specialty Surgeriesb 243 (8) 187 (11) 56 (5)

Admission day medications

Diuretics 600 (21) 285 (16) 315 (27)a

Bicarbonate 295 (10) 144 (8) 151 (13)a

Angiotensin-Converting-Enzyme Inhibitors 351 (12) 182 (10) 169 (15)a

Antiemetic 1413 (49) 946 (54) 467 (40)a

Betablockers 872 (30) 513 (29) 359 (31)

Statin 502 (17) 272 (16) 230 (20)a

Vasopressors or inotropes 424 (15) 201 (12) 223 (20)a

Outcomes, n (%)

Acute kidney injury

Onset within 3 days of surgery 998 (34) 998 (86)

Onset within 7 days of surgery 1163 (40) 1163 (100)

At any time after surgery 1339 (46) 176 (10) 1163 (100)

Worst stage of acute kidney injuryc

Stage 1 695 (52) 685 (59)

Stage 2 303 (23) 237 (20)

Stage 3 338 (25) 238 (20)

Renal replacement therapy 154 (12) 142 (12)

Intensive care unit admission > 48 hours 1800 (62) 894 (51) 906 (78)a

Mechanical ventilation > 48 hours 833 (29) 322 (18) 511 (44)a

Sepsis 266 (9) 99 (6) 167 (14)a

Wound complications 73 (3) 29 (2) 44 (4)a

Cardiovascular complications 425 (15) 168 (10) 257 (22)

Venous thromboembolism 133 (5) 61 (4) 72 (6)a

a p-value < 0.05 when comparing patients with and without acute kidney injury.
b Specialty surgery includes urological, orthopedics, gynecological, ear nose throat surgeries, ophthalmology and plastic surgery.
c Percentages are among patients with acute kidney injury. For overall cohort, numbers for acute kidney injury at any time during hospitalization are reported. Stage 3

includes cases with and without dialysis.

https://doi.org/10.1371/journal.pone.0214904.t001
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with AKI onset during the first three days after surgery and postoperative AKI onset during

any point of the hospitalization for the index surgery (S3 Table).

Patients with AKI had greater variation in physiological parameters measured during sur-

gery (Fig 3).

The severity and duration of intraoperative hypotension was directly correlated with the

risk of developing postoperative AKI (Fig 4). Patients with prolonged periods of blood pres-

sure within the low range of normal values, yet above the traditional threshold for hypotensive

treatment (60–65 mmHg), still carried a higher risk for AKI (Fig 4A). Similarly, persistently

elevated heart rate was associated with the risk of AKI (Fig 4D).

Other intraoperative variables and risk of acute kidney injury

The following intraoperative arterial blood gas panel measurements were found to be signifi-

cantly higher in patients that developed AKI and were correlated with increased risk of devel-

oping AKI: partial pressure of carbon dioxide, percentage of carboxyhemoglobin, percentage

of methemoglobin, and variance in bicarbonate. Additionally, arterial oxygen content was

found to be significantly lower in AKI patients (Table 2 and S3 Table). Among other intrao-

perative laboratory tests, white blood cell count, red cell distribution width, and lactic acid

were significantly higher in patients who developed AKI, while platelet count, red blood cell

count, hemoglobin, and hematocrit were significantly lower in AKI patients (Table 2 and S3

Table). The correlation between important features and AKI risk probability was not linear

(Fig 5). The total amount of blood products administered during surgery was significantly

associated with progressive increases in AKI risk probability (Fig 5G). Patients who developed

AKI were more likely to receive diuretics (18% vs 7%) and vasopressors (74% vs 62%) during

surgery and were administered less intravenous fluid intraoperatively (Table 2 and S3 Table).

The duration of surgery was significantly higher in patients with AKI and was highly corre-

lated with the risk for AKI (Fig 5H). Interestingly, patients with AKI were more likely to have

their operation performed between 7 pm and 7 am. Similar trends were observed for the sec-

ondary outcomes: AKI with the onset in the first three days of surgery and postoperative AKI

occurring at any time during the hospitalization for the index surgery (S3 Table).

