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Application of artificial intelligence in 
glaucoma care: An updated review
Jo‑Hsuan Wu1,2, Shan Lin3, Sasan Moghimi1*

Abstract:
The application of artificial intelligence  (AI) in ophthalmology has been increasingly explored in 
the past decade. Numerous studies have shown promising results supporting the utility of AI to 
improve the management of ophthalmic diseases, and glaucoma is of no exception. Glaucoma is an 
irreversible vision condition with insidious onset, complex pathophysiology, and chronic treatment. 
Since there remain various challenges in the clinical management of glaucoma, the potential role 
of AI in facilitating glaucoma care has garnered significant attention. In this study, we reviewed 
the relevant literature published in recent years that investigated the application of AI in glaucoma 
management. The main aspects of AI applications that will be discussed include glaucoma risk 
prediction, glaucoma detection and diagnosis, visual field estimation and pattern analysis, glaucoma 
progression detection, and other applications.
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Introduction

Artificial intelligence  (AI) is the 
ability of machines to perform tasks 

through demonstrating human‑like 
intelligence.[1] With a data‑intensive 
nature,[2,3] ophthalmology is amongst the 
first medical disciplines that harnessed the 
power of AI. From automated retinal image 
analysis,[4,5] visual function prediction,[6,7] 
to clinic‑free text extraction,[8] various 
AI‑based methods have been shown to 
facilitate ophthalmic disease management. 
With improved quality and quantity of 
ophthalmic data, as well as the maturation of 
AI techniques such as machine learning (ML) 
and deep learning  (DL),[9] ophthalmic AI 
has entered a pragmatic phase focusing on 
real‑world clinical application.

The benefits of AI applications are 
particularly explored for vision conditions 
with high prevalence and possible blinding 
effects. These include glaucoma, a leading 

cause of blindness characterized by 
progressive loss of visual field  (VF).[10] 
Despite decades of investigation, the exact 
pathophysiology of glaucoma remains 
unclear. Due to its often insidious onset and 
irreversible damage,[10] clinicians strive to 
optimize glaucoma care through methods 
that can more effectively and reliably 
detect disease, monitor progression, and 
predict patient outcomes.[11] With existing 
challenges in the current management 
approach, there is strong interest in whether 
the superhuman power of AI could help 
overcome these limitations.

To better understand the potential role of AI 
applications in present and future glaucoma 
care, this study reviewed relevant literature 
published in recent years that investigated 
AI applications in different aspects of 
glaucoma management.

Methods and Literature Search

This is a descriptive review. The primary 
literature search was performed using 
PubMed by crossing keywords related to 

1Shiley Eye Institute and 
Viterbi Family Department 

of Ophthalmology, 
University of California 

San Diego, La Jolla, 
California, 2Edward S. 

Harkness Eye Institute, 
Department of 

Ophthalmology, Columbia 
University Irving Medical 

Center, New York, 
3Glaucoma Center of San 
Francisco, San Francisco, 

CA, United States

Review Article ‑ Narrative Review

Access this article online
Quick Response Code:

Website:
http://journals.lww.com/TJOP

DOI:
10.4103/tjo.TJO-D-24-00044

How to cite this article: Wu JH, Lin S, Moghimi S. 
Application of artificial intelligence in glaucoma care: An 
updated review. Taiwan J Ophthalmol 2024;14:340-51.

Taiwan J Ophthalmol 2024;14:340‑351

This is an open access journal,  and articles are 
distributed under the terms of the Creative Commons 
Attribution‑NonCommercial‑ShareAlike 4.0 License, which 
allows others to remix, tweak, and build upon the work 
non‑commercially, as long as appropriate credit is given and 
the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

*Address for 
correspondence: 

Prof. Sasan Moghimi, 
Shiley Eye Institute, 

University of California, 
San Diego, 9500 Campus 
Point Drive, La Jolla, CA, 

United States.  
E‑mail: sasanimii@

yahoo.com

Submission: 14‑04‑2024
Accepted: 05‑06‑2024
Published: 13-09-2024



Taiwan J Ophthalmol - Volume 14, Issue 3, July-September 2024	 341

glaucoma, aspects of glaucoma care  (e.g.,  “glaucoma 
development,” “onset prediction,” “glaucoma 
diagnosis,” “progression detection,” etc.), and AI 
techniques  (e.g.,  “artificial intelligence,” “machine 
learning,” “deep learning,” etc.) to search for articles 
published from January 1, 2020, to March 8, 2024. No 
filter for language or article type was applied. We 
excluded editorials, letters, non‑English articles, preprint 
articles, review articles, conference abstracts/articles, 
case reports, and case series. Google Scholar was used 
during the secondary literature search for the potential 
inclusion of missing studies.

