
Han et al. BMC Bioinformatics _#####################_
https://doi.org/10.1186/s12859-019-2773-x

RESEARCH Open Access

A hybrid gene selection method based
on gene scoring strategy and improved
particle swarm optimization
Fei Han1,2*, Di Tang1,2, Yu-Wen-Tian Sun1,2, Zhun Cheng3, Jing Jiang1,2 and Qiu-Wei Li1,2

From International Conference on Data Science, Medicine and Bioinformatics
Wenzhou, China. 22- 24 June 2018

Abstract

Background: Gene selection is one of the critical steps in the course of the classification of microarray data. Since
particle swarm optimization has no complicated evolutionary operators and fewer parameters need to be adjusted, it
has been used increasingly as an effective technique for gene selection. Since particle swarm optimization is apt to
converge to local minima which lead to premature convergence, some particle swarm optimization based gene
selection methods may select non-optimal genes with high probability. To select predictive genes with low
redundancy as well as not filtering out key genes is still a challenge.

Results: To obtain predictive genes with lower redundancy as well as overcome the deficiencies of traditional
particle swarm optimization based gene selection methods, a hybrid gene selection method based on gene scoring
strategy and improved particle swarm optimization is proposed in this paper. To select the genes highly related to out
samples’ classes, a gene scoring strategy based on randomization and extreme learning machine is proposed to filter
much irrelevant genes. With the third-level gene pool established by multiple filter strategy, an improved particle
swarm optimization is proposed to perform gene selection. In the improved particle swarm optimization, to decrease
the likelihood of the premature of the swarm the Metropolis criterion of simulated annealing algorithm is introduced
to update the particles, and the half of the swarm are reinitialized when the swarm is trapped into local minima.

Conclusions: Combining the gene scoring strategy with the improved particle swarm optimization, the new
method could select functional gene subsets which are significantly sensitive to the samples’ classes. With the few
discriminative genes selected by the proposed method, extreme learning machine and support vector machine
classifiers achieve much high prediction accuracy on several public microarray data, which in turn verifies the
efficiency and effectiveness of the proposed gene selection method.
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Background
One of the major applications of microarray data
analysis is to perform sample classification between
different disease phenotypes, for diagnostic and prog-
nostic purposes [1]. However, for small size of sam-
ples in comparison to high dimensionality, along with
experimental variations in measured gene expression lev-
els, it is difficult to implement a particular biological
classification problem as well as gain deeper under-
standing of the functions of particular genes [1]. Gene
selection is one of the critical steps in the course of
the classification of microarray data [2]. Selecting a
useful gene subset not only decreases the computa-
tional complexity, but also increases the classification
accuracy.
The methods for gene selection are broadly divided

into three categories: filter, wrapper and embedded meth-
ods [3]. A filter method relies on general characteristics
of the training data to select genes without involving
any classifier for evaluation. Most filter methods consider
each feature separately with ignoring feature dependen-
cies, which may lead to worse classification performance
when compared to other types of feature selection meth-
ods [4]. In addition to considering feature dependen-
cies, wrapper methods take into account the interaction
between feature subset search and model selection. How-
ever, wrapper methods have a higher risk of overfitting
than filter ones and are very computationally intensive
[5]. Embedded methods have the advantage that they
include the interaction with the classificationmodel, while
being far less computationally intensive than wrapper
methods [6].
Since it has no complicated evolutionary operators

and fewer parameters need to be adjusted [7, 8], par-
ticle swarm optimization (PSO) [9, 10] has been used
increasingly as an effective technique for global opti-
mization in past decades. In recent years, PSO has been
also implemented to perform gene selection. In [11], a
combination of Integer-Coded GA (ICGA) and parti-
cle swarm optimization, coupled with extreme learning
machine (ELM) was used to select an optimal set of
genes. In [12, 13], binary PSO (BPSO) combined with
filter method was applied to search optimal gene sub-
sets. The method in [12] simplified gene selection and
obtained a higher classification accuracy compared with
some similar gene selection methods based on GA, while
the method in [13] could determine the appropriate num-
ber of genes and obtained high classification accuracy
by support vector machine. In [14], the Kmeans-PSO-
ELM method used K-means method to group the initial
gene pool into several clusters, and the standard PSO
combined with ELM was used to perform gene selec-
tion, which could obtain a compact set of informative
genes. Since traditional PSO is apt to converge to local

minima which lead to premature convergence, the above
PSO based gene selection method still has much room to
improve.
To overcome the deficiencies of the above PSO based

