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Abstract
The use of local antibiogram in guiding clinical decisions is an integral part of the antimicrobial stewardship program. Conventional
antibiograms are not disease-specific, ignore the distribution of microorganisms, obscure the in-vitro efficacy interrelationships, and
have limited use in polymicrobial infections.
We aimed to develop an in-house empiric, disease-specific, antimicrobial prescription auxiliary for the treatment of hospitalized

pediatric pneumonia patients and to present the methods which help to choose the first and the second line antimicrobial therapy,
while accounting for cost and safety aspects.
A retrospective single center observational study was conducted on bronchoscopy obtained sputum culture. Analysis of

probabilities, variance minimization, Boolean network modeling, and dominance analysis were applied to analyze antibiogram data.
The Kirby–Bauer disk diffusion method was used to test the susceptibility of all isolates. Final optimization analysis included local drug
acquisition cost (standardized to price per DDD) and safety profile.
Data of 145 pediatric patients hospitalized with pneumonia with 218 isolates over 5years was collected. A combination of

statistical methods such as probabilities of drug efficacy, variance minimization, Boolean network modeling, and dominance analysis
can help to choose the optimal first-line and the second-line antimicrobial treatment and optimize patient care. This research reveals
that ampicillin is the optimal choice as the first-line drug and piperacillin-tazobactam is the second-line antimicrobial drug if the first
one is not effective, while accounting for cost and safety aspects.
The paper proposes a new methodology to adapt empiric antimicrobial therapy recommendations based on real world data and

accout for costs and risk of adverse events.

Abbreviations: A = ampicillin, AB = antimicrobial drug, ANOVA = analysis of variance, ASP = antibiotic stewardship program (s),
B = Bernoulli distribution, BNA = Boolean network analysis, CAP = community-acquired pneumonia, D = drug, E = expected value,
EBIC = extended Bayesian information criterion, HPP = of hospitalized pediatric pneumonia, KPC-Kp = Klebsiella pneumoniae
carbapenemase producing Klebsiella pneumoniae, LSMU = Lithuanian University of Health Sciences, MIC = minimum inhibitory
concentration, MPT =modern portfolio theory, R = return, R2 = the proportion of the variance for a dependent variable, explained by
an independent variable in a regression model, SD = standard deviation, spp. = species, var = variance.
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1. Introduction

Antimicrobial stewardship programs are advocated as a way to
combat antimicrobial resistance and this practice has seemingly
gained momentum.[1] The antibiotic stewardship programs
(ASP) should include the development of facility-specific clinical
practice guidelines and pathways for common infections based
on local epidemiology, susceptibility patterns, and drug
availability or preference.[2] The traditional antibiogram sum-
mary (represented with the microorganism incidence and
susceptibility description) is a standard component of these
programs[3] with well-known shortcomings: the absence of
syndrome or disease-specific advice, ignorance of distribution of
causative organisms, and is of limited use in the polymicrobial
infections.[4,5] The development of clinical decision support
systems as a part of the ASP is also cumbersome as such attempts
have been made, but quite often resulted in low use and low
adherence rate.[6] Despite this, it is recommended to have ASPs
and base decisions on local and even disease-specific microbio-
logical data.[7]

Less than judicious use of antimicrobial drugs has led to the
development and spread of extensively resistant bacteria, for
example, the KPC-producing Klebsiella pneumoniae. Because
elimination of KPC-producing K pneumoniae (KPC-Kp) has
failed in most centers where it has become endemic, ASPs have
been proposed as means to combat this with limited success.[8–10]

One of the strategies to combat the spread of multidrug resistant
strains is limiting the use of broad spectrum antimicrobial drugs
(e.g., carbapenems) in empiric antibiotic therapy recommenda-
tion that can be developed by using the methods currently
employed in systems biology.[11]

