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Abstract: Social interaction is one of humans’ most important activities and many efforts have been
made to understand the phenomenon. Recently, some investigators have attempted to apply advanced
brain signal acquisition systems that allow dynamic brain activities to be measured simultaneously
during social interactions. Most studies to date have investigated dyadic interactions, although
multilateral interactions are more common in reality. However, it is believed that most studies have
focused on such interactions because of methodological limitations, in that it is very difficult to
design a well-controlled experiment for multiple users at a reasonable cost. Accordingly, there are few
simultaneous acquisition systems for multiple users. In this study, we propose a design framework
for an acquisition system that measures EEG data simultaneously in an environment with 10 or more
people. Our proposed framework allowed us to acquire EEG data at up to 1 kHz frequency from up to
20 people simultaneously. Details of our acquisition system are described from hardware and software
perspectives. In addition, various related issues that arose in the system’s development—such as
synchronization techniques, system loads, electrodes, and applications—are discussed. In addition,
simultaneous visual ERP experiments were conducted with a group of nine people to validate the
EEG acquisition framework proposed. We found that our framework worked reasonably well with
respect to less than 4 ms delay and average loss rates of 1%. It is expected that this system can be used
in various hyperscanning studies, such as those on crowd psychology, large-scale human interactions,
and collaborative brain–computer interface, among others.
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1. Introduction

Social interaction is one of the hallmarks of people’s daily lives, as humans have lived in societies
and interacted with each other since prehistoric times. Recently, some neuroscientists have studied social
interactions from the neural activity perspective, and interest in interpersonal neural synchronization
(INS) during social interaction has increased rapidly; research on neural mechanisms, interpersonal
coordination, and certain related issues during social interaction is blossoming and is referred to
as hyperscanning [1]. Dyadic interactions have been studied during various tasks, such as visual
gaze-based interactions [2,3], verbal interactions [4–6], hand movements [7–9], the social game [10],
and music performance [11–13], among others. In addition, they have been applied to estimate mutual
cooperation levels to ensure proper efficiency and safety standards in operational environments [14–16].
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Our neuroscientific understanding of social interaction has made great advancements in recent decades,
and Phi complex [7] and alpha interbrain synchrony [6,17–19] have been reported as neural behaviors
and markers in social interactions.

Human social activities in daily life include not only dyadic interactions, but also occur in the forms
of many-to-many interactions (e.g., choruses, band performances, brainstorming, and discussions)
and one-to-many interactions (seminars, lectures, etc.). However, most hyperscanning studies have
been conducted only on dyadic interactions, and very few have investigated three or more people’s
interactions. Several reviews of hyperscanning [16,20–26] have reported that most studies’ experimental
designs were quite limited and there are few compelling group interaction studies. They emphasized
near-realistic group interaction studies as one of the future directions for hyperscanning.

The brain imaging techniques used widely in hyperscanning studies include functional
magnetic resonance imaging (fMRI) [27–29], functional near-infrared spectroscopy (fNIRS) [30,31],
magnetoencephalography (MEG) [32], and electroencephalography (EEG) [33]. Given the scalability
necessary to allow simultaneous multiple connections, fNIRS and EEG seem to have the best potential
in that they are portable and can acquire data online from three or more people at a reasonable cost.
Indeed, the recent hyperscanning literature shows that fNIRS and EEG have been used most often to
acquire data from three or more interactors. In the case of fNIRS, Jiang et al. [5] reported the difference in
INS between leader–follower pairs and follower–follower pairs during three-person group discussions,
while Dai et al. [34] studied INS via the cocktail party effect [35] during three people’s group discussions.
Furthermore, Nozawa et al. [36] conducted a cooperative word chain game (Shiritori) with a group of
four people using two-channel wireless fNIRS devices. Duan et al. [37] introduced a framework for
fNIRS hyperscanning referred to as “cluster imaging of multi-brain networks” (CIMEN) and acquired
fNIRS data from a group of nine people during a drum beat synchronization task. Babiloni et al. [38,39]
and Astolfi et al. [40] acquired EEG data while four people played a card game, and Babiloni et al. [11,41]
also studied professional saxophonists’ group interactions in a musical quartet scenario. Furthermore,
multilateral EEG acquisition in the classroom environment has been reported [42–44].

Although many-to-many or one-to-many interactions seem more interesting and compelling in
hyperscanning studies than do dyadic interactions, there are several reasons why group interaction
studies have been reported rarely to date:

• Multiple (at least two or more) acquisition devices are necessary for hyperscanning studies.
Depending on the number of channels, reliable commercial EEG or fNIRS devices may range in
price from $3000 to over $10,000 per unit. To reduce the cost, it may be necessary to custom-made
devices or reduce the number of channels greatly. In addition to their cost, recruiting participants
and managing experiments with many participants are not easy. As the number of participants
increases, the total experimental cost, including management cost (the number of staff, device
maintenance, preparation time for the experiment, and so on) increases significantly.