gene selection methods and obtain predictive genes with
more interpretability, two gene selection methods based
on binary PSO and gene-to-class sensitivity (GCS) infor-
mation were proposed in [15, 16]. In the KMeans-
GCSI-MBPSO-ELM [16], GCS information combined
with K-means method was used to identify relevant
genes for subsequent sample classification, and a modi-
fied BPSO coupling GCS information (GCSI) combined
with ELM was used to select smallest possible gene sub-
sets. Although the KMeans-GCSI-MBPSO-ELM could
obtain predictive genes with lower redundancy and bet-
ter interpretability, it might filter out a few critical genes
highly related to samples’ classes in some cases and thus
lead into worse classification accuracy [16]. To over-
come the weakness of the KMeans-GCSI-MBPSO-ELM,
the BPSO-GCSI-ELM [15] method also encoded GCS
information into binary PSO to perform gene selection
by initializing particles, updating the particles, modify-
ing maximum velocity, and adopting mutation opera-
tion adaptively. Although the BPSO-GCSI-ELM method
could avoid filtering out some critical genes, it may
increase the computational cost because of the large initial
gene pool.
To obtain predictive genes with lower redundancy as

well as overcome the deficiencies of the above men-
tioned gene selection methods, a hybrid gene selection
method based on gene scoring strategy and improved par-
ticle swarm optimization (PSO) is proposed in this paper.
Firstly, with the initial gene pool obtained with double
filter strategies, randomization method combined with
ELM is proposed to score each gene, and the third-level
gene pool for further gene selection is established. Sec-
ondly, an improved PSO aiming at improving the search
ability of the swarm is proposed to perform gene selec-
tion. In the improved PSO, to decrease the probability
of converging into local minima, the Metropolis criterion
of simulated annealing (SA) algorithm is introduced to
update the particles, and the half of the swarm are reini-
tialized when the swarm is trapped into local minima.
With the compact and relevant gene pool obtained by
multiple filter strategies, the improved PSO could select
the optimal gene subsets with high probability. Finally,
experimental results on six public microarray data ver-
ify the effectiveness and efficiency of the proposed hybrid
gene selection method.
The remainder of this paper is organized as follows.

The related preliminaries are briefly described in “Back-
ground” section. The proposed gene selection method
is introduced in “Methods” section. “Results” section
gives the experimental results on six public microarray
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data. Finally, the concluding remarks are offered in
“Conclusions” section.

Methods
Particle swarm optimization
Particle swarm optimization (PSO) is a population-based
stochastic optimization technique developed by Eberhart
and Kennedy [9]. PSO works by initializing a flock of birds
randomly over the searching space, where each bird is
called a particle with no quality or volume. Each particle
flies with a certain velocity according to its momentum
and the influence of its own previous best position (Pib) as
well as the best position of all particles (Pg). Assume that
the dimension of searching space is D and the total num-
ber of particles is n. Then the original PSO is described as
follows

vid(t + 1) = vid(t) + c1 × Y1() × [
pibd(t) − xid(t)

]

+c2 × Y2() × [
pgd(t) − xid(t)

]
(1)

xid(t + 1) = xid(t) + vid(t + 1), 1 ≤ i ≤ n, 1 ≤ d ≤ D
(2)

where vi(t) and xi(t) denote the velocity vector and the
position of the i-th particle, respectively, at the t-th iter-
ation; Pib(t) and Pg(t) denote the previous best position
of the i-th particle and the best position of all particle,
respectively; c1 and c2 are the positive acceleration con-
stants; Y1() and r2() are random number between 0 and 1.
In addition, it needs to place a limit on the velocity.
To improve the convergence performance of the orig-

inal PSO, a modified particle swarm optimization [10]
was proposed. An inertial weight was introduced in the
velocity vector evolution equation described as follows:

vid(t + 1) = wt × vid(t) + c1 × Y1() × [
pibd(t) − xid(t)

]

+ c2 × Y2() × [
pgd(t) − xid(t)

]

(3)

where w is the inertial weight. Shi & Eberhart [10] advised
the linearly decreasing method to adjust the weight as
follows:

w(t) = wini − wini − wend
Tmax

× t (4)

where t is the current iteration number; wini,wend and
Tmax are the initial inertial weight, the final inertial weight
and the maximum number of iteration, respectively.

Extreme learning machine
In [17], a learning algorithm for single-hidden layer
feedforward neural networks (SLFN) called extreme
learning machine (ELM) was proposed to solve the prob-
lem caused by gradient-based learning algorithms. ELM

randomly chooses the input weights and hidden biases,
and analytically determines the output weights of SLFN.
ELM has much better generalization performance with
much faster learning speed than gradient-based algo-
rithms [18, 19].
For N arbitrary distinct samples (XXi,Ti)(i =

1, 2, . . . ,N .), where XXi =[ xxi1, xxi2, . . . , xxin]∈ Rn,
Ti=[ti1, ti2, . . . ,tim]∈ Rm. A SLFN with NH hidden neu-
rons and activation function g() can approximate these N
samples with zero error. This means that

Hwo = T (5)

where
H

(
wh1, ...,whNH , b1, ..., bNH ,XX1, ...,XXN

)

=
⎡

⎢
⎣

g (wh1 · XX1 + b1) · · · g
(
whNH · XX1 + bNH

)

...
. . .

...
g (wh1 · XXN + b1) · · · g (

whNH · XXN + bNH

)

⎤

⎥
⎦

wo =
⎡

⎢
⎣

wo1T

...
woNH

T

⎤

⎥
⎦ and T =

⎡

⎢
⎣

t1T
...

tNT

⎤

⎥
⎦.