The antimicrobial susceptibility is quite often presented as a
resistance percentage[12,13] and little attention is paid to assess the
correlation between the spectra of antimicrobial drugs, that is to
account for co-resistance (e.g., between ciprofloxacin, sulpho-
namides, and gentamicin),[14] or cross-resistance,[15] even though
this could be used to help optimize the choice of empiric antibiotic
therapy. Several attempts to elucidate the intricate co-occurrence
of resistance among bacterial isolates have previously been made.
It was established, that Vancomycin minimum inhibitory
concentration (MIC) value for methicillin-resistant Staphylococ-
cus aureus is correlated with that of teicoplanin and daptomycin
MICs.[16] Also, correlation coefficients between antimicrobial
susceptibility profiles of over 1600 clinical S aureus isolates have
been estimated.[17] A dual cross-table antibiogram was also
proposed as a method to account for cross-resistance between
antimicrobials.[15] The causal probabilistic network was devel-
oped to predict the susceptibility to antibiotic therapy while
accounting for cross-resistance and treatment history.[18] The
Bayesian network analysis was also implemented to aid
antimicrobial stewardship programs; one of the strong points
of this approach being the statistical rigor and network
visualization capability.[19] Another aspect, that should also be
brought to attention, is the need to develop a syndrome specific
clinical decision support tool for the selection of antimicrobial
therapy as described previously.[5] Our work is novel because we
repurposed and adapted a framework to identify optimal
antimicrobial prescription in terms of in-vitro susceptibility
patterns of microorganisms, the covariance between them, while
accounting for the most expected adverse drug events and drug
acquisition costs. To the best of our knowledge, such an
approach has not been used before.
2

We aimed to develop an in-house empiric, disease-specific,
antimicrobial prescription auxiliary for the treatment of
hospitalized pediatric pneumonia (HPP) patients and to present
the methods which help to choose the first and the second line
antimicrobial therapy.
The HPP population was chosen, as there is no consensus

whether broad (ceftriaxone, cefuroxime, and cefazolin) or
narrow (penicillin, ampicillin, and amoxicillin) antimicrobial
therapy is to be prescribed for children hospitalized with
pneumonia.[20–22]

The proposed methods are provided with R code and an
example dataset, along with proposals regarding the sensitivity
analysis and clinical extrapolation of the in vitro data in the
Supplementary material, http://links.lww.com/MD/G238.
2. Material and methods

The data set of bacterial sputum culture results was taken from
the prospectively maintained database of LSMU microbiology
laboratory from December 2014 till December 2019. Patients
included in the analysis had acute nonresponsive community-
acquired pneumonia or recurrent community acquired pneumo-
nia, defined as persistent fever (38.5 °C) and continuously
elevated inflammatory markers in the peripheral blood, clinical
condition worsening and consolidation visible on chest radio-
graphs after at least 48hours of antibiotic treatment. The patients
with severe chronic conditions were excluded from this study
(e.g., with cystic fibrosis, primary neuromuscular diseases,
asplenia, and tuberculosis).[23] The sputum was obtained by
bronchoscopy and bronchial lavage[23] from pediatric patients
(below 18years of age). The Kirby–Bauer disk diffusion method
on Mueller–Hinton agar was used to test the susceptibility of all
isolates. This was a single center retrospective observational
study. Data analysis was performed with SAS University Edition
and R version 3.5.0.
2.1. Ethical statement

The study was conducted in line with the principles defined in the
good clinical practice recommendations[24] and the Declaration
of Helsinki.[25] The permission to perform this study was
obtained from the Kaunas Regional Biomedical Research Ethics
Committee (No. BE-2–17, 2019.12.02). The informed consents
were obtained from all parents and/or legal guardians, as the
study included only pediatric subjects (<18years of age).
�
 The following techniques are used to build the framework to
choose antimicrobial drug:
�
 Probabilities of efficiency. It is the simplest way to choose the
most likely efficient drug. However, this method is sensitive to
sample data.
�
 Variance minimization can be useful to choose optimal (the
most effective) drug for the first prescription or to establish
optimal antimicrobial set.
�
 Boolean network analysis can be useful to choose optimal (the
most effective) drug for the first prescription as well as the most
appropriate drug for the second prescription if the first one is
not effective.
�
 Dominance analysis can be useful to choose the optimal drug
for the second prescription if the first one is not effective. This
method can be used regardless of what drug was prescribed
firstly.

http://links.lww.com/MD/G238
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2.2. Probabilistic drug selection

The susceptibility of a random microorganism to a specific drug
(Di) can be treated as Bernoulli trial with 2 possible outcomes,
that is, 1 for “success” (i.e., microorganism is susceptible to a
drug) and 0 for “failure” (i.e., the microorganism is not
susceptible to a drug). In this context, the best estimate of
probable drug clinical efficacy is the observed in vitro
susceptibility profile of a specific antibiotic drug. The expectation
and variance of a Bernoulli distribution[26,27] are:

E(Di)=p, var(Di)=p(1�p), where P(Di=1)=p, P(Di=0)=1�
p.