• Because of these problems, no well-controlled experimental paradigm for many participants (more
than two) has been developed. To mimic daily life interactions in hyperscanning experiments,
participants need to interact freely and easily without feeling they are controlled. However, the
data acquired are likely to include severe artifacts, such as movement noise, when great freedom
is given during the interaction task. It is relatively easy to identify features or analyze data under
well-controlled experiments, such as a locked task time and synchronized stimulus presentation.
These two factors (realistic experimental settings and ability to conduct data analysis easily)
may lead to problems that make it difficult to satisfy both factors. Furthermore, unlike dyadic
interactions, there may be exponentially greater degrees of control in group interactions, and thus,
designing a well-controlled experimental paradigm is very challenging.

• It also is difficult to develop multilateral analysis techniques. Connectivity and causality are used
primarily in analysis in hyperscanning studies. In the case in which three or more people interact,
the inter-relation between a pair of people can be far more complex than in a dyadic interaction,
and existing connectivity techniques may be unsuitable for multilateral analysis.
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• Multilateral commercial acquisition systems for hyperscanning are not popular in the market.
Each manufacturer may provide its own solution for hyperscanning, but it is difficult to measure
many (more than two) people at the same time, and the data acquisition strategy for hyperscanning
differs depending on the manufacturer [45]. To the best of our knowledge, there is no commercial
hyperscanning acquisition system for more than four people. Furthermore, it is difficult to find
detailed reports on the way to set up and implement such an acquisition system.

Many other issues remain unresolved in multilateral hyperscanning studies, and it is believed that
the first priority is to develop a framework that acquires biosignals from many people simultaneously.
With respect to simultaneous EEG acquisition from many people, simple channel division from a few
high-density EEG systems is not applicable, because EEG requires its own reference for each person.
Thus, it is essential to use one EEG device for each person. In that sense, some multilateral EEG systems
have been commercialized recently. BioSemi devices can support simultaneous EEG acquisition for
up to four people through a daisy chain method. In one group interaction study [41], four identical
EEG devices from EB Neuro were used to connect to interfaces via fiber optics and from interfaces to a
commercial switch device via a local area network (LAN). Software the manufacturer provided also
was used. These commercial solutions may be highly reliable, and provide hardware synchronization
from multiple EEG amplifiers. However, they are quite costly, and may have limited scalability
for a large number of participants. Thus, this has motivated investigators to develop a customized
framework for a simultaneous acquisition system. Poulsen et al. [42] recorded EEG data from a group
of nine people simultaneously using tablets connected to the Emotiv device. Dikker et al. [43] and
Bevilacqua et al. [44] used portable EEG devices (Emotiv EPOC+) to acquire data from 12 and 13 people
on a single personal computer (PC, MacBook Pro), and used custom-made acquisition software with
the openFrameworks software package [46].

There is a high demand to build multilateral EEG acquisition systems, and some recent studies
have introduced systems [42–44] and various methods to obtain EEG data from multiple people
simultaneously. However, to the best of our knowledge, there is little information in the literature
that describes the procedural details and technical issues of simultaneous acquisition systems, such as
internal algorithms, operating principles, or the open source code required to implement the system.
The main purpose of most hyperscanning studies is to investigate the INS, so they are less likely to
focus on the system used in the experiment. In addition, custom-made acquisition systems tend to
be difficult to apply in various hyperscanning experiments because they likely were developed for
specific experiments. Poulsen et al. [42] used an ‘n:n’ connection and reported that they generated
an electric spark for synchronization. However, it is difficult to monitor data or present events in
real time in this structure. Dikker et al. [43] and Bevilacqua et al. [44] addressed the use of the
openFramework platform for system development. However, although openFramework is a very
large, general-purpose software platform, it is unsuitable for real-time neuroscience. Therefore, it has
not been reported whether the acquisition system was able to perform the synchronization, event
trigger presentation, real-time monitoring, and processing necessary for the experiment. Furthermore,
they did not address specifically the way the system was constructed or the way it communicated,
and whether the various functions required for the experiment were possible. This motivated us to
introduce our recent custom-made EEG acquisition system.

In this work, we propose our framework for simultaneous EEG acquisition and discuss in detail
our various trial-and-error experiences while developing the system. We used OpenViBE, a platform
for real-time neuroscience, as the software basis to enable functions (e.g., stimulus presentation and
real-time monitoring). Our proposed framework also can be used for a variety of hyperscanning
experiments, not just one specific experiment. In addition, we proposed a strategy to synchronize
devices and reduce the hardware load. A detailed comparison and summary of existing systems
is given in Table 1. As mentioned above, little detailed information about the framework has been
addressed in the existing research, but this work describes the framework’s structure and internal
operation principle to increase replicability. Section 2 discusses three methods to connect devices in
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a multilateral simultaneous system and introduces both our custom-made system’s hardware and
software aspects. In Section 3, we investigated the way our proposed acquisition system worked by
estimating the acquisition delay and signal quality with event-related potential (ERP) experimental
data acquired from a group of nine people. Finally, we report all of the technical issues associated with
the simultaneous acquisition system in Section 4.

Table 1. Comparison to other custom-developed EEG acquisition frameworks.