Risk score stratification and model performance

The IDEA algorithm calculated the risk for developing AKI (ranging from 0 to 1) at two dis-

tinct time points: once preoperatively using only preoperative data and once immediately after

surgery after enriching the preoperative data with physiological responses to surgery and

intraoperative events. The algorithm automatically determined the optimal threshold for strat-

ifying patients into low- and high-risk groups (Fig 2 and S2 Fig). The predictive performance

for all three models in the validation dataset was very good (Fig 6) and both of the postopera-

tive models (stacked model AUC 0.86, 95% CI 0.84–0.89 and full model AUC 0.87, 95% CI

0.85–0.90) performed better than the preoperative model (AUC 0.84, 95% CI 0.82–0.87). The

sensitivity increased from 0.68 (95% CI 0.64–0.73) in the preoperative model to 0.81 (95% CI

0.76–0.84) in the full postoperative model. Even though the positive predictive values were in

the same range for the preoperative and the postoperative models (0.68 to 0.78), the negative

predictive value of the postoperative models (0.85, 95% CI 0.82–0.88) was significantly

improved compared to the preoperative model (0.79, 95% CI 0.75–0.82). The data transforma-

tion step required 48 hours, training the postoperative full model required 20 hours, and train-

ing the postoperative stacked model required 8 hours. The data transformation and training

were done on an Ubuntu PC with an Intel Xeon 3.7GHz Processor with 8 cores and 32GB

RAM. The predictive performance for the two secondary outcomes (AKI onset within first
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Table 2. Intraoperative clinical characteristics of the cohort stratified by the occurrence of acute kidney injury within seven days after surgery.

Acute Kidney Injury onset within seven

days after surgery

No Yes

Overall cohort (N = 2,911) (N = 1,748, 60%) (N = 1,163, 40%)

Physiologic intraoperative time series variables, mean (SD)

Systolic Blood Pressure (mmHg)

Maximum 225 (34) 224 (35) 227 (32)a

Minimum 41 (22) 44 (23) 37 (19)a

Average of base signal 107 (17) 110 (17) 102 (16)a

Long-term variability 20.27 (6.61) 19.47 (6.51) 21.48 (6.59)a

Short-term variability 7.86 (2.63) 7.72 (2.69) 8.07 (2.53)a

Diastolic Blood Pressure (mmHg)

Maximum 134 (24) 133 (24) 136 (24)a

Minimum 20 (15) 21 (15) 18 (13)a

Average of base signal 60 (9) 61 (9) 57 (8)a

Long-term variability 11.02 (3.65) 10.83 (3.67) 11.31 (3.6)a

Short-term variability 4.89 (1.65) 4.78 (1.68) 5.05 (1.6)a

Mean Blood Pressure (mmHg)

Maximum 168 (28) 167 (28) 170 (26)a

Minimum 22 (20) 25 (22) 19 (17)a

Average of base signal 76 (12) 78 (13) 72 (10)a

Long-term variability 14.5 (5.3) 14.2 (5.4) 14.9 (5.2)a

Short-term variability 6.0 (2.1) 5.9 (2.1) 6.2 (2.0)a

Heart rate (beats/minute)

Maximum 149 (30) 147 (30) 152 (31)a

Minimum 38 (21) 41 (21) 34 (20)a

Average of base signal 84 (15) 83 (15) 85 (15)a

Long-term variability 14.84 (8.4) 13.87 (7.88) 16.29 (8.94)a

Short-term variability 5.29 (1.76) 5.12 (1.79) 5.56 (1.69)a

Minimum alveolar concentration (%)

Maximum 2.63 (0.89) 2.56 (0.91) 2.73 (0.87)a

Minimum 0.02 (0.06) 0.02 (0.06) 0.02 (0.05)

Average of base signal 0.58 (0.17) 0.58 (0.17) 0.58 (0.18)

Long-term variability 0.35 (0.19) 0.33 (0.18) 0.37 (0.2)a

Short-term variability 0.09 (0.05) 0.09 (0.05) 0.09 (0.05)

Intraoperative laboratory results, median (25th-75th)

Arterial Blood Gas Panel

pH

Maximum 7.38 (7.33, 7.43) 7.38 (7.34, 7.43) 7.38 (7.32, 7.43)

Mean 7.36 (7.32, 7.4) 7.36 (7.33, 7.41) 7.36 (7.32, 7.4)a

Minimum 7.34 (7.3, 7.39) 7.34 (7.31, 7.39) 7.34 (7.3, 7.38)a

Partial pressure of carbon dioxide (mmHg)

Maximum 42.8 (38.4, 47.2) 42.8 (38.2, 47.0) 43.1 (38.8, 47.5)