Application of Artificial Intelligence in 
Glaucoma

The following discussion is organized into five sections 
based on the clinical aspects of AI application in 
glaucoma care, which include glaucoma risk prediction, 
glaucoma detection and diagnosis, VF estimation and 
pattern analysis, glaucoma progression detection, and 
other applications.

Glaucoma risk prediction
With characteristics such as chronicity, inheritability, 
heterogeneity, progressivity, and treatability, glaucoma 
is an ideal candidate for disease risk assessment and 
prediction.[3,12] Scientifically, risk prediction of glaucoma 
onset and progression may help to uncover previously 
unrecognized factors pertinent to disease mechanisms. 
Clinically, it may also help to differentiate individuals of 
varying risk profiles for whom different treatment plans 
should be administered to achieve optimal outcomes.

Prediction of glaucoma development
Standard clinical assessment of glaucoma includes color 
fundus photographs  (CFPs), VF testing, and optical 
coherence tomography  (OCT) imaging. Several recent 
studies have shown that they can successfully train AI to 
predict the future development of glaucoma using CFPs 
or OCT.[13‑17] One study trained a DL model to predict 
glaucoma development using CFPs from the ocular 
hypertension treatment study  (OHTS), and the model 
achieved an accuracy of 0.88 when predicting glaucoma 
development 1–3 years before disease onset.[13] Similarly, an 
area under the receiver operating characteristic curve (AUC) 
of 0.88–0.89 was achieved in external validation by a DL 
model that predicts subsequent glaucoma onset using 
baseline CFPs.[14] Interestingly, the DL algorithm by Lee et al. 
could estimate retinal nerve fiber layer thickness (RNFLT), 
an important structural parameter usually measured by 
OCT, based on CFPs.[15] The DL‑estimated RNFLT helped 
to predict glaucoma onset among glaucoma suspects, and 
eyes estimated with lower baseline RNFLT and faster 
RNFLT thinning rate showed a significantly greater risk 
of subsequent glaucoma development.[15]

VF archetypal analysis (VF‑AA), a form of unsupervised 
ML approach that identifies patterns of VF defects,[18] 
has also demonstrated the ability to predict glaucoma 
development.[19,20] The VF‑AA by Thakur et al. achieved 
an AUC of 0.71 for predicting glaucoma approximately 
4 years before disease development.[19] Singh et al. trained 
a VF archetype  (AT)‑based model to predict primary 
open‑angle glaucoma (POAG) onset using baseline VF 
tests from the OHTS, which achieved a C‑index of 0.75.[20] 
Furthermore, they found the presence of high‑risk ATs at 
baseline to modify the relationship between POAG and 
VF pattern standard deviation  (PSD), a risk factor for 
POAG previously reported in the OHTS.[20] Compared 
with traditional VF metrics, which show limited 
clinical interpretability due to significant measurement 
fluctuation,[21,22] VF‑AA might provide more accurate and 
reliable risk stratification.

Demographic and clinical data from the electronic health 
records (EHR) can also aid in the prediction of glaucoma 
development.[23,24] Using a big multi‑center EHR dataset, 
multiple ML models achieved an AUC  ≥0.81 for 
predicting glaucoma development 1 year before disease 
onset.[23] With inputs from CFPs and demographic and 
clinical data, the DL models by Ha et al. achieved AUCs 
ranging from 0.98 to 0.99 for predicting normal‑tension 
glaucoma  (NTG) development among normotensive 
glaucoma suspects.[24] They reported diastolic blood 
pressure  (BP), baseline intraocular pressure  (IOP), 
and RNFLT to be the most important predictors for 
time‑to‑conversion.