Device Wireless EEG [42]
(Emotiv EPOC)

Wireless EEG [43,44]
(Emotiv EPOC+)

Wireless EEG
(Our Custom-Made System)

Sampling Frequency (Hz) 128 256 1000

Number of Channels 14 14 8

Concurrent Acquisition
(Maximum) 9 (N/M 1) 13 (N/M) 9 (20)

Connection Method n:n 1:n 1:n

Basis Software - openFrameworks [46] OpenViBE [47]

Synchronization during
Experiment Electrical spark N/M Frame number, synchronization

module

Framework Structure - N/M Described

Real-Time Processing 2 N/M N/M Possible

Validation N/M Total independence [48],
auditory ERP Delay, loss rate, visual ERP

1 Not mentioned; 2 Real-time function including signal monitoring, sending event trigger, present stimulus, etc.

2. Acquisition Framework Development

2.1. Connection of Devices

As mentioned earlier, the modality used for large-scale hyperscanning is likely to be fNIRS or EEG,
both of which are portable and cost-effective. In this work, we proposed a large-scale hyperscanning
framework using EEG devices. There are several ways to connect multiple devices to the server, and
real-time data acquisition architectures largely are categorized in three ways, as Figure 1 illustrates:

First, each device is connected individually to each low-specification computer (Raspberry Pi,
Arduino, tablet, PC, etc.), as shown in Figure 1a and is referred to as the ‘n:n’ connection for n devices.

Second, data are sent in two steps. In the first, each group of k devices among n (= k×p) devices
is connected to one low-specification server; then, in the second, p low-specification servers are all
connected to one high-specification server, which is referred to as the ‘k:p:1’ connection for n devices;
Figure 1b shows the case of k = 2.

Third, all devices are connected directly to one high-end server simultaneously, as depicted in
Figure 1c, which is referred to as the ‘n:1’ connection for n devices.

Among these three, we adopted the last—the ‘n:1’ connection (Figure 1c)—as our proposed
acquisition framework. We observed that the ‘n:1’ connection is advantageous in the experimental
procedure because it has a short communication delay, and allows direct control of the device, as well
as real-time signal acquisition, monitoring, and processing.
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Hyperscanning experiments require not only simultaneous data acquisition from multiple devices,
but also various functions for experimental progress. Fortunately, there are well-organized open
sources for real-time experiments, such as BCI2000 [49], OpenViBE [47], and BCILAB [50]. We adopted
OpenViBE in our proposed acquisition framework because it has synchronization and multi-acquisition
modules for multimodality. OpenViBE is open-source software for real-time neuroscientific experiments
developed in INRIA. It provides many functions, such as scripting, real-time signal monitoring,
acquisition, filtering, stimulus presentation, and file input/output. The basic structure and acquisition
flow between OpenViBE and the device are illustrated in Figure 2. The acquisition server controls
the device, receives data from it, and parses them. The designer communicates with the acquisition
server and performs functions to process the data, such as real-time monitoring, filtering, and file
input/output. Our custom-made code used to control the device, synchronize all devices, and finally
acquire EEG data, was added to the OpenViBE acquisition server.
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2.2. Hardware

Firstly, a small piece of EEG acquisition hardware was developed and manufactured for our
multi-user (large scale) hyperscanning (BioBrain Inc., Daejeon 35203, Korea). An ADS1299 chip from
Texas Instruments (Dallas, TX, USA) was used for the EEG acquisition module, and 2.4 GHz Wi-Fi was
introduced to communicate via the TCP/IP software protocol. The Raspberry Pi Zero W model was
adopted as the wireless communication hardware. This EEG device, which weighs approximately 56 g
(without battery) and is 93 × 47 × 16 mm in size, is battery-powered, operates at a speed of 1 kHz, and
consists of seven monopolar and one bipolar channels. We note that a 10,000 mA Xiaomi battery was
used (approximately 194 g) in our validation experiment, as our device must operate continuously for
up to two hours. EEG data are transmitted via a commercialized wireless router (AD7200-Nighthawk®

X10 model from NETGEAR). Each device is connected to the router and assigned to one internet
protocol (IP) address. In addition, our manufactured device uses a Deutsches Institut für Normung
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(DIN, German Institute for Standardization) 42802 type snap-lead and a passive disposable foam
electrode. The header consists of a synchronization element (2 bytes), device information (1 byte), and
3 bytes of the packet number as a timestamp. The payloads are a total of 24 bytes with 8 channels of
3 bytes (24-bit resolution per channel). Therefore, one device’s transmission rate is 30 kB per second.
Our hardware for wiring and the electrodes is shown in Figure 3.
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2.3. Software

Acquisition devices and processes were connected as a pair in the OpenViBE data acquisition
module. This structure may exert a heavy load on the system because the number of processes
increases with the number of devices. Thus, we introduced asynchronous communication, as shown
in Figure 4b. In our proposed architecture, communication consists of two phases—device/ software
(custom-made) and software (custom-made)/acquisition server. Our custom-made software performs
parsing, merging, and synchronizing tasks, and sends the combined EEG data to the acquisition server
by the message passing method. The acquisition server parses the data received into the correct block
size for OpenViBE and sends it to the designer (Figure 4a). We note that at the current level, data can
be acquired from up to 20 devices simultaneously.
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Figure 4. (a) Connection diagram of acquisition program and OpenViBE. Our custom-made software
acquires data from the devices and sends parsed and synchronized data to the OpenViBE acquisition
server by message passing; (b) Comparison between synchronous and asynchronous communications.
In synchronous communication, the main thread should wait until data from the device are read;
however, asynchronous communication delivers the transmission request only and continues to process
the main thread; (c) Diagram of framework configuration overall.