Mean 40.8 (36.9, 45.2) 40.8 (36.7, 45.0) 40.9 (37.2, 45.4)a

Minimum 38.9 (34.6, 44.6) 38.8 (34.4, 44.4) 39.5 (34.8, 44.8)a

Ratio of partial pressure arterial oxygen and fraction of inspired oxygen (mmHg) 90 (75, 118) 92 (76, 122) 88 (74, 114)a

Arterial Oxygen Content (mL/dL)

Maximum 15.3 (14.0, 16.9) 15.4 (14.1, 17.0) 15.2 (13.8, 16.9)a

(Continued)
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Table 2. (Continued)

Acute Kidney Injury onset within seven

days after surgery

No Yes

Overall cohort (N = 2,911) (N = 1,748, 60%) (N = 1,163, 40%)

Mean 14.7 (13.4, 16.3) 14.8 (13.5, 16.4) 14.5 (13.2, 16.1)a

Minimum 14.2 (12.5, 16.0) 14.3 (12.8, 16.1) 14.0 (12.3, 15.8)a

Carboxyhemoglobin (%)

Maximum 2.2 (1.4, 3.0) 2.1 (1.3, 2.9) 2.3 (1.5, 3.1)a

Mean 2.0 (1.3, 2.8) 1.9 (1.2, 2.7) 2.1 (1.4, 2.9)a

Minimum 1.6 (1.1, 2.6) 1.5 (1.0,2.5) 1.8 (1.2, 2.7)a

Methemoglobin (%)

Maximum 0.8 (0.6, 1.0) 0.8 (0.6, 0.9) 0.8 (0.6, 1.0)a

Mean 0.7 (0.5, 0.9) 0.7 (0.5, 0.8) 0.7 (0.6, 0.9)a

Minimum 0.6 (0.4, 0.8) 0.6 (0.4, 0.8) 0.6 (0.4, 0.9)a

Complete Blood Count Panel

White blood cells (thou/mm3)

Maximum 13.6 (9.9, 18.3) 13.3 (9.9, 17.8) 14.0 (9.8, 19.3)a

Mean 12.9 (9.3, 17.5) 12.5 (9.3, 16.9) 13.3 (9.2, 18.3)a

Minimum 12.1 (8.5, 16.9) 11.7 (8.5, 16.3) 12.6 (8.4, 17.7)a

Red blood cells (million/mcL)

Maximum 3.59 (3.23, 3.97) 3.6 (3.25, 3.98) 3.57 (3.22, 3.94)

Mean 3.5 (3.16, 3.87) 3.52 (3.19, 3.9) 3.46 (3.12, 3.85)a

Minimum 3.42 (3.07, 3.83) 3.45 (3.11, 3.85) 3.38 (3.0, 3.8)a

Hemoglobin (g/dL)

Maximum 10.8 (9.8,12.0) 10.8 (9.9,12.0) 10.8 (9.8,11.9)

Mean 10.3 (9.3,11.6) 10.45 (9.3,11.7) 10.2 (9.2,11.4)a

Minimum 10.6 (9.6,11.7) 10.6 (9.7,11.8) 10.5 (9.6,11.5)a

Hematocrit (%)

Maximum 31.5 (28.7, 34.9) 31.6 (28.8, 35.5) 31.4 (28.5, 34.8)

Mean 30.8 (28.0, 34.1) 30.9 (28.2, 34.3) 30.6 (27.8, 33.8)a

Minimum 30.2 (27.1, 33.6) 30.5 (27.4, 33.9) 29.9 (26.7, 33.3)a

Red cell distribution width (%)

Maximum 14.9 (13.9, 16.1) 14.6 (13.7, 15.7) 15.3 (14.4, 16.7)a

Mean 14.8 (13.8, 15.9) 14.5 (13.6, 15.5) 15.2 (14.4, 16.5)a

Minimum 14.7 (13.8,15.9) 14.4 (13.6, 15.5) 15.1 (14.2, 16.4)a

Platelet count (thou/mm3)

Maximum 180 (133, 239) 197 (145, 253) 163 (117, 209)a

Mean 176 (128, 229) 190 (140, 245) 156 (110, 203)a

Minimum 171 (121, 223) 184 (135, 240) 151 (104, 198)a

Lactic acid (mmol/L)