The whi = [whi1,whi2, ...,whin]T is the input weight vector
connecting the i-th hidden neuron and the input neurons,
the woi = [woi1,woi2, ...,woim]T is the output weight
vector connecting the i-th hidden neuron and the output
neurons, and the bi is the bias of the i-th hidden neuron.
In the course of learning, first, the input weights and

the hidden biases are arbitrarily chosen and need not be
adjusted at all. Second, the smallest norm least-squares
solution of the Eq. 5 is obtained as follows:

wo = H+T (6)

whereH+ is the Moore-Penrose (MP) generalized inverse
of matrix H.
It was concluded that the ELM has the minimum train-

ing error and smallest norm of weights [18, 19]. The
smallest norm of weights tends to have the best gen-
eralization performance [18, 19]. Since the solution is
obtained by an analytical method and all the parameters of
SLFN need not be adjusted, ELM converges much faster
than gradient-based algorithm.

The proposed gene selection method
Gene selection generally consists of two steps, which are
to identify relevant genes and to tend to select small-
est subsets from the relevant genes. Different from the
KMeans-GCSI-MBPSO-ELM [16] and BPSO-GCSI-ELM
[15] methods, a scoring criterion following the double fil-
ter strategy is proposed to select highly relevant genes in
this paper, which may decrease the size of the gene pool
dramatically. For selecting compact gene subset from the
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refined gene pool, an improved PSO with the new strate-
gies for reinitializing the swarm and updating of the Pg is
proposed.
Since the proposed method combines the scoring cri-

terion with the improved PSO, coupled with ELM, to
perform gene selection, it is referred to as the SC-IPSO-
ELM method. The rough frame of the proposed method
is shown in Fig. 1, and the detailed steps are described as
follows.
Step 1: Form a first-level initial gene pool. The dataset is

divided into training and testing datasets. Select 200–400
genes from all original genes by using information index
to classification (IIC) method [16, 20] as follows:

d(g)=
c∑

j=1

c∑

k=1,k=j

⎡

⎣1
2

|μgj − μgk |
σgj + σgk

+ 1
2
ln

⎛

⎝
σ 2
gj +σ 2

gk

2σgjσgk

⎞

⎠

⎤

⎦ (7)

where μgj and μgk are the means of expression value of
the gene g in the j-th and k-th classes, respectively, and
σgj and σgk are the standard deviations of expression value
of gene g in the j-th and k-th classes, respectively. c is
the total number of classes. From [16, 20], the higher the
value of d(g), the more classification information the gene
g contains, so the gene g is more relevant to samples cat-
egories. The high classification accuracy will be obtained
with high probability by a classifier if the microarray data
is projected onto the gene g whose IIC value, d(g), is high.
The genes are ranked by their IIC values on the training
dataset, and those genes with higher IIC values are chosen
to establish the first-level gene pool.
Step 2: Establish a second-level initial gene pool. Ran-

domly generate different gene subsets from the first-level
gene pool. Then, each gene subset’s predictive ability is
evaluated according to the 5-fold cross validation (CV)
classification accuracy obtained by ELM on the training
dataset projected onto the gene subset. When the 5-fold
cross validation classification accuracy is less than the pre-
determined value (θac), the corresponding gene subset is
deleted. Thus, the genes in the remained gene subsets
have comparatively high predictive ability and form the
second-level initial gene pool. The number of the gene
subsets in the second-level gene pool is noted as lse. Each
gene subset is ranked as integer number (from 1 to lse)
according to the corresponding 5-fold cross validation
classification accuracy. The higher the classification accu-
racy is, the smaller the rank number of the corresponding
gene subset is.
Step 3: Establish a third-level initial gene pool by scoring

strategy. The psedo-code of the scoring rule for the i-th
gene in the second-level gene pool is listed as Algorithm 1.
where Rj is the ranked number of the j-th gene sub-set in
the second-level gene pool. After obtaining the scores of
all genes in the second-level gene pool, they are normal-
ized into the interval of [0, 1] with linear transformation.

Algorithm 1
1: for each gene (e.g. the i-th gene) in the second-level

gene pool do
2: score1(i) ← 0
3: score2(i) ← 0
4: for j=1 to lse do
5: if the i-th gene in the j-th gene subset then
6: score1(i) ← score1(i) + (lse − R(j)) + 1
7: score2(i) ← score2(i) + 1
8: end if
9: end for