3. Validation of our Designed Framework

3.1. Validation Experiments

3.1.1. Communication

We attempted to measure the communication delay in the structure of our proposed framework
for a multilateral EEG acquisition system. Communication delay was estimated with the ping utility,
which measures the round-trip travel time of the message sent from the host to the target. We defined
the wireless transmission delay as half of the ping result (one-way travel time). The parameters that
influence the transmission speed are presumed to be the number of devices connected and their mean
distance from the router. Thus, we measured the communication delays as the two parameters varied.
Keeping the devices turned on and connected to the server PC, a pulse signal was sent to each device
every 10 ms after setting the sending buffer size to 32 bytes and the timeout to 500 ms. For each test,
a total of 1000 pulses was sent to estimate delay. This test was repeated 10 times, and finally, the
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communication delay was estimated by averaging the delay time over 10,000 pulses and computing
the loss rate. The two cases we tested are as follows:

• Case 1: The number of devices connected varied from 1–10 and each device was kept 3 m from
the router

• Case 2: With 10 devices connected to the router, the communication delay was estimated over
various distances (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 m) between the devices and router

For each case, the final result was the grand mean of the communication delays over all devices.
This test was performed on a PC (Intel® Core™ i7-6700k central processing unit (CPU), GeForce 1080
graphics adapter, 32 GB double data rate fourth generation (DDR4) memory, Windows 10 operating
system (OS)). We note that no program that used the network was run during the test except the
ping tool.

3.1.2. Event-Related Potential Experiment

It is necessary to verify that the framework proposed in this work can acquire multiple EEG
data simultaneously. Thus, ERP experiments were conducted for verification purposes because ERP
is highly sensitive to the time at which stimuli are presented. Therefore, it is necessary to know
whether the devices can be synchronized reasonably well according to the given triggers. Under the
conventional ERP experimental paradigm, a group of nine people participated together and EEG data
from three channels (Fp1, Fpz, and Fp2) were collected simultaneously from all. Reference and ground
channels were placed on both mastoids and all other channels were fixed to the scalp with disposable
sticker-type electrodes without a cap. All subjects gave their informed consent before they participated
in the study, which the institutional review board of the Gwangju Institute of Science and Technology
approved (20160120-HR-21-01-02). The detailed experimental paradigm is as follows.

The green circular stimulus for the visual ERP is presented on a blank black background on a
screen, as shown in Figure 5a. All participants sat 3 m on average from the screen, and were instructed
to count the number of visual stimuli presented. All stimulus onset times were marked for the visual
ERP. An inter-stimulus interval (ISI) between 2.5 s and 3.5 s was selected randomly and the stimulus
duration was 0.2 s. A range of 13–29 trials were conducted for each run, and 10 runs were conducted
for a total of 188 trials collected for each participant.

The ERP component is difficult to detect with only one or several trials. Generally, as many
as tens or hundreds trials are averaged to detect the ERP component and estimate the ERP P300’s
amplitude. Tens of trials (at least) are necessary to acquire EEG from one person and detect an ERP
component. We hypothesized that if the simultaneous EEG acquisition system worked reasonably
well—i.e., synchronizing nine devices was sufficient—all EEG trials acquired from multiple people
under the experimental paradigm may be used to generate the visual ERP component, thereby reducing
the number of trials required to detect ERP greatly. To test this hypothesis, we defined ERP detection
in this experiment when all three of the following conditions for the ERP component were met:

• Its minimum peak appeared 140–300 ms after stimulus onset.
• Its maximum peak appeared 280–450 ms after stimulus onset.
• Its peak to peak amplitude was greater than 6 µV.

We note that these conditions were determined empirically. Based on the definition of ERP
detectability above, we counted the number of trials each individual participant required to detect
the ERP component and investigated ERP detection as the number of trials increased from 6 to 60.
For example, to determine the detectability during 10 trials, we computed the first mean for the first to
10th trials, the second for the second to 11th trials, and so on. This was computed continuously until
the last trial, which was used as the mean. Finally, the detection rate was estimated from all means
for the successive trials in the n trials given (n varied from 6 to 60). In this way, we estimated each
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individual and the group of people’s detection rates, respectively. We note that one trial in the group
analysis was multiple trials depending on the number of people (one acquired from each person).

The EEG data acquired were band-passed between 1 and 15 Hz (Butterworth). Each trial was
cut temporally [-200, 1000] ms according to the visual stimulus onset. A temporal window of 200 ms
before stimulus presentation was used as the baseline correction. Trials that exceeded an amplitude of
60 µV were rejected automatically as bad trials. We also rejected trials associated strongly with eye
movement, blinking, and other artifacts by visual inspection. These rejected trials were not used to
detect ERP, but their number was counted. We observed that the number of trials removed because of
artifacts varied from person to person. We note that it was difficult to apply artifact removal techniques,
such as independent component analysis (ICA), for data from a small number of channels.
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Figure 5. (a) Visual ERP paradigm; (b) Experimental configurations. Nine people participated
simultaneously in this group experiment. They sat approximately 3 m away from the monitor and
were instructed to focus on and count the visual stimuli.