Maximum 2.5 (1.5, 4.2) 2.1 (1.3, 3.3) 3.4 (2.0, 5.2)a

Mean 2.2 (1.4, 3.6) 1.8 (1.2, 2.8) 2.8 (1.8, 4.6)a

Minimum 1.6 (1.1, 2.9) 1.4 (1.0, 2.4) 2.2 (1.3, 4.0)a

Mean Platelet Volume (fL)

Maximum 8.0 (7.5, 8.7) 7.9 (7.4, 8.5) 8.2 (7.6, 8.8)a

Mean 7.9 (7.4, 8.5) 7.8 (7.3, 8.4) 8.1 (7.5, 8.7)a

Minimum 7.8 (7.3, 8.4) 7.7 (7.2, 8.3) 7.9 (7.4, 8.6)a

Intraoperative medications, n (%)

(Continued)
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three postoperative days and AKI onset before discharge) were similar and demonstrated the

same trends as the primary outcome postoperative models, with AUC values ranging between

0.82 and 0.88 (S4 Table).

Most significantly, according to the feature importance scores from the trained postopera-

tive random forest models (S5 Table), only three of the top ten important features were preop-

erative variables (zip code, chronic kidney disease, and attending surgeon) while all other

important features were derived from the following intraoperative variables: lactic acid, total

blood products administered during surgery, red cell distribution width, and diastolic blood

pressure (S5 Table).

Reclassification of risk groups with intraoperative data

The observed absolute risk (the percentage of patients in a risk group that developed AKI

within the first seven days after surgery) was distinctly different between the low- and high-

risk groups for the preoperative model and both postoperative models (Table 3). The relative

risk (the ratio of the absolute risk between the high- and low-risk groups) was significantly

higher for the postoperative stacked and full models, 4.6 (95% CI 3.7–5.7) and 5.1 (95% CI

4.1–6.4) respectively, compared to the preoperative model, 3.4 (95%CI 2.8–4.0).

To assess the incremental improvement of classifying patients into the correct risk groups

by the addition of intraoperative data, the net reclassification improvement (NRI) was calcu-

lated for both the stacked and full postoperative models. The calculated NRI (net percentage of

correctly reclassified cases after addition of the intraoperative data) showed a statistically sig-

nificant improvement for both the stacked and the full postoperative models with 7% (95% CI

(3%, 12%), p< 0.005) and 11% (95% CI (5%, 16%), p< 0.0005) of cases correctly reclassified,

respectively (Fig 6). The NRI for patients that developed postoperative AKI within seven days

after surgery was approximately 12% (95% CI (8%, 15%), p<0.0001) for both postoperative

models, while the NRI for patients that did not develop postoperative AKI was -4% (95% CI

(-4%, -7%), p<0.001) and -2% (95% CI (-5%, 1%), p>0.5) for the stacked and full models,

respectively. Both postoperative models were able to reclassify approximately 40% of the false

negative patients from the preoperative model correctly into the high-risk group (Fig 7). This

demonstrates that intraoperative data can be used as a significant predictor to correctly assess

Table 2. (Continued)

Acute Kidney Injury onset within seven

days after surgery

No Yes

Overall cohort (N = 2,911) (N = 1,748, 60%) (N = 1,163, 40%)

Total administered intravenous fluids (mL) 2300 (1400, 3600) 2435 (1500, 3700) 2200 (1250, 3500)a

Total administered blood products (mL) 318 (0, 1250) 0 (0, 750) 750 (0, 2500)a

Diuretic (vs. No) 329 (11) 119 (7) 210 (18)a

Vasopressors (vs. No) 1942 (67) 1084 (62) 858 (74)a

Other variables

General anesthesia, n (%) 2881 (99) 1728 (100) 1153 (99)

Duration of surgery (minute), median (25th-75th) 387 (294, 483) 357 (271, 449) 425 (340, 521)a

Surgery performed between 7 pm and 7 am, n (%) 394 (14) 210 (12) 184 (16)a

Total estimated blood loss (mL) 150 (150, 500) 150 (150, 500) 150 (150, 350)a‘

Total urine output (mL) 650 (300, 1150) 600 (300, 1100) 700 (350, 1200)a

a p-value < 0.05 when comparing patients with and without acute kidney injury.

https://doi.org/10.1371/journal.pone.0214904.t002
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Fig 3. Intraoperative physiological time series variations stratified by the occurrence of acute kidney injury.