10: score(i) ← score(1) + score(2)
11: end for

Obviously, the higher value of the gene score is, the more
relevant to the samples classes of the gene is. Further fil-
ter out those genes with much lower score values, and
the remaining genes in the second-level pool form the
third-level gene pool.
Step 4: Use an improved PSO to select the optimal gene

subsets from the third-level initial gene pool. The i-th par-
ticle Xi = (xi1, xi2, . . . , xiD) represents a candidate gene
subset, and the element xij is the serial number of the
selected gene. The dimension of the particles is equal
to the number of the selected genes from the third-level
initial gene pool, which is predetermined according to
[15, 16]. The fitness function of the i-th particle, f (Xi), is
the 5-fold cross validation classification accuracy obtained
by ELMon the training dataset projected onto the selected
gene subset represented by the i-th particle. The opti-
mization process of the improved PSO is the same as the
traditional PSO except the following respects.
One is the strategy of updating the best position of the

swarm. To decrease the probability of premature conver-
gence of the swarm, the Metropolis criterion in SA [21]
is introduced to update the best position of the swarm. In
the (i+1)-th optimization generation, the best position of
the swarm, pg , is updated by the Eq. 8 as follows:

pg(i + 1) =
⎧
⎨

⎩

Xj , f (Xj) − f (pg(i)) ≥ ε

Xj with theP = e−
|f (Xj )−f (pg (i))|

T(i+1) , |f (Xj) − f (pg(i))| < ε

(8)

where T(i + 1) is the annealing temperature which
decreases linearly as the following equation

T(i + 1) = T0 − T0 − Tend
Itmax

× (i + 1) (9)

In Eq. 7, T0, Tend , and Itmax are the initial annealing
temperature, final annealing temperature and maximum
optimization generation number.
The other is the strategy of mutating the swarm. When

the swarm converges to the local minima, the particles in
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Fig. 1 The frame of the proposed hybrid gene selection method

the swarm are close to each other, and the swarm loses
its diversity. Mutating the swarmmakes the particles repel
each other and improves the diversity of the swarm, so the
swarm jumps the local minima with high probability. In
the improved PSO, the mutation operation is taken if the
global best fitness value of the swarm does not change for
predetermined generations (Nmu), which randomly select
half number of particles in the swarm to reinitialize.
The SC-IPSO-ELM method firstly identifies the rel-

evant genes by the randomization method combined

with ELM. Then, with the proposed gene scoring cri-
terion, the much more relevant and compact gene pool
is obtained. Finally, to obtain the optimal gene sub-
sets, the tradition PSO is modified to improve its global
search ability. Although the SC-IPSO-ELM method does
not encode prior information to perform gene selec-
tion as the KMeans-GCSI-MBPSO-ELM [16] and BPSO-
GCSI-ELM [15] methods, it could also select the most
predictive genes with low redundancy effectively. More-
over, the multiple filter strategies produce much more
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Table 1 Six microarray datasets

Data Total
Samples

Training
samples

Testing
samples

Number of
classes

Number of
genes

Leukemia 72 38 34 2 7129

Brain Cancer 60 30 30 2 7129

Colon 62 40 22 2 2000

SRBCT 83 63 20 4 2308

LUNG 203 103 100 5 3312

Lymphoma 58 29 29 2 7129

compact gene pool than the methods in [15, 16], which
could decrease the computational cost of PSO search-
ing the optimal gene subsets. Compared to the gene-
to-class sensitivity information, genes’ rank information
obtained by the scoring strategy is more robust, so
the SC-IPSO-ELM method may not filter out predic-
tive genes with higher probability than the methods
in [15, 16].
The proposed gene selection method contains filtering

irrelevant genes to establish the gene pool and using PSO
to select functional gene subsets from the gene pool, and
its computational complexity can be calculated as follows:

CCSC−IPSO−ELM = O(NTG × NTrain) + O(l × Ng1)

+O(lse × Ng2) + O(NPSO × IterPSO) (10)

where NTG,NTrain, l,Ng1, lse,Ng2,NPSO and IterPSO are the
number of the original total genes, the number of training
data, the number of the initial randomly generated gene
subsets in Step 2, the size the first-level gene pool, the
number of the selected gene subsets in Step 2, the size of
the second-level gene pool, the swarm size and the maxi-
mum iteration number in the improved PSO, respectively.
The four items on the right side of Eq. 10 are the computa-
tional complexity of Step 1, Step 2, Step 3 and Step 4 of the
proposed method, respectively. The first and fourth terms
are as the same as those of the methods in [15, 16]. The
Ng1 and Ng2 both are much smaller than NTG. Generally,
the l and lse are not greater than NTrain. The computa-
tional complexity of the SC-IPSO-ELM method can be
approximated as the sum of the first and fourth terms on
the right side of Eq. 10 which is similar to the methods in
[15, 16], so the time complexity of the proposed method is
at the same order of magnitude of that of the methods in
[15, 16]. Since the third-level gene pool is established by
multiple filter strategy, the size of the third-level gene pool
is small. The small third-level gene pool leads to small

Table 2 The classification accuracy obtained by elm with different gene subsets selected by the sc-ipso-elm method on the six
microarray data

Data Selected gene subsets 5-fold CV Accuracy
Mean(%)±std

Test Accuracy
Mean(%)±std

Leukemia 4050,2642,2121 100±0.00 100±0.00

4050,2642,1882 100±0.00 100±0.00

4050,2642,3258 100±0.00 100±0.00

42335,2642,1843,4050 100±0.00 100±0.00

Brain cancer 1091,798,337 90.14±0.036 89.62±0.025

3052,973,3041,3692,4796 92.00±0.023 91.78±0.046

4628,7129,7045,4413,798 92.29±0.020 90.22±0.022

7129,2881,3052,865,1970,2935,4871 92.78±0.012 91.88±0.019

Colon 14,1976,1325,1993,1870,1892,653,1917,187,22,1209,1060 93.63±0.025 97.27±0.013