3.2. Validation Results

Ping yields the approximate round-trip time for the message sent from the host to the target.
As addressed in the previous section, communication delay was defined as half the ping time.
Table 2 shows the estimated communication delays when the number of devices varied while the
distance from the router was fixed 3 m away. We observed that the ping time nearly always was
approximately 3 ms regardless of the number of devices connected. Furthermore, regardless of the
number of devices connected, the loss rate was between 0.65–1.34%, which is negligible. Table 3 presents
the communication delays over various distances between the device and router when 10 devices were
connected. The distance varied from 2 to 5 m in 0.5 m increments. We found that there was no notable
difference in delay within a distance of 5 m. It is quite interesting that 10 devices (participants) all may
be located easily in a room within 5 m away from the router during the experiment. Thus, in practice,
all EEG data acquired reached the server within 1.5–2.0 ms.

Table 2. Estimated communication delay over various numbers of connected devices. The distance
from the router to all devices was maintained at 3 m.

Number of
Connected Devices 1 2 3 4 5 6 7 8 9 10

Ping Delay (ms) 3 3 3 3 3 3 3 4 3 3

Loss Rate (%) 0.87 0.74 0.79 0.65 0.7 1.34 1.32 1.34 0.86 0.94
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Table 3. Estimated communication delay over various distances from the router when 10 devices
were connected.

Distance from the
Router (m) 2 2.5 3 3.5 4 4.5 5

Ping Delay (ms) 3 2 3 3 3 3 3

Loss Rate (%) 0.80 0.62 0.70 0.89 0.76 0.58 0.61

We collected 188 trials for each participant in the ERP experiments, and observed that the number
of bad trials varied considerably among them. We found that two participants (Sub2 and Sub5)
showed a relatively smaller number of good trials than did the others because eye blinking and
stimulus presentation overlapped very frequently. Three participants’ (Sub6, Sub8, and Sub9) ERP
data were eliminated from our analysis because of unusual patterns. The details are discussed in
Section 4.3. Ultimately, six participants’ ERP data were used in the individual and group analyses.
Figure 6 represents the ERP component’s detection rates at Fpz as the number of trials increased.
Individual participant’s ERP detection rates and that of the group were compared. In the group case
specifically, we gathered six synchronized trials from six participants simultaneously to generate
the ERP component. For example, 4 trials in the group ERP test represented 24 trials (4 from each
participant). All cases showed clear moderate increases in ERP detection rates as the number of trials
increased. In individual cases, most participants required over 54 trials to yield an ERP detection rate
of 80% or above, while 14 trials were sufficiently good to yield an ERP detection rate of 80% for the
group case. We note that all EEG trials of three of the nine participants were eliminated from the group
analysis; thus, the group ERP detection required approximately 1/5 the number of trials for individual
ERP detection.
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for the group of six participants (all of three participants’ ERP trials were rejected, so six participants’
trials were used ultimately).

4. Discussion

4.1. Connection and Synchronization of Devices

The simplest way to acquire data simultaneously is to use as many computers as devices, as
shown in Figure 1a. This ‘n:n’ connection, without specific implementation, may be available with
the commercial software the manufacturer provides, and is easy to implement even when software
development is required. However, we knew that it is difficult to synchronize the devices, send triggers,
and present stimuli during an experiment with the ‘n:n’ connection. Poulsen et al. [42] introduced this
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connection in an experiment with a group of nine people, and noted that the electric spark was used
for synchronization. It is said that a piezoelectric spark generator produces a strong spark up to 60 kV,
but it was not visible in EEG. Synchronization may be possible if a spark generator is used to make a
strong spark, as it may allow synchronization at the beginning or end of the experiment. However,
synchronization during the experiment relies completely on the devices and it is not easy to mark the
trigger or timestamp during the experiment. Thus, the other two methods, the ‘k:p:1’ (n = k × p) or
‘n:1’ connections (Figure 1b,c) are more preferable when the experiment requires sensitive timestamps,
stimulus presentation, and feedback. Comparing the ‘k:p:1’ and ‘n:1’ connections, ‘k:p:1’ may be less
advantageous with respect to communication delay, because data are transmitted in two stages, and
their synchronization may be a hurdle. As the number of ‘p’ servers increases, and the load on the
central server definitely is reduced significantly because of the intermediate servers’ processing. While
the ‘n:1’ connection may control the device on the server directly and it is simple to send commands
and minimize communication delay, it may exert a heavy workload on the central server.