Intraoperative physiological time series variations for 100 randomly selected patients during the first 200 minutes of

surgery stratified by the occurrence of acute kidney injury (AKI) within the first seven days after surgery. Mean and

95% Confidence Interval (CI) stratified by the occurrence of AKI are shown for (A) intraoperative mean arterial blood

pressure, MAP (mmHg), (B) intraoperative heart rate, HR (beats/minute), and (C) intraoperative mean alveolar

concentration of anesthetics, MAC.

https://doi.org/10.1371/journal.pone.0214904.g003

Fig 4. Association between risk of postoperative acute kidney injury and magnitude and duration of intraoperative physiological variations. The risk for

the development of postoperative acute kidney injury (AKI) within the first seven days after surgery, as predicted by the postoperative stacked model, was

aggregated across the entire cohort. The color represents the risk of developing postoperative AKI, where red is high-risk, and green is low-risk. The y-axis is

time (minutes) and the x-axes are (A) diastolic blood pressure (mmHg), (B) systolic blood pressure (mmHg), (C) Mean arterial blood pressure (mmHg), and

(D) Heart rate (beats/minute).

https://doi.org/10.1371/journal.pone.0214904.g004
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patients’ increased risk for postoperative AKI within seven days of surgery (compared to pre-

operative risk). However, the addition of intraoperative data is unlikely to accurately lower

patients’ risk for the development of postoperative AKI within seven days of surgery. The

Fig 5. Nonlinear association between risk of postoperative acute kidney injury and intraoperative features. Each blue dot represents a patient that

developed postoperative AKI. The y-axis represents the risk probability for postoperative acute kidney injury, which ranges from 0 to 1. The red line represents

the median acute kidney injury risk score given the values of x. The x-axes represent (A) maximum intraoperative percentage of methemoglobin in arterial

blood gasses, (B) intraoperative variance of bicarbonate (mmol/L)2 in arterial blood gasses, (C) intraoperative mean of lactic acid (mmol/L), (D) minimum

intraoperative platelet count (thou/mm3), (E) intraoperative variance of mean corpuscular hemoglobin, MCH (pg/cell)2, (F) intraoperative mean of red cell

distribution (%), (G) total of blood products administered during surgery (mL), and (H) duration of surgery (minutes).

https://doi.org/10.1371/journal.pone.0214904.g005
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secondary outcomes, postoperative AKI onset within three days of surgery and postoperative

AKI onset before discharge, also showed statistically significant NRIs comparing the postoper-

ative models to the preoperative model. However, for the outcome predicting development of

postoperative AKI within three days of surgery, both postoperative models were more effective

Fig 6. Receiver operating characteristic curves and other performance metrics for prediction of postoperative acute kidney injury. The graph at the top of the

figure is the receiver operating characteristic curves for prediction of postoperative acute kidney injury (AKI) within the first seven days after surgery for the

preoperative model (pink), the postoperative stacked model (green), and the postoperative full model (blue). The diamonds on each curve represent the cutoffs

calculated by maximizing the Youden Index. The y-axis is sensitivity, which ranges from zero to one. The x-axis is one minus specificity, which ranges from zero to one.

The table in the bottom of the figure contains the following performance metrics for the preoperative and both postoperative models: (A) accuracy (percentage of

patients correctly classified), (B) sensitivity (percentage of patients that developed AKI that were classified as high-risk), (C) positive predictive value (percentage of

high-risk patients that developed AKI), (D) negative predictive value (percentage of low-risk patients that did not develop AKI), (E) net reclassification improvement for

patients that developed postoperative AKI (F) net reclassification improvement for patients that did not develop postoperative AKI, (H) overall net reclassification

improvement.

https://doi.org/10.1371/journal.pone.0214904.g006
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at reclassifying false positive patients from the preoperative model compared to false negative

patients (S3 Fig and S4 Table).

Furthermore, the patients in the low preoperative risk group for postoperative AKI who

developed AKI within seven days of surgery that were correctly reclassified into the high-risk

group by the postoperative models, had lower intraoperative mean arterial blood pressure val-

ues and higher intraoperative blood product volumes compared to those who remained in the

low-risk group (Fig 8). Conversely, the patients in the high preoperative risk group for postop-

erative AKI who did not develop AKI within seven days of surgery that were correctly reclassi-

fied into the low-risk group by the postoperative models, had higher intraoperative mean

blood pressure values and lower intraoperative blood product volumes compared to those who

remained in the high-risk group.