If n independent Bernoulli trials are performed, the random
variable Di for the number of “successes” has a binomial
distribution, which is denoted B(n,p). The expectation and
variance of a B(n,p) distribution are:

E(Di)=np, var(Di)=np(1�p).

Assume that the observed spectrums of in vitro efficacy of
drugs are D1 . . . , Dn. Then P (Dn) is the probability of efficacy
and P(1�P(Dn))=P(In)= in is the probability of inefficacy.
Joint inefficacy probability in the case of events I1 and I2
is P(I1,I2)= i1i2 and conditional inefficacy probability is
P I2jI1ð Þ ¼ i1i2 þ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i1ð1� i1Þ þ i2ð1� i2Þ

p
, where r is a Spear-

man correlation coefficient between the events I1 and I2. When
r=0, P(I2jI1)=P(I1,I2). In this approach, the consistency
constraint is also necessary. When the correlation becomes
positive the joint inefficacy probability increases with the
correlation. However, if the correlation is negative, then there
is no such risk and conditional inefficacy probability is undefined.
A similar attempt has been implemented with the Bayesian
approach[28] (see Supplementary material, http://links.lww.com/
MD/G238).

2.3. Variance minimization

The problem of minimizing the risk of treatment failure is
connected to the Markowitz mean-variance portfolio theory,
used for solving risk minimization in the stock portfolio
construction.[29] The mean-variance analysis is a mathematical
framework for assembling a portfolio of assets, such that the
expected return is maximized, for a given level of risk. The goal of
the mean-variance analysis is to choose the optimal portfolio
weighting factors.[29] In this context, an optimal set of weights is
the one in which the portfolio achieves an acceptable baseline
expected rate of return with minimal volatility.[29] The mean-
Table 1

Drug acquisition costs.

Drug ATC
DDD in
mg ROA

One dose
in mg

Meropenem J01DH02 3000 P 1000
Ampicillin J01CA01 6000 P 1000
Ampicillin-sulbactam J01CR04 1500 O 375
Cefotaxime J01DD01 4000 P 1000
Cefuroxime J01DC02 3000 P 1500
Levofloxacin J01MA12 500 O 500
Piperacillin-tazobactam J01CR05 14000 P 4500
Amoxicillin-clavulanate J01CR02 3000 P 1200

ATC= the anatomical therapeutic chemical classification, DDD= the defined daily dose, mg=milligram, O=
http://kainynas.vlk.lt/idrug-public-app/search/mode/uncompensated.0.
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variance analysis is formulated as follows: assume that there are
N risky assets and their rates of returns are given by the random
variables R1, . . . ,RN. Let w= (w1, . . . ,wn)

T, where wn denotes
the proportion of wealth invested in an asset n, withPN

n¼1 wn ¼ 1. The rate of return of such a portfolio is:

Rp ¼
XN

n¼1
wnRn

The objective is to evaluate wn using the mean-variance pair of
the portfolio with preferences for higher expected returns E[Rp]
and lower variance var[Rp].

[30]

In the context of antimicrobial chemotherapy decision making,
the objective is to find the drug which has the highest expected
value and the lowest risk of inefficacy. Here Rn is individual
observation of specific microorganism’s susceptibility to a specific
drug, with the corresponding variance. The highest weight in the
portfolio has the lowest risk of inefficacy. This was implemented
with quadprog package V 1.5–5, built in R to solve Quadratic
Programming Problems.[31] An example of the antimicrobial set
construction (represented with matrix algebra) is provided in the
Supplementary material, http://links.lww.com/MD/G238.
2.4. Modification of the variance minimization algorithm
including costs and safety aspects

It was proposed that the observed value of Ri (the expected
susceptibility to an antimicrobial drug by a microorganism)
can have the following multi-factorial expansion
Ri ¼ ai þ bi1F1 þ :::þ biKFK þ ei, where ai and biK are con-
stants, FK is a k-th random factor and ei is a random disturbance
with mean zero and which is uncorrelated with FK (k=1, ..., K)
and ej (j≠ i).[32] This equation can be slightly modified for this
specific case: Ri ¼ ai � lnðCi � RRSiÞ þ ei, where ai is an
observation of some susceptibility value to an antimicrobial
drug (encoded as 1 or 0 for “susceptible” or “resistant”,
respectively), Ci is cost (e.g., in some relative terms, see Table 1)
and RRS is relative risk in safety terms. The safety comparison
between beta-lactams and levofloxacin were taken from previous
research.[33] It was shown that musculoskeletal disorder
incidence (e.g., arthralgia) in levofloxacin treated children was
2.1%, compared with 0.9% in non-fluoroquinolone treated
children, with a relative risk estimate of 2.3.[33]Clostridioides
difficile infection (CDI) risk was also included and was estimated
as follows: clindamycin odds ratio (OR) is 16.80, fluoroquino-
Number of doses
per package