Prediction of glaucoma progression
Glaucoma demonstrates significant clinical heterogeneity, 
and genetics is believed to play a major role in 
determining the disease course across individuals.[25,26] 
Notably, patients with prior fast or progressive damage 
tend to have an overall more aggressive disease course, 
putting them at greater risk of further and more severe 
functional loss. The prediction of glaucoma progression 
is thus important for disease forecasting and identifying 
high‑risk individuals in need of more intensive 
intervention.[27,28]

Numerous recent efforts have trained AI to predict future 
rapid VF loss or progression using VF results.[20,29‑38] 
These include the above‑mentioned study by Singh 
et al., in which the authors identified specific baseline VF 
ATs that correlated with an increased risk of subsequent 
fast VF progression.[20] A similar baseline VF‑AA was 
performed in another study to predict future central 
VF (CVF) progression.[39] Shuldiner et al. also trained 
various ML algorithms to predict the likelihood of 
future VF progression using the baseline VF, and the 
support vector machine model achieved the best AUC 
of 0.72.[31]
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AI prediction of VF progression using baseline and/
or longitudinal structural data has consistently shown 
high AUCs  (>0.8) in multiple studies.[33‑37,40] One of 
them found the ML model trained on OCT macular 
ganglion cell/inner plexiform layer thickness to 
outperform that trained on RNFLT, suggesting the 
varying structural‑functional association of different 
retinal regions and layers.[33] In another study that used 
different subsets of OCT and OCT angiography (OCTA) 
data as ML inputs, the ML model showed the best 
prediction when fed with combined OCT‑OCTA data, 
indicating the possibly complementary nature of OCTA 
to OCT in glaucoma evaluation.[40] Distinctive from 
other studies, Hussain et  al. proposed a generative 
DL model to predict VF changes 12  months from 
baseline.[32] Their model could not only analyze past 
multi‑modal inputs from clinical data, VF and OCT 
but also generate synthetic follow‑up OCT images, 
achieving a best‑performing AUC of 0.83 for predicting 
fast VF progression.[32]

Fast structural glaucomatous progression on OCT 
could also be predicted by AI.[41‑43] Lee et al. developed 
a random forest model to predict fast RNFLT thinning 
based on baseline optic nerve head  (ONH) features 
and clinical data.[41] In addition, they identified higher 
IOP, greater lamina cribrosa curvature, VF mean 
deviation (MD) converging toward‑5 DB, and thinner 
peripapillary choroid as the most predictive baseline 
features of fast RNFLT progression. Yoon et al. trained 
ML to predict fast RNFLT thinning using initial systemic 
profiles in the EHR.[42] In addition to previously known 
ophthalmic risk factors, the model identified several 
novel systemic risk factors associated with rapid RNFL 
thinning, including higher lymphocyte ratio and platelet 
count.

Another analysis approach is to use treatment upgrades, 
such as the progression to surgical intervention, to indicate 
glaucoma progression, which highlights the value of AI 
in facilitating surgical decision‑making.[44] This approach 
has been used in a few studies.[45‑50] Wang et al. developed 
a DL model that used multi‑modal baseline data (clinical 
data, VF, and OCT) to predict surgical intervention at 
different time points.[46] The best AUC (0.92) was achieved 
for 3‑month prediction, while AUCs > 0.8 were observed 
for all models that predicted surgical intervention within 
3 years.[46] Another study that utilized multi‑modal data 
also reported AUCs ranging from 0.92 to 0.93 when 
predicting surgical intervention at 1–3  years.[49] The 
best‑performing AI survival model by Tao et al., trained 
on 361 baseline features, achieved a mean AUC of 0.80.[48] 
Moreover, the transformer‑based models by Hu and 
Wang, which were trained on clinic notes from the initial 
follow‑up period, demonstrated AUCs ranging from 0.70 
to 0.73.[47]

Summary
AI can help to capture potential preglaucoma individuals 
before the occurrence of clinical signs, as well as identify 
glaucoma patients with impending progression and/
or a fast‑progressing course. Such information would 
allow the clinicians to approach these at‑risk individuals 
in a more proactive fashion (e.g., by providing regular 
monitoring to individuals at high risk of glaucoma 
development, and by referring glaucoma patients more 
prone to future progression early for surgical evaluation). 
With precision medicine being the end goal of glaucoma 
management, this prospect of AI application is invaluable 
and could help prevent glaucoma‑related blindness.[51]

Glaucoma detection and diagnosis
Image‑based ophthalmic disease diagnosis through 
AI has obtained huge success,[5,52‑54] including in 
glaucoma.[55] Compared to human interpreters, AI 
demonstrates greater accuracy, reliability and efficiency 
in glaucoma detection and diagnosis.[55] The text in this 
section is organized based on the image/data modality 
used to perform this task.