Discussion

Using a large single-center cohort of surgical patients, we developed and validated a dynamic

machine-learning algorithm that readjusts the preoperative risk for postoperative AKI using

physiological time series data and other data collected during surgery to provide a personalized

risk panel for acute kidney injury with both preoperative and immediate postoperative risk

assessments. This work expands on our previously validated MySurgeryRisk algorithm which

predicts preoperative risk for major postoperative complications, including AKI [18], to lever-

age temporal enrichment of the preoperative model with the new information related to

patients’ changes in physiological status during surgery. The advantages of the algorithm

include a) prediction entirely based on routinely available preoperative and intraoperative

data, b) universal applicability to any surgical context, c) exportability to other EHR systems,

and d) the ability to handle any data type in EHR (including time series and sparse data). Most

importantly, the dynamic reassessment of the risk for postoperative AKI using temporal

enrichment with intraoperative data allows for more precise reclassification of AKI risk based

on how patients’ clinical trajectory progresses. While preoperative models mainly asses risk

based on patients’ pre-existing health conditions and general risks associated with the type of

planned procedures, the addition of intraoperative time series data reflects acute physiological

responses to the stresses of surgery, which provides a better risk assessment for postoperative

AKI to a physician who would want to use the model. For example, a patient without signifi-

cant comorbidities who undergoes a moderate risk surgery would have low-risk for postopera-

tive AKI based on a preoperative model. If that patient was to develop one or more

Table 3. Absolute and relative risks associated with high- and low-risk groups for acute kidney injury onset within the first seven days after surgery stratified by pre-

dictive model.

Absolute risk % a

(95% Confidence Interval)

Relative risk b

(95% Confidence Interval)

Models Low-risk groupc High-risk groupc High- vs low-risk group

Preoperative model 21.5% (18.1%, 25.02%) 72.6% (67.8%, 77.3%) 3.4 (2.8, 4.0)

Postoperative stacked model 15.6% (12.3%, 18.9%)d 71.3% (66.9%, 75.7%) 4.6 (3.7, 5.7)

Postoperative full model 14.6% (11.4%, 17.7%)d 74.1% (69.7%, 78.4%) 5.1 (4.1, 6.4)

a Absolute risk was calculated as the percentage of cases for which acute kidney injury occurred in the low- and high-risk groups, respectively.
b Relative risk was calculated as the ratio of the absolute risk of the occurrence of acute kidney injury between the high- and low-risk groups.
c Patients were classified as low-risk if their prediction score was less than or equal to cutoff and high-risk otherwise. The cutoff values were 0.43, 0.41, and 0.40 for

preoperative model, postoperative stacked model, and postoperative full model, respectively. The cutoffs were determined using the maximum value of Youden Index.
d Significantly different from preoperative model with adjusted p-value� 0.05 when absolute risk of all pairs of three models were compared using the Bonferroni

method.

https://doi.org/10.1371/journal.pone.0214904.t003
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complications during surgery, such as severe bleeding, adverse reaction to anesthetics, or treat-

ment with nephrotoxic drugs, his/her physiological responses captured in the intraoperative

data would reclassify him/her to the high-risk group. A change in classification such as this

would be extremely valuable for a physician. The IDEA algorithm demonstrated the ability to

integrate intraoperative data that not only resulted in an improved AUC compared to the pre-

operative model, but resulted in effectively reclassifying up to 40% of patients from the preop-

erative model into a new risk category based on intraoperative events.

While several preoperative factors, such as age, comorbidity, chronic kidney disease, and

type of surgery have been identified as risk factors for AKI based on previous studies [43], the

Fig 7. Reclassification performance of the postoperative stacked and full models for predicting postoperative acute kidney injury. The postoperative risk

scores in the first column are from the stacked model, while the postoperative risk scores for the second column are from the full model. The patients in the

first row developed postoperative AKI within seven days of surgery, whereas the patients in the second row did not develop postoperative AKI within seven

days of surgery. The y-axis on each plot is the postoperative model acute kidney injury risk score, which ranges from zero to one. The x-axis on each plot is the

preoperative risk group. The red dots are patients at high-risk for AKI according to the postoperative model, whereas the green dots are patients at low-risk for