Price per
package + VAT (Eur)

Price
per mg

DDD
price

10 107.2 0.011 32.16
50 33.83 0.001 4.06
12 8.04 0.002 2.68
10 20.59 0.002 8.24
10 25.8 0.002 5.16
7 9.59 0.003 1.37
10 56.61 0.001 17.61
5 17.82 0.003 8.91

oral, P=parenteral, ROA= route of administration, VAT= value added tax, prices were obtained from

http://links.lww.com/MD/G238
http://links.lww.com/MD/G238
http://links.lww.com/MD/G238
http://kainynas.vlk.lt/idrug-public-app/search/mode/uncompensated.0
http://www.md-journal.com
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lones OR is 5.50, and cephalosporins, monobactams, and
carbapenems OR is 5.68, macrolides OR is 2.65, sulfonamides
and trimethoprim OR is 1.81, and penicillins OR is 2.71. In the
same publication, tetracyclines had a negligible risk of CDI OR
0.92.[34] We did not find studies comparing the risk of resistance
development across different antimicrobial drug groups and
resistance development was previously described to all antimi-
crobial drug classes, thus the equal risk of resistance across
different antimicrobial drug groups was assumed.[35]
Table 2

The frequency of microorganisms.

Microorganism N Percentage

Staphylococcus aureus 53 25
Haemophilus influenzae 34 16
Streptococcus pneumoniae 34 16
Pseudomonas aeruginosa 19 9
Escherichia coli 11 5.2
Klebsiella pneumoniae 11 5.2
Enterobacter cloacae 4 1.9
Klebsiella oxytoca 9 4.2
Stenotrophomonas maltophilia 4 1.9
Citrobacter freundii 3 1.4
Enterobacter aerogenes 3 1.4
Streptococcus group CFG (small colony) 2 0.9
Streptococcus beta-hemolytic ACG (large colony) 2 0.9
Enterobacter kobei 2 0.9
Enterobacter ludwigii 2 0.9
Streptococcus dysgalactiae 2 0.9
Moraxella (Branhamella) catarrhalis 2 0.9
Streptococcus pyogenes (Strep. group A) 2 0.9
Enterobacter asburiae 2 0.9
Providencia rettgeri 2 0.9
Serratia marcescens 2 0.9
Streptococcus agalactiae (Strep. group B) 1 0.5
Streptococcus group C (small colony) 1 0.5
Enterobacter hormaechei 1 0.5
Streptococcus group F 1 0.5
Acinetobacter species 1 0.5
Proteus mirabilis 1 0.5
Burkholderia dolosa 1 0.5
2.5. Boolean network analysis

A network is a system of variables (called nodes), that are
interconnected at the edges [connections] and represent condi-
tional dependencies. An edge between the variables X1 and X2

indicates a non-spurious relationship, that cannot be explained
by any other variables. Conversely, if the variables X1 and X2

are not connected, the inverse is true (despite the observed
correlation, that disappears upon conditioning on all other
variables).[36] The Boolean networks are logical models,
described by asynchronous state transition graphs, that represent
all the possible exits from every single state, giving a global image
of all the possible trajectories of the system. They may be used to
represent complex biological systems.[37] The networks can be
used to present the causal structure of data or the correlation
structure of the data.[38]