Color fundus photographs‑based detection
As summarized in a prior review,[55] AI already achieved 
an excellent performance on CFPs‑based glaucoma 
detection in earlier works (mean AUC: 0.97), although 
there was a lack of prospective, external validation. 
Findings from recent studies have further added to the 
evidence supporting its clinical utility.[56‑62]

The DL models by Hemelings et al. achieved an AUC of 
0.995 for glaucoma detection using optic disc‑centered 
CFPs.[58] In their subsequent work, the improved DL 
models were further proven capable of identifying 
glaucoma‑induced damage outside the ONH,[57] 
and the results could be generalized to 13 external 
datasets  (AUCs: 0.85–0.99).[59] Meantime, an AI‑and 
telemedicine‑based glaucoma screening tool was 
developed by Bhuiyan et al. to detect glaucoma suspects 
through CFPs, which achieved accuracies of 0.90 and 0.84 
in internal and external validation, respectively.[56] High 
myopia or long axial lengths (ALs) often pose challenges 
for clinicians during glaucoma assessment.[63] However, 
ML models consistently achieved AUCs of  >  0.9 for 
discriminating healthy from preperimetric glaucoma/
glaucoma in an Asian cohort with long AL, indicating 
its possibly superior performance to clinicians in this 
challenging population.[62]

Vision transformers (ViTs), a rising ML approach that is 
considered the next state‑of‑the‑art for ophthalmic image 
analysis,[64] have been applied to CFPs‑based glaucoma 
diagnosis.[65‑67] One study compared ViTs‑based models 
to convolutional neural network (CNN) models for the 
detection of POAG among CFPs from the OHTS.[66] The 
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former consistently outperformed the latter in external 
validation, with the AUC difference ranging from 
0.08–0.20. Interestingly, the localized highlight of the 
neuroretinal rim was shown on the saliency map in the 
ViTs‑based models. In contrast, the same maps in the 
CNN models showed a more diffuse distribution around 
the optic disc.[66] Another work comparing ViTs and 
CNN models for glaucoma detection from CFPs showed 
similar results of superior performance by ViTs.[67]

Since OCT data are not always accessible in clinical settings, 
AI could help with glaucoma discrimination by estimating 
OCT measurements through CFPs. For instance, Jammal 
et al. compared the diagnostic performance of clinicians 
to predictions by a DL algorithm trained to quantify 
RNFLT loss on CFPs.[68] The DL algorithm performed 
comparably, if not superior, to clinicians at discriminating 
eyes with repeatable glaucomatous VF loss.[68] Chen et al. 
trained a DL algorithm to extract thickness information 
from CFPs, and the DL‑generated RNFLT thickness for 
glaucoma detection was similar to the OCT‑generated 
original images.[69] Yang et al. also trained a DL model to 
predict RNFLT around optic disc regions in CFPs, and the 
model achieved the highest AUC of 0.91 for the detection 
of NTG/glaucoma suspects using DL‑estimated regional 
RNFLT.[70]

Optical coherence tomography and optical coherence 
tomography angiography‑based detection
OCT‑based glaucoma diagnosis through AI developed 
slightly later than that of CFPs.[55] Nonetheless, compared 
to CFPs, OCT may provide more objective and defined 
information on retinal structures relevant to glaucoma 
pathophysiology.

Many recent studies have suggested an excellent 
performance of AI‑assisted glaucoma detection through 
OCT  (AUCs generally  >0.90), with the ONH noted 
as a salient region for detection.[71‑84] The DL models 
by Braeu et  al. achieved AUCs  >0.95 in diagnosing 
glaucoma from ONH OCT scans.[71] Furthermore, they 
identified the inferior and superior quadrants of the 
ONH neuroretinal rim to be critical to the diagnosis. Wu 
et al. compared five ML models for glaucoma detection 
using various OCT parameters.[73] They revealed that the 
ganglion cell layer measurements were most predictive 
of early glaucoma, while the RNFLT metrics were more 
important predictors in advanced cases. Constructed 
on data from an Asian cohort, the two ML models by 
Li et  al. were trained for glaucoma detection using 
measured RNFLT data and compensated RNFLT data 
corrected for anatomical factors.[72] Intriguingly, when 
testing the models on Caucasians, the compensated 
data model showed better performance (AUC: 0.93 vs. 
0.83), suggesting the importance of considering racial 
differences in ocular biometry when applying AI.[72]

OCTA is an emerging imaging technique in glaucoma 
diagnostics.[85,86] Since several commercial OCT devices 
perform simultaneous calculation of OCTA vessel 
densities  (VDs) and OCT thickness measurements on 
the same scan slab, an increasing number of new studies 
have utilized OCTA or combined OCT‑OCTA data for 
glaucoma detection.[87‑93]