It is known that the ideal approach to synchronize the EEG acquisition system is to use
synchronization hardware in a wired environment. Hardware-based synchronization is advantageous,
in that it may minimize unavoidable communication delays in a high-speed environment. Generally,
however, it is too expense to manufacture and the cost increases dramatically with the number of
participants. Although a wired connection between the device and server is used widely in practice, it is
quite inconvenient when a hyperscanning experiment is conducted that acquires data from many people
simultaneously. Thus, to allow the participants more mobility, a wireless connection is used most often
today. Duan et al. [37] reported that participants’ movement was difficult to accommodate because of
the limited length of optical cables in fNIRS device, and similar problems may be encountered in any
kind of wired environment. This limits the participants’ position and motion, and the experimental
paradigm’s design. As the number of participants increases, the number of cables laying on the floor
also increases, which is highly inconvenient when moving to offer experimental guidance and check
electrodes. Furthermore, wired devices make it inconvenient to set up the experimental environment.
Thus, the cost of conducting the experiment increases with the number of participants. Accordingly,
it is highly important for the experimental setup process to be as simple as possible. In this work,
to develop a wearable (wireless) system at a reasonable cost, we considered software synchronization
for multiple wireless connections. We believe that our proposed system is more convenient to use
(because of wireless connection) as well as affordable.

4.2. Other Platforms for Multilateral Systems: Lab Streaming Layer

Recently, investigators have considered the software platform Lab Streaming Layer (LSL) [51]
for simultaneous acquisition. LSL is software for the unified collection of measurement time series
in research experiments that Swartz Center for Computational Neuroscience, USA developed. It is
open-source software and supports many powerful functions for real-time research experiments, such
as sending trigger events, presenting stimuli, connecting to signal acquisition devices, and capturing
keyboard/mouse events. Most importantly, LSL supports time synchronization designed after the
Network Time Protocol (NTP) [52], and may be applied potentially to large-scale connections. However,
we found that LSL could not maintain the structure we proposed, as it largely is structured for a
dyadic connection (between sender and receiver); thus, it is simple to implement to execute one
process for each device, which is identical to the ‘n:n’ connection (Figure 1a). As addressed in Section 2,
this connection may require much greater consumption of hardware resources in OpenViBE-based
multi-process architecture when 10 or more acquisition processes are executed simultaneously. To solve
this problem, we proposed a framework that introduced a multi-client centralized connection approach
that reduces the number of processes to one.

Although it appeared that LSL cannot be applied to our structure easily, LSL and OpenViBE
acquisition servers may differ in resource consumption during processes. The hardware load may not
be significant in LSL while processes are maintained. Furthermore, it may attempt to reduce loads by
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using multi-thread. Thus, LSL is a good alternative for large-scale systems that support strong time
synchronization and various functions, although to the best of our knowledge, there is no report on
large-scale EEG acquisition via LSL. Thus, to verify its usefulness in multilateral acquisition systems,
extensive and intensive investigation may be needed, which will be performed in our subsequent work.

4.3. Recent Version of OpenViBE

Our proposed framework’s basis is OpenViBE v. 1.3.1. However, this is updated regularly and the
most recent version is 2.2.0. We found that there were three major updates, but the news release did
not report any improvement in the acquisition server’s resource consumption. Because OpenViBE has
reported continuous performance improvements in every update thus far, there may be some progress
in acquisition load and a newer version may be able to acquire EEG data more stably. Thus, we note
that the latest version OpenViBE needs to be tested and implemented.

4.4. System Load

Most work to date has been conducted with the ‘n:n’ connection structure, which is the one-to-one
connection between OpenViBE and a single device. In this case, to achieve simultaneous acquisition,
the server may need as many real-time processes as the number of devices. One of the ‘n:n’ connection
structure’s hurdles is its high hardware load. As the number of acquisition server processes increases,
CPU use may reach nearly 100%, which prevents the server from functioning. The acquisition
server, designer, and synchronization processes all are conducted in real-time and require continuous
processing of the data the devices send; the load is high because the process usually continues without
idle time. In the case in which only the acquisition server is run, we observed that there are no resources
available when a dozen or more processes are activated. When the designer and acquisition processes
were executed together and data were acquired, the CPU use rate reached 100% and function failure.
Because a designer process with multiple functions, such as monitoring and filtering, is needed during
these experiments, we observed that more than eight connections are intractable in the ‘n:n’ connection
structure. We note that all tests were performed on a PC (Intel® Core™ i7-6700k CPU, GeForce 1080
graphics adapter, 32GB DDR4 memory, Windows 10 OS, with OpenViBE v. 1.3.1).

Two schemes were introduced in our proposed architecture to reduce the number of processes
and reduce the hardware load thereby.

• A server process was connected with multiple clients (devices). As a unit of program execution,
the process was allocated a unique address space and hardware resources, including CPU registers,
text data in memory, and open files and devices. Therefore, as the process increases, the burden on
resources increases. In addition, as the server’s OS does not run just one program, it is necessary to
change the process that it executes, which entails a very high cost in context exchange. Therefore,
we made it possible for the software to communicate with all devices in one process that reduced
the number of processes overall.