The networks were estimated with the eLasso procedure, as
implemented in the R package IsingFit (http://cran.r-project.org/
web/packages/ IsingFit/IsingFit.pdf). The eLasso is a computa-
tionally efficient method, based on Ising models, to estimate the
weighted, undirected networks from binary data, that merge the
logistic regression and model selection (based on a goodness-of-
fit measure), to identify the relevant relationships between
variables and assess the network structure.[36] The eLasso
procedure regresses each variable on all other variables in turn.
The best-fitting regression function is selected based on the
minimization of extended Bayesian information criterion
(EBIC).[39] The independent variables included in the selected
regression function indicate the nodes, that the dependent
variable is connected to by edges, which are weighted by the
parameters of regression.[38] The model can be made parsimoni-
ous with a hyperparameter (or gamma value), that imposes a
penalty on the regression coefficients and plays a role in the
goodness-of-fit measure EBIC with which the optimal tuning
parameter (which represents the best set of neighbors of the focal
node) is selected.[36] In essence, the gamma penalizes the number
of nodes in the neighborhood selection and puts an extra penalty
on the number of neighbors. If gamma increases, the strength of
the extra penalty on the size of the model space also increases
(and the opposite is true). The higher value of gamma reduces the
number of false positives and increases power (improves the ratio
of a number of nodes and observations).[36] Misspecification of
the penalty parameter may result in the misrepresentation of the
true underlying network.[36]

The graph in the BNA is represented as an adjacency matrix.
We write 1 at the ith row and jth column of the matrix if there is
an edge between ith and jth nodes. 0 indicates no edge between
nodes.[40] This matrix is symmetric and has all zeroes in the
diagonal.[41] In our context, the nodes represent the different
drugs, while edges represent the relationship between the drug
antimicrobial spectra.
4

2.6. Dominance analysis

The dominance analysis shows if one independent variable
contributes more unique variance than other independent
variables, either across all possible multiple linear regression
sub-models or on average across models of all possible subset
sizes. This analysis involves computing each predictor’s incre-
mental validity across all possible sub-models. If the incremental
validity is always higher for Xi than for Xj for every sub-model,
then Xi is said to have complete dominance over Xj. The
conditional dominance is a relaxed version of dominance and
occurs when the average incremental variance within each sub-
model of sizes 0 to p�1 (p is number of predictors) is greater for
one predictor than another across all model sizes.[42] The
conditional dominance weights are average incremental variance
components, used to evaluate the conditional dominance and
partition the model R2 across predictors. The dominance weights
aid in the assessment of a predictor contribution to a criterion,
sum up to the overall model R2 and elucidate the properties of
model predictors.[42]

The complete, conditional, and general dominance values (Dij)
for each pair of predictors are usually presented in the paired
dominance metrics table. A value of 1 in Dij indicates that Xi

dominates Xj, 0 indicates that Xj dominates Xi, and 0.5 indicates
that dominance cannot be established between Xi and Xj.

[42]

In our case, when choosing the second line empiric
antimicrobial therapy we seek to prescribe an antimicrobial that
has a different antimicrobial spectrum from the previously
prescribed antimicrobial drug. Thus, we need to find the worst
predictor with the smallest contribution to overall model R2.

http://cran.r-project.org/web/packages/
http://cran.r-project.org/web/packages/
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3. Results

We analyzed the bronchial secrete data of 145 pediatric patients
hospitalized with lower respiratory tract infections. Two hundred
eighteen isolates were identified (Table 2).

3.1. Probabilistic drug selection

The expected value of microorganisms’ susceptibility to a drug
was calculated as a mean (or probability). All isolates were
susceptible to levofloxacin, 97%—to meropenem, 93%—to
piperacillin-iazobactam, 91%—to cefotaxime, 76%—to ampi-
cillin-sulbactam and 60%—to ampicillin. Ampicillin was
considered as a first-choice drug, because levofloxacin, merope-
nem, piperacillin-tazobactam, and cefotaxime should be avoided
as first-line drugs, due to an overly broad spectrum (that is high
“collateral damage”) or safety issues.[43–45] The probabilistic
approach allows for various drug selection scenarios, presented
under 3 strategies (optimal, bold, and suboptimal) based on
probabilities as presented in Table 3, this approach is presented to
better elucidate, the concept of our approach, however, variance
minimization is proposed as a generalization.
3.2. Minimum variance antimicrobial set

A minimum variance set was constructed using the susceptibility
data (the variance–covariance matrix is presented in Table 4) and
helps to find an optimal antimicrobial set in terms of efficacy
probability and covariance. The penicillin, clindamycin, erythro-
Table 5

Optimization runs (costs and safety aspects excluded).

Ampicillin Ampicillin-Sulbactam Cefotaxime Cefuroxime Levo

Run 1 0.01 0 0 0 0
Run 2 0.04 0 0 0
Run 3 0.12 0 0.04 0
Run 4 0.19 0 0.54 0.02
Run 5 0.17 0 X 0.39

Table 4

Variance covariance matrix (costs and safety aspects excluded).