377,792,14,1976,765,187,251,1110,175,53,1293,1740,200 93.00±0.035 98.06±0.013

792,1423,14,1976,1909,1110,1589,102,107,1916,175,1151 93.73±0.031 98.71±0.013

792,14,1976,765,1909,1524,1110,175,43,53,1293,1740,251 96.86±0.033 99.05±0.011

SRBCT 742,1003,1954,430,2050,123 100±0.00 100±0.00

545,1955,1434,509,971,255 100±0.00 100±0.00

1003,545,1911,153,123,1489,2161 100±0.00 100±0.00

1955,2050,545,2144,2045,123,1489 100±0.00 100±0.00

LUNG 1765,2779,2841,1474,2045,3191,2763,2817,525,1630 98.27±0.014 93.33±0.011

525,1493,607,2763,792,580,867,368,3279,2158,1225 98.39±0.023 93.47±0.012

1765,883,2763,792,580,867,985,3279,2988,2045,814 98.67±0.021 93.60±0.019

1765,525,2763,2841,1474,2583,867,985,2045,814,918 98.67±0.019 94.01±0.024

Lymphoma 152,2347,2650,5679,438,1855,5863 90.60±0.023 85.11±0.020

1855,2828,152,2437,806,530,1102 92.36±0.027 89.33±0.019

5279,4687,4940,5449,1133,1855,4519 93.51±0.022 90.47±0.029

152,2437,4829,2828,6441,806,2508 93.79±0.020 90.45±0.023
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Table 3 The top ten frequently selected genes with the
sc-ipso-elm method on the leukemia data

Gene No. Gene Name Description

2354 M92287 CCND3 Cyclin D3∗◦
6855 M31523 CF3 Transcription factor 3 (E2A

immunoglobulin enhancer bind-ing
factors E12/E47)

2642 U05259 MB-1 gene∗ ◦ � � •
4050 X03934 GB DEF = T-cell antigen receptor gene

T3-delta∗�

1834 M23197 CD33 CD33 antigen (differenti-ation
antigen)∗◦

1882 M27891 CST3 Cystatin C (amyloid an-giopathy
and cerebral hemor-rhage)∗ ◦ � � •

4377 X62654 ME491 gene extracted from H.sapiens
gene for Me491/CD63 antigen

2121 M63138 CTSD Cathepsin D (lysosomal aspartyl
protease)∗ ◦ ��

2288 M84526 DF D component of comple-ment
(adipsin)

6271 M33493 Tryptase-III mRNA, 3’ end

*also selected in [15];◦also selected in [26];�also selected in [22];�also selected in
[16];•also selected in [27]

NPSO and IterPSO, which may decrease the computational
cost of Step 4.

Results
Datasets
To verify the effectiveness and efficiency of the proposed
gene selection method, we conduct experiments on the
six public microarray datasets including Leukemia, Colon,
SRBCT, Brain cancer data,Lung and Lymphoma data. The
detailed description of the datasets is listed in Table 1.

Table 4 The top ten frequently selected genes with the
sc-ipso-elm method on the brain cancer data

Gene No. Gene Name Description

798 D86961 Lipoma HMGIC fusion partner-like 2

865 D87454 KIAA0265 protein

2648 M28879 Granzyme B (granzyme 2, cytotoxic T-
lymphocyte-associated serine esterase 1)

2881 M57506 Chemokine (C-C motif) ligand 1

3041 M64934 Kell blood group∗
3052 M65254 Protein phosphatase 2 (formerly 2A), reg-

ulatory subunit A (PR 65), beta isoform

3692 U03644 CBF1 interacting corepressor

4628 U50079 Histone deacetylase 1

6571 X93036 FXYD domain containing ion transport
regulator 3

7129 Z97074 Rab9 effector protein with kelch motifs

*also selected in [15]

Table 5 The top ten frequently selected genes with the
sc-ipso-elm method on the colon data

Gene No. Gene Name Description

14 H20709 MYOSIN LIGHT CHAIN ALKALI, SMOOTH-
MUSCLE ISOFORM (HU-MAN)∗ ◦ ��

1772 H08393 COLLAGEN ALPHA 2(XI) CHAIN (Homo
sapiens)

1935 X62048 H.sapiens Wee1 hu gene

286 H64489 LEUKOCYTE ANTIGEN CD37 (Homo
sapiens)��

792 R88740 ATP SYNTHASE COUPLING FACTOR
6MITOCHONDRIAL PRE-CURSOR
(HUMAN)◦�

187 T51023 HEAT SHOCK PROTEIN HSP 90-BETA
(HUMAN)

1976 K03474 Human Mullerian inhibiting substance gene,
complete cds�

493 R87126 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus
gal-lus)

1635 M36634 Human vasoactive intestinal peptide (VIP)
mRNA, com-plete cds

698 T51261 GLIA DERIVED NEXIN PRECURSOR (Mus
muscu-lus)

*also selected in [28];◦also selected in [29];�also selected in [15];�also selected in [16]

The Leukemia data [22] contains total 72 samples
in two classes, acute lymphoblastic leukemia (ALL)
and acute myeloid leukemia (AML), which contain
47 and 25 samples, respectively. Every sample con-
tains 7129 gene expression values. The Leukemia data
are available at https://link.springer.com/article/10.1186/
1471-2105-7-228#SupplementaryMaterial.