• Second, asynchronous communication. There are synchronous and asynchronous modes of
communication, as shown in Figure 4. In the synchronous communication mode, CPU blocks and
no other operations can be processed until a response arrives from the device. In this structure,
a greater number of devices increases the blocked time required for input/output (I/O), which
may result in very inefficient operation. However, asynchronous communication reduces the
hardware resource load dramatically, even in situations in which multiple devices are connected.
Nonetheless, in asynchronous communication, the OS determines the send timing and the data’s
size, so it is necessary to parse the data and control synchronization between devices.

Our custom-made device operates on 8 channels at a sampling frequency of 1000 Hz. Based on
the device developed, data may be acquired from up to 20 devices using the current framework.
However, it is advantageous for EEG devices to have as many channels as possible in hyperscanning
studies because various cortical areas’ involvement can be investigated. It is natural to question
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whether the number of devices in a simultaneous acquisition system should decrease when each
device’s number of channels increases. A practical test is required to confirm this, as we expect that a
mild increase in the number of channels (addition of just several channels per device) may not lead
to any problems and maintain the number of connections unless the number of channels increases
dramatically. It is understood that the current load problem on the hardware is not the amount of
transmission on the network from the device, but the CPU resource consumption. For example, we
tested a 64 channels Biosemi ActiveTwo device using the one-to-one communication method on the
same server. Biosemi operates at a sampling frequency of 1024 Hz, and our 8-channel device operates
at a sampling frequency of 1000 Hz. A fair comparison is not even possible, as with respect to the
amount of transmission from the device to the server, Biosemi is expected to transmit the roughly same
amount of data as that of the eight devices we developed. However, in practice, compared to hardware
consumption, Biosemi consumed less than 30% of the CPU’s resources, while eight simultaneous
connections did not operate normally because 100% of the CPU’s resources were consumed. It was
inferred from this observation that network traffic may not cause the hardware load, but context
switching for execution between many real-time processes. Such an understanding and observation
motivated us to propose our simultaneous acquisition framework with the single process structure
and asynchronous communication method.

4.5. Electrodes

A large number of people participated in our experiment; thus, we found that it took quite a
long time to prepare the experiment. First, sticker-type disposable electrodes were made that were
more convenient for the participants. They were pre-applied with a conductive gel, which reduced the
preparation time for the experiment and were easy to use because they are disposable. Furthermore,
they can be used without EEG caps or pastes, which also reduced the time to prepare the experiment
greatly. However, we found that they could not be attached to areas of the scalp with hair because they
need to be attached directly to the skin; thus, they were used on the frontal lobe only. The terminal at the
opposite end of the snap-lead (shown in Figure 7a) is a DIN 42802 type used widely and is compatible
with all passive types of electrodes: dry, clip, disk-type (used with glue), and so on. Therefore,
the electrode’s type and position can be selected freely according to the experiment’s purpose, and
the EEG cap also may be used for its convenience. In addition, ear clip electrodes can be used as a
reference for signal quality if other electrodes need to be placed near the mastoid.

Our custom-made devices are compact and mobile; however, participants still reported discomfort
during the experiment that was found to derive from the DIN 42802 snap-lead. The leads became
twisted and because the line weighs over 150 g, including all channels (reference and bipolar), they
are heavy to use over a long period. To compensate for this inconvenience, we considered a flexible
printed circuit board (PCB), as illustrated in Figure 7b. This PCB is lighter in weight and twists less
when used, which makes it considerably more convenient than the previous DIN 42802 snap-lead. In
any case, both commercial and research parties continue to make great efforts to improve all aspects of
electrodes (convenience, weight, cost, and mobility).

For several reasons, the cost required to prepare and execute multilateral hyperscanning
experiments is very high. One of the important reasons is that EEG data should be obtained using
a conductive gel or paste to fix the electrode to the scalp. In this work, sticker-type electrodes were
used for convenience; however, they had some limitations, as EEG data could be obtained only on the
frontal area, and they detached easily and frequently because of subjects’ sweat or facial movement.
Dry electrodes, which do not require conductive gels or pastes, and unlike the sticker-type, can be
used on all areas of the scalp, may overcome these disadvantages. Fortunately, the electrode industry
has developed dry electrodes in recent years that perform well, and some comparison studies have
been conducted to verify their usefulness [53,54]. We expect that dry electrodes will be more reliable
and comfortable, and have many advantages in time and cost in preparation for experiments, and thus,
may be a good choice for multilateral hyperscanning experiments.
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4.6. ERP Detection

With our proposed system, we acquired ERP data from nine participants for validation purposes,
as illustrated in Figure 8. The trials were sorted (in decreasing order) according to the mean amplitude
between 200 and 350 ms. Six participants yielded reasonable ERP components. However, N2 and P3
components (typical components of visual ERP) largely were absent in three participants’ (Sub6, Sub8,
and Sub9) ERP data, which is illustrated in Figure 8b. Compared to the ERP cases of the participants
who performed well (Figure 8a), N2 components were not seen clearly, and even P3 components
seemingly appeared 400 or more ms after onset. Thus, we could not confirm that they are typical ERP
components. We presumed that subjects’ characteristics were one possible reason for this outcome.
However, although we excluded these three subjects’ data from our analysis because of unusual ERP
observations, by checking trigger indications, we did confirm that simultaneous acquisition under our
framework was successful.