Ampicillin
Ampicillin-
Sulbactam Cefotaxime Cefur

Ampicillin 0.241 0.144 0.083 0.133
Ampicillin-sulbactam 0.144 0.182 0.108 0.159
Cefotaxime 0.083 0.108 0.151 0.116
Cefuroxime 0.133 0.159 0.116 0.172
Levofloxacin 0.003 0.004 0.004 0.004
Meropenem 0.025 0.032 0.034 0.032
Piperacillin-tazobactam 0.053 0.067 0.071 0.068
Amoxicillin-clavulanate 0.13 0.151 0.103 0.137

Table 3

The framework of drug selection under 3 strategies (costs and safet

1st line 2nd line

Optimal Ampicillin (0.40) Piperacillin-Tazobactam (0.
Bold Ampicillin (0.40) Levofloxacin (0.005)
Sub-optimal Ampicillin (0.40) Ampicillin-sulbactam (0.24

Notes: drug name and probability (P), P represents probabilities of inefficacy p (inefficacy)=1�p (effic
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mycin, gentamicin, oxacillin, and vancomycin were effective only
in 11%, 12%, 8%, 35%, 17%, and 45% of cases, respectively;
thus were omitted as viable empiric antimicrobial therapy
options. Trimethoprim and sulfamethoxazole combination does
not have a licensed therapeutics indication for the treatment of
pneumonia, thus it was also excluded from the analysis.[46]

The weights of minimum variance antimicrobial portfolio were
calculated for several portfolios as shown in Table 5. These
results indicate that in this population empiric antimicrobial
therapy should consist of ampicillin and some broad-spectrum
antimicrobial drug (levofloxacin, meropenem, or piperacillin-
tazobactam). We conducted an additional variance minimization
analysis and included costs (Table 1) and safety aspects where it
seems, that ampicillin is a very reasonable first-line drug with
piperacillin and tazobactam as the second-line drug (Table 6, Run
4). It may also be very reasonable in terms of costs (Table 6) and
safety aspects to initiate treatment with ampicillin-sulbactam
(as is currently done in our pediatrics unit) and the switch to
piperacillin-tazobactam if treatment with ampicillin-sulbactam is
ineffective.
3.3. Boolean network analysis (BNA)

The weight adjacency matrix of the BNA aids the second-line
drug selection. The estimated network in the form of a weight
adjacency matrix is presented in Table 7, where the estimated
thresholds of a variable represent the presence of autonomous
disposition. For the network when gamma equals 0, all the
floxacin Meropenem Piperacillin-Tazobactam Amoxicillin-Clavulanate

.99 0 0 0
X 0.81 0.15 0
X X 0.84 0
X X X 0.25
X X X 0.44

oxime Levofloxacin Meropenem
Piperacillin-
Tazobactam

Amoxicillin-
Clavulanate

0.003 0.025 0.053 0.13
0.004 0.032 0.067 0.151
0.004 0.034 0.071 0.103
0.004 0.032 0.068 0.137
0.005 0.004 0.004 0.004
0.004 0.04 0.029 0.033
0.004 0.029 0.08 0.069
0.004 0.033 0.069 0.17

y aspects excluded).

Joint inefficacy P Conditional inefficacy P

088) .035 .423
.002 .341

) .095 .541

acy).

http://www.md-journal.com


Table 6

Optimization runs (costs and safety aspects included).

Ampicillin Ampicillin-Sulbactam Cefotaxime Cefuroxime Levofloxacin Meropenem Piperacillin-Tazobactam Amoxicillin-Clavulanate

Run 1 0 0.02 0 0 0.98 0 0 0
Run 2 0.04 0.58 0 0 X 0.31 0.07 0
Run 3 0.04 0.73 0 0 X X 0.23 0
Run 4 0.44 X 0 0 X X 0.56 0
Run 5 0.6 X 0.22 0 X X X 0.17

Abramavicius et al. Medicine (2021) 100:39 Medicine
thresholds are negative. This means that no drug has an
autonomous disposition. The levofloxacin has the highest
threshold (-inf), thus the highest probability of being present
in the sample compared to the other drugs. Different Boolean
networks were built by gradually increasing the gamma
parameter (see Supplementary material, http://links.lww.com/
MD/G238).
Table 7

Network estimation run 5, adjacencymatrix: network density: 0.19,
gamma=4, rule used: And-rule.