AKI according to the postoperative model. (A & B) The proposed postoperative stacked and full models effectively reclassified false negative patients from the

preoperative model as high AKI risk patients.

https://doi.org/10.1371/journal.pone.0214904.g007
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recognition that certain types of admission medications, or even the timing of the operation

itself, are risk factors for AKI confirms some recent observations [44–46]. Furthermore, the

Fig 8. Association between intraoperative variables (mean arterial pressure and administered blood products) and postoperative risk group

reclassification. The first column represents patients that developed postoperative acute kidney injury (AKI), yet were classified as low-risk by the preoperative

model. The second column represents patients that did not develop postoperative AKI, but were classified as high-risk by the preoperative model. The boxes

represent 95% confidence intervals for the given variables. (A) Patients correctly classified as having high-risk for AKI by the postoperative stacked model

tended to have lower mean arterial pressure. (B) Patients correctly classified as having low-risk for AKI by the postoperative stacked model tended to have

higher mean arterial pressure. (C) Patients correctly classified as having high-risk for AKI by the postoperative stacked model tended to have greater volumes of

administered intraoperative blood products. (D) Patients correctly classified as having low-risk for AKI by the postoperative stacked model tended to have

lesser volumes of administered intraoperative blood products.

https://doi.org/10.1371/journal.pone.0214904.g008
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dynamic changes in intraoperative blood pressure and heart rate were among the most impor-

tant features contributing to the risk of developing postoperative AKI in our model. This indi-

cates that the duration and magnitude of intraoperative hypotension as well as concomitant

changes in heart rate significantly increase the risk for postoperative AKI. Intraoperative hypo-

tension is a well-recognized risk factor for multiple postoperative complications [47–49], with

biological plausibility that is well accepted among anesthesiologists and surgeons, yet no con-

sensus exists regarding the optimal blood pressure target to support the perfusion of critical

organs during surgery [50, 51]. The red cell distribution width, platelet count, and the duration

of operation were among the most important intraoperative predictors for postoperative AKI,

and while some of them have been previously reported as risk factors for AKI in other patient

populations, this is the first report for surgical patients [52–54].

Most of the existing risk models for acute kidney injury are focused on the general hospital

population [10, 11] or are designed for critically ill patients [15]. Many of the previous risk

models for surgical AKI were limited to either a specific type of surgery or the use of preopera-

tive risk factors for statistical modeling (mainly logistic regression) with reported AUCs

between 0.77 and 0.84 [1, 2, 55, 56]. The risk prediction models that have incorporated intrao-

perative variables are scarce and mainly focused on patients undergoing cardiac surgery with

reported AUCs ranging between 0.72 and 0.81 [13, 14, 57]. The fact that these models did not

fully utilize the available time-varying physiological data during the surgery, or machine learn-

ing approach, may have contributed to their lower performance compared to our model.

This study has some limitations. Firstly, only the first surgery was used for patients that

underwent multiple surgeries for building our proposed predictive models. Secondly, the algo-

rithm was only provided with the data and outcomes in the training dataset, without explicit

definitions of features. Thirdly, because the algorithm ‘‘learned” the features that were most

predictive for the risk of developing postoperative AKI implicitly, it is possible that the algo-

rithm is using features previously unknown to or ignored by physicians. Fourthly, the expan-

sion of input features to include operative notes may increase the accuracy, but will require

more elaborate computational approaches. Lastly, the algorithm has been trained to capture

practice patterns for individual providers in the referral population of a large academic medi-

cal center in North Central Florida. Further training and validation of the algorithm is neces-

sary in a dataset with different population characteristics and practice patterns.

Conclusions

In a large single-center cohort of surgical patients, our proposed Intraoperative Data Embed-

ded Analytics (IDEA) algorithm employed a machine learning approach based on a random

forest classifier to improve patients’ postoperative acute kidney injury (AKI) risk prediction

with high sensitivity and specificity by utilizing intraoperative data. The IDEA algorithm was

able to correctly reclassify approximately 40% of patients who were considered low-risk for

postoperative AKI by preoperative model to high-risk. This illustrates the importance of

intraoperative data in AKI risk stratification. Given the association between AKI and increased

morbidity, mortality, and cost, it is important for clinicians to have dynamic AKI risk predic-

tion algorithms capable of adjusting AKI risk as new information becomes available. Further

research can address other post-surgical complications as well as validation of the proposed

algorithm on external datasets.
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