Table 6 The top ten frequently selected genes with the
sc-ipso-elm method on the srbct data

Gene No. Gene Name Description

742 812105 Transmembrane protein∗ ◦ ��

1003 796258 Sarcoglycan, alpha (50kD dystrophin-
associated glycoprotein)∗ � •

255 325182 Cadherin 2, N-cadherin (neuronal)◦ � •
123 236282 Wiskott-Aldrich syndrome (ecezema-

thrombocytopenia

545 1435862 Antigen identified by monoclonal
antibodies 12E7, F21 and O13 ∗ � �•

1319 866702 Protein tyrosine phosphatase,
non-receptor type 13 (APO-1/CD95
(Fas)-associated phosphatase)

1606 624360 Proteasome (prosome, macropain) subunit,
beta type, 8 (large multifunctional
protease 7)�

2046 244618 ESTs

246 377461 Caveolin 1, caveolae protein, 22kD

509 207274 Human DNA for insulin-like growth
factor II (IGF-2); exon 7 and additional ORF

*also selected in [23];◦also selected in [30];�also selected in [15];�also selected in
[16];•also selected in [31]

https://link.springer.com/article/10.1186/1471-2105-7-228#SupplementaryMaterial
https://link.springer.com/article/10.1186/1471-2105-7-228#SupplementaryMaterial
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Table 7 The top ten frequently selected genes with the
sc-ipso-elm method on the lung data

Gene No. Gene Name Description

2763 185_at Neuro-oncological ventral antigen 1

580 39333_at Collagen, type IV, alpha 1◦
792 38704_at Cadherin 2, N-cadherin (neuronal)∗◦
2841 32696_at Pre-B-cell leukemia transcription factor 3

2045 35276_at Claudin 4

2657 32648_at Delta-like homolog (Drosophila)

1765 39722_at Nuclear receptor co-repressor 1∗◦
1493 38967_at Chromosome 14 open reading frame 2

3191 39383_at Adenylate cyclase 6

2338 1315_at Ornithine decarboxylase antizyme 1

*also selected in [16];◦also selected in [15]

The Brain cancer data contains 60 samples in two
classes, 46 patients with classic and 14 patients with
desmoplastic brain cancer. The Lymphoma data includes
58 samples where 32 patients did cured and 26 patients
did not cured. Each sample in the Brain cancer and Lym-
phoma has 7129 genes. These two data are available at
http://linus.nci.nih.gov/~brb/DataArchive_New.html.
The Colon data consists of expression levels of 62 sam-

ples of which 40 samples are colon cancer samples and the
remaining are normal samples. Although original expres-
sion levels for 6000 genes are measured, 4000 genes out of
all the 6000 genes were removed considering the reliability
of measured values in the measured expression levels. The

Table 8 The top ten frequently selected genes with the
sc-ipso-elm method on the lymphoma data

Gene No. Gene Name Description

152 M97935_5_at Signal transducer and activator of
transcription 1, 91kDa

1855 L17328_at Fasciculation and elongation protein zeta 2
(zygin II)

2437 M18185_at Gastric inhibitory polypeptide

2347 M14091_at Serine (or cysteine) proteinase inhibitor,
clade A (alpha-1 antiproteinase,
antitrypsin), member 7

2828 M37763_at Neurotrophin 3

5279 U83843_at Chaperonin containing TCP1, subunit 7
(eta)

806 D86968_at Mitogen-activated protein kinase kinase
kinase 4∗

4092 U22178_s_at Microseminoprotein, beta-

4940 U66559_at Anaplastic lymphoma kinase (Ki-1)

4194 U28150_at ATP-binding cassette, sub-family D (ALD),
member 2

*also selected in [16]

measured expression values of 2000 genes are publicly
available at http://microarray.princeton.edu/oncology/.
The entire SRBCT data [23] includes the expression data

of 2308 genes. There are totally 63 training samples and
25 testing samples, five of the testing samples being not
SRBCT. The 63 training samples contain 23 Ewing family
of tumors (EWS), 20 rhabdomyosarcoma (RMS), 12 neu-
roblastoma (NB), and 8 Burkitt lymphomas (BL). The 20
testing samples contain 6 EWS, 5 RMS, 6 NB, and 3 BL.
The data are available at https://link.springer.com/article/
10.1186/1471-2105-7-228#SupplementaryMaterial.
The LUNG data [24, 25] contains in total 203 sam-