Ampicillin
Ampicillin-
Sulbactam Cefotaxime

Ampicillin 0.00 4.16 0.00
Ampicillin-sulbactam 4.16 0.00 0.00
Cefotaxime 0.00 0.00 0.00
Cefuroxime 5.38 4.07 3.57
Levofloxacin 0.00 0.00 0.00
Meropenem 0.00 0.00 0.00
Piperacillin-tazobactam 0.00 0.00 2.05
Vancomycin 6.67 0.00 0.00
Amoxicillin-clavulanate 0.00 3.08 0.00

Cefuroxime Levofloxacin Meropenem
Ampicillin 5.38 0.00 0.00
Ampicillin-sulbactam 4.07 0.00 0.00
Cefotaxime 3.57 0.00 0.00
Cefuroxime 0.00 0.00 0.00
Levofloxacin 0.00 0.00 0.00
Meropenem 0.00 0.00 0.00
Piperacillin-tazobactam 0.00 0.00 0.00
Vancomycin 0.00 0.00 0.00
Amoxicillin-clavulanate 0.00 0.00 0.00

Piperacillin-
Tazobactam Vancomycin

Amoxicillin-
Clavulanate

Ampicillin 0.00 6.67 0.00
Ampicillin-sulbactam 0.00 0.00 3.08
Cefotaxime 2.05 0.00 0.00
Cefuroxime 0.00 0.00 0.00
Levofloxacin 0.00 0.00 0.00
Meropenem 0.00 0.00 0.00
Piperacillin-tazobactam 0.00 0.00 0.00
Vancomycin 0.00 0.00 0.00
Amoxicillin-clavulanate 0.00 0.00 0.00

Estimated thresholds: Ampicillin Ampicillin-Sulbactam Cefotaxime
–17.36 –4.38 –1.00

Cefuroxime Levofloxacin Meropenem
–5.72 -Inf 3.15

Piperacillin-
Tazobactam

Vancomycin Amoxicillin-
Clavulanate

–0.72 –3.15 –0.57
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The network constructed with gamma=4 is the sparsest. The
results show that the strongest relationship (gamma equals 4) can
be established between the ampicillin and ampicillin-sulbactam,
ampicillin and vancomycin, ampicillin and cefuroxime (Fig. 1).
This means, that in case of treatment failure with ampicillin,
switching to ampicillin-sulbactam or cefuroxime or vancomycin
(due to low Methicillin-resistant S aureus [MRSA] prevalence in
our sample) is unlikely to cover a clinically significantly different
spectrum of microorganisms, as shown graphically (Fig. 1: [the
green edges represent a positive relationship between the drugs]).

3.4. Selection of the second line empiric antibiotic therapy
with dominance analysis

The results of the dominance analysis are presented in Table 8.
The table of paired dominance metrics contains the complete,
conditional, and general dominance values for each pair of
predictors. IfDij is 1, it indicates thatXi dominatesXj, 0 indicates
Figure 1. Network estimation run 5. Network density: 0.19, Gamma=4, rule
used: And-rule.

http://links.lww.com/MD/G238
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Table 8

Paired dominance metrics.

Complete Conditional General

AS>CFT 1 1 1
AS>CFU 1 1 1
AS>LEV 1 1 1
AS>MER 1 1 1
AS>PT 1 1 1
AS>AC 1 1 1
CFT>CFU 0 0 0
CFT>LEV 1 1 1
CFT>MER 1 1 1
CFT>PT 1 1 1
CFT>AC 0 0 0
CFU>LEV 1 1 1
CFU>MER 1 1 1
CFU>PT 1 1 1
CFU>AC 0.5 0.5 1
LEV>MER 0.5 0 0
LEV>PT 0.5 0 0
LEV>AC 0 0 0
MER>PT 0.5 0 0
MER>AC 0 0 0
PT>AC 0 0 0
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thatXj dominatesXi, and 0.5 indicates that dominance cannot be
established between the Xi and Xj.
Several scenarios were analyzed. In the case of ampicillin as a

dependent variable, the Dij values for general dominance (Gen)
indicate that ampicillin-sulbactam > amoxicillin-clavulanate >
cefuroxime / cefotaxime > piperacillin-tazobactam > meropenem >
levofloxacin.
It means that if the ampicillin is prescribed firstly, then

ampicillin-sulbactam is the most similar drug. Meanwhile, the
levofloxacin is the worst predictor, in this case, thus the most
suitable alternative for the second line empiric antimicrobial
therapy.
4. Discussion