OCTA‑based glaucoma detection through AI seems 
to perform noninferiorly to that based on OCT. One 
study reported various ML algorithms that achieved 
AUCs  >0.85 based on OCTA VDs, similar to the 
diagnostic performance achieved with RNFLT as the 
input, and revealed the infero‑temporal vascular sector to 
be the most discriminative OCTA region.[88] In addition, 
they suggested the added value of OCTA when a 
VD‑based model achieved an AUC of 0.76 in glaucoma 
severity classification  (vs. RNFLT‑based model: 
0.67).[88] In another study, en‑face VD images  (AUC: 
0.97) improved ML performances based on standard 
OCT measurements  (AUC: 0.93) and standard OCTA 
measurements  (AUC: 0.91).[89] Even for glaucomatous 
eyes with high myopia, a DL model based on macular 
superficial OCTA images achieved an AUC of 0.95, which 
was comparable to the results by models trained with 
macular OCT metrics (AUCs: 0.98–0.99).[92]

Among studies that utilized combined OCT and OCTA data 
for glaucoma diagnosis, Bowd et al. compared ML models 
trained with OCT, OCTA, and combined OCT‑OCTA 
measurements.[93] Although the combined model showed 
the highest AUC (0.93), other single‑modal models achieved 
comparable results (AUCs: 0.90–0.91). Rabiolo et al. also did 
not find the combined approach to be superior, and they 
reported better diagnostic ability of OCT indices than the 
OCTA ones for DL‑based glaucoma detection.[90]

Of note, the inferotemporal region has been consistently 
suggested as a key region for glaucoma diagnosis across 
various AI‑based OCT/OCTA studies,[83,90,91] showcasing 
the ability of AI to provide insights into important 
structural‑functional relationships in glaucoma.

Other multi‑modal models
Several recent investigations have attempted a 
multi‑modal approach in ML model development, and 
most of them achieved outstanding results comparable 
or superior to that derived from single‑modal models 
reported in the current literature.[94‑101] Xiong et  al. 
compared the glaucoma diagnostic performance of ML 
models using VF, OCT, and paired OCT‑VF data.[95] 
The multi‑modal model achieved an AUC of 0.95 in 
the primary validation test (vs. VF‑based results: 0.87; 
OCT‑based result: 0.81; glaucoma specialists: 0.88) and 
consistently outperformed other models and glaucoma 
specialists in the external validation.[95] Song et al. also 
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reported that the deep transformer‑based model trained 
with combined OCT‑VF data outperformed existing 
single‑modal OCT or VF models by a large margin.[96]

The input of demographics, clinical data, and ocular 
measurements from the EHR has led to the discovery 
of novel predictors of glaucoma.[98‑101] For instance, 
a multi‑modal model  (trained on OCT, CFPs, and 
EHR data) that achieved an AUC of 0.97 highlighted 
some previously unknown clinical features, such as 
pulmonary function parameters and retinal outer layers, 
for glaucoma diagnosis.[99] In another study, systolic 
BP was among the top predictors for discriminating 
glaucoma.[100] Using various data  (VF, OCT, and IOP) 
and ML feature extraction, one study even proposed an 
integrated glaucoma risk index that was able to classify 
glaucomatous eyes from nonglaucomatous ones with a 
low misclassification rate of 0.07%.[98]

Summary
Compared with clinicians, AI could achieve a similar, 
even superior, glaucoma diagnostic performance.[55] 
Moreover, the process taken for AI to be trained and 
perform this task is more cost‑ and time‑efficient, with 
much less concern over grading subjectivity and 
variability. In addition, this technique can be used in 
conjunction with telemedicine, providing a means to 
break down barriers in eyecare delivery.[102]

However, it should be noted that the academic settings 
where prior studies were conducted may not represent 
clinical settings, and there remains a lack of independent, 
external validation to support the generalizability of the 
results. Moreover, some potential real‑world challenges 
that AI‑based glaucoma diagnosis may encounter 
include racial or individual differences in ONH 
structure,[103] heterogeneity in clinical presentations, 
and low‑quality ocular images.[104] Currently, AI‑based 
glaucoma diagnosis may be more suitable as an assistive 
tool. More pragmatic evidence is needed to fully leverage 
the benefits of this technique.