ples in five classes, adenocarcinomas, squamous cell lung
carcinomas, pulmonary carcinoids, small-cell lung carci-
nomas and normal lung, which have 139, 21, 20, 6,17
samples, respectively. Each sample has 12600 genes. The
genes with standard deviations smaller than 50 expres-
sion units were removed and a dataset with 203 sam-
ples and 3312 genes was obtained [24, 25]. The data is
also available at https://link.springer.com/article/10.1186/
1471-2105-7-228#SupplementaryMaterial.
In the experiments on all data, the swarm size is 60, the

maximum iteration number is selected as 20, the acceler-
ation constants c1 and c2 are both selected as 1.49445, and
the inertial weight varies from 0.9 to 0.4. The size of the
third-level gene pool is 40 on all data. The parameter Nmu
is fixed as 3 on all data. The values of these parameters are
determined by the cross-validation runs on the training
datasets and according to [15, 16].

The prediction ability of the selected gene subsets
To verify the prediction ability of the selected gene sub-
sets obtained by the proposed method, ELM is used to
perform sample classification with some gene subsets
selected by the SC-IPSO-ELMmethod on the six datasets.
Each experiment is conducted 100 times, and the mean
classification accuracies are listed in Table 2.
From Table 2, with the small gene subsets selected by

the proposed approach, ELM obtains 100% 5-fold cross
validation and test accuracies both on the Leukemia and
SRBCT data, With the about five and thirteen genes
selected by the SC-IPSO-ELM method on the Brain can-
cer and Colon, respectively, ELM obtains high prediction
accuracies. These results indicate that the SC-IPSO-ELM
method has the ability of selecting those predictive genes
highly related to samples’ classes.

Biological and functional analysis of the selected gene
subsets
The experiment on eachmicroarray data is conducted 500
times, and the top ten frequently selected genes are listed
in Tables 3, 4, 5, 6, 7 and 8 for the six microarray data.
From Tables 3, 4, 5, 6, 7 and 8, many genes selected

by the SC-IPSO-ELM method were also selected by one

http://linus.nci.nih.gov/~brb/DataArchive_{N}ew.html
http://microarray.princeton.edu/oncology/
https://link.springer.com/article/10.1186/1471-2105-7-228#SupplementaryMaterial
https://link.springer.com/article/10.1186/1471-2105-7-228#SupplementaryMaterial
https://link.springer.com/article/10.1186/1471-2105-7-228#SupplementaryMaterial
https://link.springer.com/article/10.1186/1471-2105-7-228#SupplementaryMaterial
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Fig. 2 The heatmap of expression levels based on the top ten frequently selected genes on the six data
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Table 9 The 5-fold cv classification accuracies of elm based on the three gene selection methods on the six microarray data

Data KMeans-GCSI-MBPSO-ELM BPSO-GCSI-ELM SC-IPSO-ELM

5-fold CV Accuracy(%) ± std genes 5-fold CV Accuracy(%) ± std genes 5-fold CV Accuracy(%) ± std genes

Leukemia 100.00 ±0.00 3 100.00 ±0.00 3 100.00 ±0.00 3

Brain cancer 88.63 ±0.0216 6 89.88 ±0.0223 7 91.88 ±0.019 7

Colon 97.61 ±0.0137 6 97.82 ±0.0132 9 99.05 ±0.011 13

SRBCT 100.00 ±0.00 6 100.00 ±0.00 6 100.00 ±0.00 6

LUNG 97.10 ±0.063 11 96.28 ±0.072 12 98.67 ±0.019 11

Lymphoma 86.97 ±0.024 8 84.50 ±0.023 8 93.79 ±0.020 7

or more methods proposed in [15, 16, 22, 23, 26–31].
On the Leukemia data, gene U05259, a B lymphocyte
antigen receptor, encodes cell surface proteins for which
monoclonal antibodies have been demonstrated to be
useful in distinguishing lymphoid from myeloid lineage
cells [18]. Gene M63138 is the member of the pepti-
dase C1 family involved in the pathogenesis of breast
cancer and possibly Alzheimer’s disease [18]. A mus-
cle index can be calculated based on an average inten-
sity of 17 ESTs in the array that are homologous to
smooth muscle genes which included gene H20709 in the
Colon data. Although the SC-IPSO-ELM method does
not encode gene-to-class sensitivity (GCS) information
extracted from the microarray data, it could also select
some genes with comparatively high GCS values selected
by the GCSI-based methods. Since the expression lev-
els of all genes in the Brain cancer and Lymphoma data
are not distinct in two classes, the different approaches
considering different factors may select different discrim-
inative gene subsets. Thus, the genes selected by the
SC-IPSO-ELM are surely different from ones selected
by other gene selected methods, which is verified by
Tables 4 and 8.
Figure 2 shows the heatmap with top ten frequently

selected genes for the six data. It can be found that most of
frequently selected genes’ expression levels clearly differ-
entiate between/among two/multi classes on all data but
the Brain cancer and Lymphoma data. From Fig. 2b and e,
there has no single gene whose expression levels are dis-
tinct between two classes, which was verified in [15, 16].