This research focuses on the potential methodological
approaches in choosing empiric antimicrobial therapy, based
on real-world data. The minimum variance optimization may be
useful when one or a combination of drugs should be chosen for
the empiric treatment. The Boolean network analysis seems to
provide a comprehensible visual understanding of relationships
between the patterns of antimicrobial susceptibility spectra, other
methods, namely, the dominance analysis and probability
analysis is most appropriate when a scenario analysis is
performed.
The literature review reveals that after exclusion of the atypical

pathogens (e.g.,Mycoplasma pneumoniae, with laboratory tests)
the treatment of community-acquired pneumonia in children
should usually be started with amoxicillin for outpatients, and
with ampicillin, Penicillin G for the inpatients. If the child is not
fully immunized, he/she can be treated with a third-generation
parenteral cephalosporin (e.g., ceftriaxone) or cefuroxime (a
second-generation cephalosporin), while gentamicin, ciprofloxa-
cin, andmeropenem should be used in specific cases and not as an
empiric antibiotic therapy.[47] However, some authors argue that
7

either broad (ceftriaxone/cefotaxime) or narrow (ampicillin/
penicillin) spectrum antimicrobial therapy may be prescribed for
children, hospitalized with pneumonia.[20] Interestingly, a fairly
recent systematic review concluded, that for the treatment of
pediatric outpatients with community-acquired pneumonia
(CAP) amoxicillin is an alternative to co-trimoxazole and
somewhat preferred over co-amoxyclavulanic acid and Cefpo-
doxime, due to limited amount of evidence. It was also concluded
that for hospitalized pediatric patients with severe and very severe
CAP, penicillin/ampicillin plus gentamicin is superior to
chloramphenicol and that for such patients coamoxyclavulanic
acid and cefuroxime are viable alternatives.[48]

Our research shows, that, accounting for coresistance among
bacterial isolates, the levofloxacin seems to cover the majority of
observed pathogens, followed by meropenem and piperacillin-
tazobactam, drugs usually reserved for complicated infec-
tions.[49,50] After the exclusion of these antimicrobials, we show
that ampicillin or ampicillin-sulbactam may be the best choice in
this population taking into account drug price and safety aspects.
Our results seemingly contradict the results of a fairly recent
review, advocating the use of penicillin/ampicillin with gentami-
cin in such population.[48]

The proposal to understand antimicrobial in vitro efficacy
as a binary variable is operating under the assumption that
intermediate susceptibility (in our dataset one culture of
Stenotrophomonas had intermediate susceptibility to Ceftazi-
dime) equals resistance.[15] It has clinical merit, as there is some
evidence to link intermediate susceptibility to treatment fail-
ure.[51] The choice of second-line antimicrobial therapy, covered
in this research, is a common problem in the clinical environment,
however, there is a pronounced lack of data to support evidence-
based measures in this area.[52]

The authors are aware of the new rapid molecular diagnostic
technologies for infectious diseases that help to establish accurate
microbiological diagnoses, however these methods still take time
(at least a few hours), Kirby–Bauer disk diffusionmethod remains
the gold standard technique and there still remains a need to
develop the empiric antibmicrobial therapy reccomendations.[53]
4.1. Limitations

The main limitation of this research is that is was conducted in
single center and is retrospective in nature. The treatment
recommendations, presented in this article, are only valid for the
inpatient pediatric pneumonia population, in patients, that are
candidates for bronchoscopy (that has a complicated case of
paediatric pneumonia requiring hospitalization) and the authors
refrain from making generalized conclusions regarding the
treatment of the paediatric CAP or nosocomial pneumonia.
The main analysis is based on the assumption that the atypical
pathogens (e.g., M pneumonia, with laboratory tests) were
excluded.
5. Conclusions

The paper proposes a new methodology to adapt empiric
antimicrobial therapy recomendations based on real data. All the
methods presented in the paper can be combined together in
order to compare the results and find the optimal first-line as well
as the second-line antimicrobial treatment. The treatment
recommendations presented in this article are valid for the
inpatient pediatric pneumonia population.

http://www.md-journal.com
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