Visual field estimation and pattern analysis
VF testing can demonstrate a very important aspect of the 
functional changes experienced by the patients. However, 
since the test is time‑consuming and dependent on the 
attention/performance of the subject, the results are 
often variable.[21,22] Furthermore, the interpretation of the 
output can be subjective, and thus, efforts have been made 
to train AI to estimate and analyze VF changes.[105] This 
section focuses on AI estimation of VF results from other 
imaging/data modalities and VF loss pattern analysis.

Visual field results estimation
OCT‑based estimation of global or point‑wise VF 
indices through AI has been performed in multiple 

studies.[84,106‑109] For 24‑2 VF MD and PSD, the mean 
absolute error  (MAE) generally ranged between 
1.5–3.0 dB and 1.5–2.0 dB, respectively.[84,106] One study 
even showed the DL‑estimated VF to discriminate eyes 
with glaucomatous VF defect with an AUC of 0.88.[84] 
Nevertheless, the error of VF estimation appeared to 
increase as glaucoma progresses,[109] suggesting a varying 
functional association of OCT measurements along the 
disease severity spectrum.

In the meantime, some studies have attempted to estimate 
CVF, especially the central 10° of VF, through AI.[110‑118] 
The CNN model by Kamalipour et  al. based on OCT 
achieved an average point‑wise mean MAE of 4.0 dB over 
the 10‑2 map, and a mean MAE of 2.9 dB for 10‑2 MD.[110] 
Using OCTA as input, Mahmoudinezhad et al. reported 
a mean MAE of 2.5 dB and 1.8 dB for 10‑2 point‑wise 
and MD prediction, respectively.[111] While Kihara et al. 
compared the performance of DL models based on OCT, 
infrared reflectance (IR) optic disc images, and combined 
OCT‑IR data.[118] The combined data model achieved 
the smallest point‑wise MAE of 3.1 dB (vs. OCT model: 
3.2 dB; IR model: 3.6 dB), implying the potential benefits 
of a multi‑modal approach in AI VF estimation.[118]

Given the multifactorial pathophysiology of glaucoma, 
some patients might show discrepant extent of structural 
and functional damage. Therefore, information from 
multiple independent examinations is generally required 
to make clinical decisions. With OCT being the sole 
information source during OCT‑based VF estimation, to 
ensure accurate estimation and unbiased interpretation, 
quality assessment and clinician evaluation of the OCT 
data should be performed prior to the AI estimation.

Visual field loss patterns analysis
As aforementioned, AI‑based analysis of VF loss 
patterns, such as the VF‑AA, has garnered attention in the 
past decade. According to the study by Yousefi et al., the 
patterns of 24‑2 VF loss identified by ML differ slightly 
from that identified by experts in the OHTS.[119] The 
most prevalent VF loss patterns were temporal wedge, 
partial arcuate, nasal step, and paracentral VF defects 
per ML models versus partial arcuate, paracentral, and 
nasal step defects per the experts. Furthermore, one 
of the ML‑identified VF patterns could predict future 
rapid VF progression after adjustment for age, sex, and 
baseline VF MD.[119] VF‑AA has also been performed 
for CVF, and the CVF patterns identified were found 
to improve the prediction of longitudinal 10‑2 VF MD 
worsening slope.[39] Notably, eyes demonstrating more 
nasal CVF loss patterns at baseline were more likely to 
show long‑term worsening of MD.

VF loss patterns in advanced glaucoma are of specific 
interest due to the often subtle change that can be 
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difficult for clinicians to observe. The lack of proper 
characterization of end‑stage VF loss has also hindered 
the investigation of structure‑function associations 
and vision‑related quality of life in this patient group. 
To address this, Wang et  al. performed VF‑AA on 
the CVF in end‑stage glaucoma.[120] In addition to the 
identification of 14 CVF patterns, they also delineated 
the “more vulnerable superonasal zone” of the CVF, 
where new defects are more likely to occur during the 
follow‑up. Moreover, they found most initial CVF loss 
to demonstrate nasal loss patterns, one of which is most 
likely to develop into a total loss.[120]

Some factors have been found to affect the patterns of 
VF loss.[121] One VF‑AA study revealed the presence 
of racial/ethnic differences in the VF loss patterns of 
POAG.[121] Compared to non‑Hispanic Whites, Blacks 
showed a higher risk of developing VF ATs representing 
early VF loss and advanced VF loss patterns. In another 
study, even different testing algorithms of VF showed 
differing patterns of VF loss in VF‑AA.[122] Compared 
with consecutive Swedish Interactive Threshold 
Algorithm  (SITA) Standard examinations, switching 
from SITA Standard to SITA Faster  (the most recent 
and fastest testing algorithm) was associated with 
less preservation of VF loss and greater likelihood 
of preserving normal VF patterns, which should be 
considered during progression assessment.[122]