Hence, the proposed method is capable of selecting pre-
dictive genes whose expression levels are distinct among
different classes in most cases.

Comparison with the GCSI based gene selection methods
In [15, 16], two effective gene selection methods by con-
sidering GCS information we proposed. Experimental
results on several public microarray data verified that
the two methods, the KMeans-GCSI-MBPSO-ELM and
BPSO-GCSI-ELM methods, outperformed than some
PSO-based methods and other classical gene selection
methods such as GS2, GS1, Cho’s and F-test. To avoid
repetition of the comparison with the PSO-based and
other classical gene selection methods, the SC-IPSO-
ELM method is compared with only the KMeans-GCSI-
MBPSO-ELM and BPSO-GCSI-ELM methods on the six
data by using ELM and support vector machine (SVM),
and the corresponding results of the average of 100 trials
are listed in Tables 9 and 10.
From Tables 9 and 10, the SC-IPSO-ELM method

selects the almost same number of genes as the two GCSI
based methods on the Leukemia, Brain cancer, SRBCT,
LUNG and Lymphoma data, while it selects the most
number of genes on the Colon data among three methods.
ELM achieves 100% 5-fold CV accuracy on the Leukemia
and SRBCT data with the genes selected by the three
methods, and SVM achieves the same 5-fold CV accu-
racy on the Leukemia data with the genes selected by the
three methods. ELM and SVM both obtain the highest
5-fold CV accuracy on the Brain cancer, Colon data and

Table 10 The classification accuracies of svm based on the three gene selection methods on the six microarray data

Data KMeans-GCSI-MBPSO-ELM BPSO-GCSI-ELM SC-IPSO-ELM

5-fold CV Accuracy(%) ± std genes 5-fold CV Accuracy(%) ± std genes 5-fold CV Accuracy(%) ± std genes

Leukemia 99.99 ±0.0014 3 99.99 ±0.0014 3 99.99 ±0.0014 3

Brain cancer 84.05 ±0.0301 6 82.70 ±0.0319 7 86.55 ±0.0299 7

Colon 90.69 ±0.0226 6 92.02 ±0.0275 9 93.35 ±0.0310 13

SRBCT 99.24 ±0.0119 6 98.34 ±0.0100 6 99.39 ±0.0074 6

LUNG 94.63 ±0.054 11 96.65 ±0.058 11 95.38 ±0.047 11

Lymphoma 77.59 ±0.032 8 72.41 ±0.034 8 81.03 ±0.025 7



Han et al. BMC Bioinformatics _#####################_ Page 11 of 13

Fig. 3 The parameter, θac versus the classification accuracy on the training dataset obtained by ELM

Lymphoma data with the genes selected by the SC-IPSO-
ELM method, SVM obtains the slightly higher 5-fold CV
accuracy on the SRBCT data with the SC-IPSO-ELM than
that with the two GCSI based methods, and SVM obtains
the highest 5-fold CV accuracy on the LUNG data with
the BPSO-GCSI-ELM. On the whole, the SC-IPSO-ELM
could select more predictive gene subsets than the two
GCSI based methods.

Discussion on the parameter selection
To establish second-level gene pool, it is critical to deter-
mine the value of the parameter, θac. Figure 3 shows
the relationship between the classification accuracy on
the training data obtained by ELM and the parame-
ter, θac . On the Leukemia, Colon data, LUNG and
Lymphoma data, the 5-fold CV and test accuracy both
have an upward trend as the values of the parame-
ter, increases, while they have a downward trend as the

values of the parameter increases on the Brain cancer
data. On the SRBCT data, the test accuracy decreases
as the value of the parameter increases, while the 5-
fold CV accuracy increases as the value of the parameter
increases.
For using the improved PSO to select the gene subset,

the dimension of the particle is the number of the selected
genes. Figure 4 shows the effect on different number of
the selected genes. The 5-fold CV accuracy obtained by
ELM has an upward trend as the number of the selected
genes increases on the six data but the Colon data, while
the curves of the test accuracy obtained by ELM fluctuate
as the number of the selected genes increases on the six
data.
Figures 3 and 4 provide a guide on how to select the val-

ues of the parameters θac and the number of the selected
genes in the SC-IPSO-ELM. In general, these parameters
should be selected empirically in particular applications.
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Fig. 4 The number of the selected genes versus the classification accuracy on the training dataset obtained by ELM

Conclusions
To obtain predictive genes with lower redundancy, a
hybrid gene selection method based on gene scoring strat-
egy and improved PSO was proposed in this paper. To
decrease the computational cost, the relevant genes are
filtered out through different strategies to establish more
compact gene pool for further gene selection. Then, the
improved PSO was proposed to select the most predic-
tive gene subsets from the gene pool. Experimental results
verified the proposed method could select highly predic-
tive and compact gene subsets and outperformed than
other PSO-based and GCSI-based gene selection meth-
ods. However, the proposed method selects genes lack

of much interpretability. Future work will include how to
encode some prior information into the proposed method
for gene selection and apply it to RNA-Seq data analysis.
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