In practice, ERP components cannot be detected clearly from a single trial; thus, as many trials as
possible are averaged until the component appears clearly. Acquiring a great number of trials takes
time and tires participants. This motivated us to investigate whether acquiring ERP data from a group
of people simultaneously can reduce the number of trials required for ERP detection by using all
participants’ trials combined. Using trials from a group of people to achieve ERP detection may be
quite interesting and ERP may be detectable with far fewer trials. It is believed that this application
will reduce the training process in brain–computer interface (BCI), such as P300 spellers, dramatically.
In this study, sticker-type disposable electrodes were used and EEG data were acquired from the frontal
lobe only. Thus, we observed that the EEG data acquired were quite noisy because of eye blinking and
rolling, and the three participants whose data were excluded experienced this to a greater degree.

Excluding these three participants, we tested ERP detection from six participants combined.
We found that individual participants required at least 54 trials to achieve better than 80% performance
in the ERP detection rate. However, even when only six participants performed the same task
simultaneously and their ERP detection trials were used in combination, the number of trials required
to detect ERP decreased dramatically (from 54 to 14 to achieve 80% detection performance). These results
confirmed that our proposed system works reasonably well in a hyperscanning experiment.
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4.7. Applications, Limitations, and Future Work

Our proposed system can be applied to group interaction studies in neuroscience, and will allow
us to design experimental paradigms for hyperscanning more freely. More realistic experimental
settings, such as discussions, presentations, and classroom situations may be tractable to investigation.
It also allows us to conduct research on choices and interactions in social contexts, such as the Asch
paradigm [55]. We expect that the framework can be used to evaluate the interaction between teachers
and learners to improve our understanding of learning’s effectiveness. Furthermore, it is possible
to evaluate video content or produce audience-interactive content through biomarkers from a large
number of people. It also may be applied to the development of BCI technology. BCI is a technology
that uses brain signals to communicate the user’s intentions to a computer without the need for
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any input devices such as a keyboard and mouse. BCI technology has been applied to spellers for
quadriplegic patients, prosthesis and environment control, and rehabilitation aids. Among them, a
collaborative BCI, which may be a method to overcome BCI’s limitations, can be combined with
hyperscanning technology to improve BCI performance [56,57] or assist patients [58]. Particularly,
a collaborative BCI and guided BCI paradigms are under development.

There are some limitations in this work, as follows:

• The framework proposed adopted a connection using a 2.4 GHz Wi-Fi. Generally, a 2.4 GHz
band is used in many devices, such as wireless keyboards and routers. Therefore, devices operate
stably when there is no other router or device nearby that uses 2.4 GHz. However, communication
disconnection or delay may occur when the conditions surrounding the wireless connections
are crowded.

• Ping was used to estimate the transmission delay, which is technically different from the EEG
data devices send, and therefore it may offer only a rough estimation. In addition, the ping tool’s
accuracy is limited inherently because of its temporal resolution in ms.

• A very simple ERP component that has a minimum/maximum peak in the N2 and P3 ranges was
investigated in the validation experiment. However, N2 and P3 timings vary greatly depending
on the trials or people. For example, one participant (Sub 4) showed clean EEG data in which it
was easy to detect the ERP component (Figure 8a). However, the ERP component’s shape did not
meet the criteria we proposed and thus, it did not perform well. Therefore, we believe that other
criteria for ERP detection may yield different or better results.

• In this work, our framework was tested with a group of nine people. However, we confirmed that
it could work with up to 20 people. Because of usable devices’ limitation during experiments, only
nine devices were used. We will continue to perform experiments with larger groups in the future.

In this work, we implemented a multilateral acquisition framework without a sophisticated
experimental design and INS analysis for group interaction. Group interactions under our framework
are currently under investigation.

5. Conclusions

There is a demand for, and research efforts on, group interactions. However, the methodology
has not been discussed in detail. Thus, in this study, a framework for hyperscanning was designed
and developed that allows EEG data to be acquired simultaneously from a group of people (over 10
and up to 20). Furthermore, various issues we encountered and solutions we found while developing
our proposed system were discussed. We also conducted an ERP experiment to verify our system,
and found that time-sensitive ERP components were obtained successfully with EEG data recorded
simultaneously from a group of nine people. We confirmed that the multilateral acquisition system
has the potential to reduce the trials required to detect ERP components and suggests the possibility
of various applications, such as collaborative, assisted, and multi-mind BCI, brain gaming, crowd
psychology, and interactive contents development.
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Abbreviations

INS Interpersonal neural synchronization
fMRI Functional magnetic resonance imaging
fNIRS Functional near-infrared spectroscopy
MEG Magnetoencephalography
EEG Electroencephalography
LAN Local area network
PC Personal computer
ERP Event-related potential
IP Internet Protocol
DIN Deutsches Institut für Normung (German Institute for Standardization)
CPU Central processing unit
DDR4 Double data rate fourth generation
OS Operating system
ISI Inter-stimulus interval
ICA Independent component analysis
LSL Lab streaming layer
NTP Network Time Protocol
I/O Input/output
PCB Printed circuit board
BCI Brain-computer interface
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