Summary
Considering the time and space needed to conduct 
VF testing, AI‑based VF estimation can serve as an 
alternative when a VF device is not available or when 
immediate VF results are not accessible.[106] This 
application would also allow a more individualized VF 
testing strategy that optimizes the cost‑effectiveness of 
eyecare allocation  (e.g.,  in patients with a lower risk 
of CVF defects, 10‑2 VF tests can be administered less 
frequently if AI‑estimated results are available).[110] 
Meanwhile, compared to human interpretation, AI‑based 
VF loss patterns analysis can provide more objective, 
quantitative, and clinically interpretable information. 
With the VF test being an indispensable part of glaucoma 
evaluation, these applications of AI may assist clinicians 
in patient assessment and decision‑making.

Glaucoma progression detection
As described earlier, effective monitoring of glaucoma 
progression informs the clinician about disease trajectory 
and how to optimize visual outcomes. With prompt 
detection of progressive changes, clinicians can intervene 
in a timely manner, which may help to delay or prevent 
further vision loss from occurring. To facilitate glaucoma 
progression detection, many studies have thus explored 
the performance of AI‑assisted methods in detecting 
functional and/or structural glaucomatous progression.

Visual field progression detection
Functional glaucoma progression is conventionally 
assessed using global and/or point‑wise indices of the 
VF using standard automated perimetry. However, the 
former is insensitive to localized disease progression, 
while the latter generally possess higher measurement 
variability.[123] Several studies have thus compared 
AI to these conventional methods in VF progression 
detection.[38,124‑127] Shon et al. used various CNN models 
and two traditional models (linear regression on global 
indices and point‑wise linear regression [PLR]) to detect 
VF progression in POAG.[126] The CNN models achieved 
AUCs ranging from 0.78 to 0.87, while the global linear 
analysis and PLR demonstrated an AUCs of 0.40 and 0.62, 
respectively. Similarly, the ML‑based index developed 
by Yousefi et al. outperformed conventional methods in 
detecting VF progression.[123] Furthermore, the time to 
detect progression in 25% of eyes was 6.6, 5.7, 5.6, and 
5.1 years using global VF MD, region‑wise, point‑wise, 
and ML‑based methods, respectively, supporting the 
use of ML to facilitate early VF progression detection.

An additional advantage of AI‑based methods, 
compared with traditional methods, is the opportunity 
to incorporate other data to improve classification.[125,128] 
For instance, a recent study showed that, when using 
both VF and clinical data, the VF progression detection 
accuracy of ML models improved (AUC: 0.89–0.93; vs. 
VF‑only: 0.79–0.82).[125] Nevertheless, similar to clinicians 
and conventional methods, AI seems to perform worse 
in progression detection as glaucoma worsens,[127] which 
is a limitation to its clinical application.

Optical coherence tomography progression detection
Structural glaucoma progression is most commonly 
assessed using OCT parameters. In comparison to VF 
testing, the strengths of OCT progression assessment 
include smaller measurement variability,[21,129] higher 
sensitivity in the early disease stage,[130] and the 
possibility to capture progression earlier than the VF 
does in some cases.[131]

A few studies have used AI to assist in the detection of 
OCT progression.[43,132,133] Using RNFLT from the baseline 
and a follow‑up visit, the CNN model by Mariottoni 
et  al. achieved an AUC of 0.94 and outperformed 
conventional trend‑based analysis in detecting glaucoma 
progression determined by glaucoma specialists using 
longitudinal RNFLT data.[43] The DL auto‑encoders by 
Bowd et al. facilitate the detection of progressive RNFLT 
changes by generating individualized OCT region 
of interest  (ROI) maps.[132] Compared to trend‑based 
analysis using RNFLT, the analysis using RNFLT from 
DL‑generated ROI achieved higher sensitivity (0.90 vs. 
0.63) at a fixed specificity. In another study, longitudinal 
RNFLT predicted by DL based on CFPs showed robust 
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performance in detecting trend‑based fast structural 
progressors, achieving an AUC of 0.96 and a sensitivity 
of 0.85 for 0.90 specificity.[133]

Summary
For VF progression detection, AI could help to overcome 
common limitations of global/local VF indices and 
perform comparably or superior to traditional methods. 
With regard to OCT progression detection, in addition 
to its computational advantage, AI could be utilized 
to pinpoint the OCT ROI or improve the quality of 
OCT data (e.g., by providing measurement prediction 
or image quality enhancement).[134,135] Along with the 
advents in glaucoma progression prediction (discussed 
in Prediction of glaucoma progression), AI may facilitate 
a more robust and personalized monitoring of glaucoma.

Other applications
Anterior chamber structural assessment
AI has been demonstrated to be useful in the assessment 
of anterior chamber structure through gonioscopy and 
anterior segment‑OCT  (AS‑OCT).[136‑142] For instance, 
Lin et al. showed CNN models can accurately identify 
the trabecular meshwork in gonioscopy videos in real 
time, which may have implications for surgical training 
or intraoperative guidance.[136] ML models have also 
shown high accuracy in the grading of the anterior 
chamber angle and the detection of angle closure using 
AS‑OCT,[137‑139,141,143,144] providing a reliable method for 
image‑based angle closure screening.

Surgical outcome prediction
Surgical outcome prediction helps to guide postoperative 
care. Several ML models have been proposed to 
predict the outcome of filtration surgery, particularly 
trabeculectomy.[145‑148] One of them achieved an AUC of 0.74 
in predicting trabeculectomy success using preoperative 
systemic, demographic, and ocular data in the EHR.[147] 
A DL model incorporated intra‑operative surgical notes 
in addition to EHR data, which further improved the 
prediction (AUC: 0.75 vs. EHR data only: 0.71).[148]

AI could also provide insight into new surgical options 
that have not been well validated. Kurysheva et  al. 
compared the anatomic and functional efficacy of early 
lens extraction (LE), an emerging treatment for primary 
angle closure glaucoma (PACG), to that of laser peripheral 
iridotomy  (LPI), an established surgical treatment.[149] 
Considering the correlation among various anterior 
chamber measurements, an ML classification method 
was applied to evaluate the overall class similarity of the 
postoperative eyes to the controls. The authors reported 
a better efficacy of LE than LPI due to the stronger class 
similarity to the controls, lower postoperative IOP, and 
better anterior chamber topography, supporting its use 
in treating PACG.[149]

Large language models
Large language models  (LLMs) represent a rising DL 
technique featuring the ability to perform various natural 
language processing tasks.[150] Their possible utility as 
diagnostic tools and patient resources has been examined 
within the field of glaucoma. Delsoz et al. compared the 
capabilities of ChatGPT, an online LLM chatbot, and senior 
ophthalmology trainees to diagnose glaucoma based on 
clinical case reports.[151] Intriguingly, ChatGPT demonstrated 
similar or superior accuracy as compared with the trainees, 
suggesting its potential to assist in triaging or diagnosing 
individuals with glaucoma. In another study, GPT‑4 
was compared to glaucoma specialists for diagnosing 
glaucoma and responding to commonly asked ophthalmic 
questions.[152] Again, GPT‑4 outperformed glaucoma 
specialists in diagnostic accuracy. Furthermore, response 
completeness by GPT‑4 to ophthalmic questions was rated 
more favorably than that by the specialists, showing its 
potential to serve as an alternative patient resource.[152]

Conclusion

From disease diagnosis to outcome prediction, recent 
studies have shown exciting results of AI application 
in various key aspects of glaucoma care. Nonetheless, 
there remain some limitations and concerns toward its 
clinical implementation.

First, more external validation under prospective, clinical 
settings and the identification of the best‑performing 
models are required to clarify the performance of AI in the 
real world. Second, given the race‑dependent performance 
of most clinical instruments,[153-155] exploration of possible 
racial differences in AI‑based glaucoma diagnostics is 
essential. Third, while AI‑generated VF/OCT data seem 
convenient and accurate, how we can best leverage 
from them through integration with relevant clinical 
data awaits further investigation. Last, as the machine 
element of AI matures, it is equally important that the 
human element, especially the regulations on its ethical 
responsibility, medical liability, and role in relation to 
glaucoma specialists, continues to evolve.[156,157]

Building on the current milestones and limitations, 
possible next steps include the validation of present 
findings in pragmatic, real‑world studies, optimization 
of AI performance through refinement of training/input 
data and algorithm details, integration of generative 
data with known risk factors for prognostication, and 
exploration of the societal impacts and corresponding 
policies regarding its real‑world implementation.[102,158,159]

In conclusion, AI application shows the potential to 
improve glaucoma care. With the assistance of AI, 
clinicians may be one step closer to the practice of 
precision medicine in glaucoma.
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